// TR1 functional header -*- C++ -*- // Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file tr1_impl/functional * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ namespace std { _GLIBCXX_BEGIN_NAMESPACE_TR1 template class _Mem_fn; /** * Actual implementation of _Has_result_type, which uses SFINAE to * determine if the type _Tp has a publicly-accessible member type * result_type. */ template class _Has_result_type_helper : __sfinae_types { template struct _Wrap_type { }; template static __one __test(_Wrap_type*); template static __two __test(...); public: static const bool value = sizeof(__test<_Tp>(0)) == 1; }; template struct _Has_result_type : integral_constant::type>::value> { }; /** * */ /// If we have found a result_type, extract it. template struct _Maybe_get_result_type { }; template struct _Maybe_get_result_type { typedef typename _Functor::result_type result_type; }; /** * Base class for any function object that has a weak result type, as * defined in 3.3/3 of TR1. */ template struct _Weak_result_type_impl : _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor> { }; /// Retrieve the result type for a function type. template struct _Weak_result_type_impl<_Res(_ArgTypes...)> { typedef _Res result_type; }; /// Retrieve the result type for a function reference. template struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)> { typedef _Res result_type; }; /// Retrieve the result type for a function pointer. template struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)> { typedef _Res result_type; }; /// Retrieve result type for a member function pointer. template struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)> { typedef _Res result_type; }; /// Retrieve result type for a const member function pointer. template struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const> { typedef _Res result_type; }; /// Retrieve result type for a volatile member function pointer. template struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile> { typedef _Res result_type; }; /// Retrieve result type for a const volatile member function pointer. template struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)const volatile> { typedef _Res result_type; }; /** * Strip top-level cv-qualifiers from the function object and let * _Weak_result_type_impl perform the real work. */ template struct _Weak_result_type : _Weak_result_type_impl::type> { }; template class result_of; /** * Actual implementation of result_of. When _Has_result_type is * true, gets its result from _Weak_result_type. Otherwise, uses * the function object's member template result to extract the * result type. */ template struct _Result_of_impl; // Handle member data pointers using _Mem_fn's logic template struct _Result_of_impl { typedef typename _Mem_fn<_Res _Class::*> ::template _Result_type<_T1>::type type; }; /** * Determine whether we can determine a result type from @c Functor * alone. */ template class result_of<_Functor(_ArgTypes...)> : public _Result_of_impl< _Has_result_type<_Weak_result_type<_Functor> >::value, _Functor(_ArgTypes...)> { }; /// We already know the result type for @c Functor; use it. template struct _Result_of_impl { typedef typename _Weak_result_type<_Functor>::result_type type; }; /** * We need to compute the result type for this invocation the hard * way. */ template struct _Result_of_impl { typedef typename _Functor ::template result<_Functor(_ArgTypes...)>::type type; }; /** * It is unsafe to access ::result when there are zero arguments, so we * return @c void instead. */ template struct _Result_of_impl { typedef void type; }; /// Determines if the type _Tp derives from unary_function. template struct _Derives_from_unary_function : __sfinae_types { private: template static __one __test(const volatile unary_function<_T1, _Res>*); // It's tempting to change "..." to const volatile void*, but // that fails when _Tp is a function type. static __two __test(...); public: static const bool value = sizeof(__test((_Tp*)0)) == 1; }; /// Determines if the type _Tp derives from binary_function. template struct _Derives_from_binary_function : __sfinae_types { private: template static __one __test(const volatile binary_function<_T1, _T2, _Res>*); // It's tempting to change "..." to const volatile void*, but // that fails when _Tp is a function type. static __two __test(...); public: static const bool value = sizeof(__test((_Tp*)0)) == 1; }; /// Turns a function type into a function pointer type template::value> struct _Function_to_function_pointer { typedef _Tp type; }; template struct _Function_to_function_pointer<_Tp, true> { typedef _Tp* type; }; /** * Invoke a function object, which may be either a member pointer or a * function object. The first parameter will tell which. */ template inline typename __gnu_cxx::__enable_if< (!is_member_pointer<_Functor>::value && !is_function<_Functor>::value && !is_function::type>::value), typename result_of<_Functor(_Args...)>::type >::__type __invoke(_Functor& __f, _Args&... __args) { return __f(__args...); } template inline typename __gnu_cxx::__enable_if< (is_member_pointer<_Functor>::value && !is_function<_Functor>::value && !is_function::type>::value), typename result_of<_Functor(_Args...)>::type >::__type __invoke(_Functor& __f, _Args&... __args) { return mem_fn(__f)(__args...); } // To pick up function references (that will become function pointers) template inline typename __gnu_cxx::__enable_if< (is_pointer<_Functor>::value && is_function::type>::value), typename result_of<_Functor(_Args...)>::type >::__type __invoke(_Functor __f, _Args&... __args) { return __f(__args...); } /** * Knowing which of unary_function and binary_function _Tp derives * from, derives from the same and ensures that reference_wrapper * will have a weak result type. See cases below. */ template struct _Reference_wrapper_base_impl; // Not a unary_function or binary_function, so try a weak result type. template struct _Reference_wrapper_base_impl : _Weak_result_type<_Tp> { }; // unary_function but not binary_function template struct _Reference_wrapper_base_impl : unary_function { }; // binary_function but not unary_function template struct _Reference_wrapper_base_impl : binary_function { }; // Both unary_function and binary_function. Import result_type to // avoid conflicts. template struct _Reference_wrapper_base_impl : unary_function, binary_function { typedef typename _Tp::result_type result_type; }; /** * Derives from unary_function or binary_function when it * can. Specializations handle all of the easy cases. The primary * template determines what to do with a class type, which may * derive from both unary_function and binary_function. */ template struct _Reference_wrapper_base : _Reference_wrapper_base_impl< _Derives_from_unary_function<_Tp>::value, _Derives_from_binary_function<_Tp>::value, _Tp> { }; // - a function type (unary) template struct _Reference_wrapper_base<_Res(_T1)> : unary_function<_T1, _Res> { }; // - a function type (binary) template struct _Reference_wrapper_base<_Res(_T1, _T2)> : binary_function<_T1, _T2, _Res> { }; // - a function pointer type (unary) template struct _Reference_wrapper_base<_Res(*)(_T1)> : unary_function<_T1, _Res> { }; // - a function pointer type (binary) template struct _Reference_wrapper_base<_Res(*)(_T1, _T2)> : binary_function<_T1, _T2, _Res> { }; // - a pointer to member function type (unary, no qualifiers) template struct _Reference_wrapper_base<_Res (_T1::*)()> : unary_function<_T1*, _Res> { }; // - a pointer to member function type (binary, no qualifiers) template struct _Reference_wrapper_base<_Res (_T1::*)(_T2)> : binary_function<_T1*, _T2, _Res> { }; // - a pointer to member function type (unary, const) template struct _Reference_wrapper_base<_Res (_T1::*)() const> : unary_function { }; // - a pointer to member function type (binary, const) template struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const> : binary_function { }; // - a pointer to member function type (unary, volatile) template struct _Reference_wrapper_base<_Res (_T1::*)() volatile> : unary_function { }; // - a pointer to member function type (binary, volatile) template struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile> : binary_function { }; // - a pointer to member function type (unary, const volatile) template struct _Reference_wrapper_base<_Res (_T1::*)() const volatile> : unary_function { }; // - a pointer to member function type (binary, const volatile) template struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile> : binary_function { }; /// reference_wrapper template class reference_wrapper : public _Reference_wrapper_base::type> { // If _Tp is a function type, we can't form result_of<_Tp(...)>, // so turn it into a function pointer type. typedef typename _Function_to_function_pointer<_Tp>::type _M_func_type; _Tp* _M_data; public: typedef _Tp type; explicit reference_wrapper(_Tp& __indata): _M_data(&__indata) { } reference_wrapper(const reference_wrapper<_Tp>& __inref): _M_data(__inref._M_data) { } reference_wrapper& operator=(const reference_wrapper<_Tp>& __inref) { _M_data = __inref._M_data; return *this; } operator _Tp&() const { return this->get(); } _Tp& get() const { return *_M_data; } template typename result_of<_M_func_type(_Args...)>::type operator()(_Args&... __args) const { return __invoke(get(), __args...); } }; // Denotes a reference should be taken to a variable. template inline reference_wrapper<_Tp> ref(_Tp& __t) { return reference_wrapper<_Tp>(__t); } // Denotes a const reference should be taken to a variable. template inline reference_wrapper cref(const _Tp& __t) { return reference_wrapper(__t); } template inline reference_wrapper<_Tp> ref(reference_wrapper<_Tp> __t) { return ref(__t.get()); } template inline reference_wrapper cref(reference_wrapper<_Tp> __t) { return cref(__t.get()); } template struct _Mem_fn_const_or_non { typedef const _Tp& type; }; template struct _Mem_fn_const_or_non<_Tp, false> { typedef _Tp& type; }; /** * Derives from @c unary_function or @c binary_function, or perhaps * nothing, depending on the number of arguments provided. The * primary template is the basis case, which derives nothing. */ template struct _Maybe_unary_or_binary_function { }; /// Derives from @c unary_function, as appropriate. template struct _Maybe_unary_or_binary_function<_Res, _T1> : std::unary_function<_T1, _Res> { }; /// Derives from @c binary_function, as appropriate. template struct _Maybe_unary_or_binary_function<_Res, _T1, _T2> : std::binary_function<_T1, _T2, _Res> { }; /// Implementation of @c mem_fn for member function pointers. template class _Mem_fn<_Res (_Class::*)(_ArgTypes...)> : public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...> { typedef _Res (_Class::*_Functor)(_ArgTypes...); template _Res _M_call(_Tp& __object, const volatile _Class *, _ArgTypes... __args) const { return (__object.*__pmf)(__args...); } template _Res _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const { return ((*__ptr).*__pmf)(__args...); } public: typedef _Res result_type; explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { } // Handle objects _Res operator()(_Class& __object, _ArgTypes... __args) const { return (__object.*__pmf)(__args...); } // Handle pointers _Res operator()(_Class* __object, _ArgTypes... __args) const { return (__object->*__pmf)(__args...); } // Handle smart pointers, references and pointers to derived template _Res operator()(_Tp& __object, _ArgTypes... __args) const { return _M_call(__object, &__object, __args...); } private: _Functor __pmf; }; /// Implementation of @c mem_fn for const member function pointers. template class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const> : public _Maybe_unary_or_binary_function<_Res, const _Class*, _ArgTypes...> { typedef _Res (_Class::*_Functor)(_ArgTypes...) const; template _Res _M_call(_Tp& __object, const volatile _Class *, _ArgTypes... __args) const { return (__object.*__pmf)(__args...); } template _Res _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const { return ((*__ptr).*__pmf)(__args...); } public: typedef _Res result_type; explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { } // Handle objects _Res operator()(const _Class& __object, _ArgTypes... __args) const { return (__object.*__pmf)(__args...); } // Handle pointers _Res operator()(const _Class* __object, _ArgTypes... __args) const { return (__object->*__pmf)(__args...); } // Handle smart pointers, references and pointers to derived template _Res operator()(_Tp& __object, _ArgTypes... __args) const { return _M_call(__object, &__object, __args...); } private: _Functor __pmf; }; /// Implementation of @c mem_fn for volatile member function pointers. template class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile> : public _Maybe_unary_or_binary_function<_Res, volatile _Class*, _ArgTypes...> { typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile; template _Res _M_call(_Tp& __object, const volatile _Class *, _ArgTypes... __args) const { return (__object.*__pmf)(__args...); } template _Res _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const { return ((*__ptr).*__pmf)(__args...); } public: typedef _Res result_type; explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { } // Handle objects _Res operator()(volatile _Class& __object, _ArgTypes... __args) const { return (__object.*__pmf)(__args...); } // Handle pointers _Res operator()(volatile _Class* __object, _ArgTypes... __args) const { return (__object->*__pmf)(__args...); } // Handle smart pointers, references and pointers to derived template _Res operator()(_Tp& __object, _ArgTypes... __args) const { return _M_call(__object, &__object, __args...); } private: _Functor __pmf; }; /// Implementation of @c mem_fn for const volatile member function pointers. template class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile> : public _Maybe_unary_or_binary_function<_Res, const volatile _Class*, _ArgTypes...> { typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile; template _Res _M_call(_Tp& __object, const volatile _Class *, _ArgTypes... __args) const { return (__object.*__pmf)(__args...); } template _Res _M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const { return ((*__ptr).*__pmf)(__args...); } public: typedef _Res result_type; explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { } // Handle objects _Res operator()(const volatile _Class& __object, _ArgTypes... __args) const { return (__object.*__pmf)(__args...); } // Handle pointers _Res operator()(const volatile _Class* __object, _ArgTypes... __args) const { return (__object->*__pmf)(__args...); } // Handle smart pointers, references and pointers to derived template _Res operator()(_Tp& __object, _ArgTypes... __args) const { return _M_call(__object, &__object, __args...); } private: _Functor __pmf; }; template class _Mem_fn<_Res _Class::*> { // This bit of genius is due to Peter Dimov, improved slightly by // Douglas Gregor. template _Res& _M_call(_Tp& __object, _Class *) const { return __object.*__pm; } template _Res& _M_call(_Tp& __object, _Up * const *) const { return (*__object).*__pm; } template const _Res& _M_call(_Tp& __object, const _Up * const *) const { return (*__object).*__pm; } template const _Res& _M_call(_Tp& __object, const _Class *) const { return __object.*__pm; } template const _Res& _M_call(_Tp& __ptr, const volatile void*) const { return (*__ptr).*__pm; } template static _Tp& __get_ref(); template static __sfinae_types::__one __check_const(_Tp&, _Class*); template static __sfinae_types::__one __check_const(_Tp&, _Up * const *); template static __sfinae_types::__two __check_const(_Tp&, const _Up * const *); template static __sfinae_types::__two __check_const(_Tp&, const _Class*); template static __sfinae_types::__two __check_const(_Tp&, const volatile void*); public: template struct _Result_type : _Mem_fn_const_or_non<_Res, (sizeof(__sfinae_types::__two) == sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))> { }; template struct result; template struct result<_CVMem(_Tp)> : public _Result_type<_Tp> { }; template struct result<_CVMem(_Tp&)> : public _Result_type<_Tp> { }; explicit _Mem_fn(_Res _Class::*__pm) : __pm(__pm) { } // Handle objects _Res& operator()(_Class& __object) const { return __object.*__pm; } const _Res& operator()(const _Class& __object) const { return __object.*__pm; } // Handle pointers _Res& operator()(_Class* __object) const { return __object->*__pm; } const _Res& operator()(const _Class* __object) const { return __object->*__pm; } // Handle smart pointers and derived template typename _Result_type<_Tp>::type operator()(_Tp& __unknown) const { return _M_call(__unknown, &__unknown); } private: _Res _Class::*__pm; }; /** * @brief Returns a function object that forwards to the member * pointer @a pm. */ template inline _Mem_fn<_Tp _Class::*> mem_fn(_Tp _Class::* __pm) { return _Mem_fn<_Tp _Class::*>(__pm); } /** * @brief Determines if the given type _Tp is a function object * should be treated as a subexpression when evaluating calls to * function objects returned by bind(). [TR1 3.6.1] */ template struct is_bind_expression { static const bool value = false; }; template const bool is_bind_expression<_Tp>::value; /** * @brief Determines if the given type _Tp is a placeholder in a * bind() expression and, if so, which placeholder it is. [TR1 3.6.2] */ template struct is_placeholder { static const int value = 0; }; template const int is_placeholder<_Tp>::value; /// The type of placeholder objects defined by libstdc++. template struct _Placeholder { }; /** @namespace std::placeholders * @brief ISO C++ 0x entities sub namespace for functional. * * Define a large number of placeholders. There is no way to * simplify this with variadic templates, because we're introducing * unique names for each. */ namespace placeholders { namespace { _Placeholder<1> _1; _Placeholder<2> _2; _Placeholder<3> _3; _Placeholder<4> _4; _Placeholder<5> _5; _Placeholder<6> _6; _Placeholder<7> _7; _Placeholder<8> _8; _Placeholder<9> _9; _Placeholder<10> _10; _Placeholder<11> _11; _Placeholder<12> _12; _Placeholder<13> _13; _Placeholder<14> _14; _Placeholder<15> _15; _Placeholder<16> _16; _Placeholder<17> _17; _Placeholder<18> _18; _Placeholder<19> _19; _Placeholder<20> _20; _Placeholder<21> _21; _Placeholder<22> _22; _Placeholder<23> _23; _Placeholder<24> _24; _Placeholder<25> _25; _Placeholder<26> _26; _Placeholder<27> _27; _Placeholder<28> _28; _Placeholder<29> _29; } } /** * Partial specialization of is_placeholder that provides the placeholder * number for the placeholder objects defined by libstdc++. */ template struct is_placeholder<_Placeholder<_Num> > { static const int value = _Num; }; template const int is_placeholder<_Placeholder<_Num> >::value; /** * Stores a tuple of indices. Used by bind() to extract the elements * in a tuple. */ template struct _Index_tuple { }; /// Builds an _Index_tuple<0, 1, 2, ..., _Num-1>. template > struct _Build_index_tuple; template struct _Build_index_tuple<_Num, _Index_tuple<_Indexes...> > : _Build_index_tuple<_Num - 1, _Index_tuple<_Indexes..., sizeof...(_Indexes)> > { }; template struct _Build_index_tuple<0, _Index_tuple<_Indexes...> > { typedef _Index_tuple<_Indexes...> __type; }; /** * Used by _Safe_tuple_element to indicate that there is no tuple * element at this position. */ struct _No_tuple_element; /** * Implementation helper for _Safe_tuple_element. This primary * template handles the case where it is safe to use @c * tuple_element. */ template struct _Safe_tuple_element_impl : tuple_element<__i, _Tuple> { }; /** * Implementation helper for _Safe_tuple_element. This partial * specialization handles the case where it is not safe to use @c * tuple_element. We just return @c _No_tuple_element. */ template struct _Safe_tuple_element_impl<__i, _Tuple, false> { typedef _No_tuple_element type; }; /** * Like tuple_element, but returns @c _No_tuple_element when * tuple_element would return an error. */ template struct _Safe_tuple_element : _Safe_tuple_element_impl<__i, _Tuple, (__i >= 0 && __i < tuple_size<_Tuple>::value)> { }; /** * Maps an argument to bind() into an actual argument to the bound * function object [TR1 3.6.3/5]. Only the first parameter should * be specified: the rest are used to determine among the various * implementations. Note that, although this class is a function * object, it isn't entirely normal because it takes only two * parameters regardless of the number of parameters passed to the * bind expression. The first parameter is the bound argument and * the second parameter is a tuple containing references to the * rest of the arguments. */ template::value, bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)> class _Mu; /** * If the argument is reference_wrapper<_Tp>, returns the * underlying reference. [TR1 3.6.3/5 bullet 1] */ template class _Mu, false, false> { public: typedef _Tp& result_type; /* Note: This won't actually work for const volatile * reference_wrappers, because reference_wrapper::get() is const * but not volatile-qualified. This might be a defect in the TR. */ template result_type operator()(_CVRef& __arg, const _Tuple&) const volatile { return __arg.get(); } }; /** * If the argument is a bind expression, we invoke the underlying * function object with the same cv-qualifiers as we are given and * pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2] */ template class _Mu<_Arg, true, false> { public: template class result; // Determine the result type when we pass the arguments along. This // involves passing along the cv-qualifiers placed on _Mu and // unwrapping the argument bundle. template class result<_CVMu(_CVArg, tuple<_Args...>)> : public result_of<_CVArg(_Args...)> { }; template typename result_of<_CVArg(_Args...)>::type operator()(_CVArg& __arg, const tuple<_Args...>& __tuple) const volatile { // Construct an index tuple and forward to __call typedef typename _Build_index_tuple::__type _Indexes; return this->__call(__arg, __tuple, _Indexes()); } private: // Invokes the underlying function object __arg by unpacking all // of the arguments in the tuple. template typename result_of<_CVArg(_Args...)>::type __call(_CVArg& __arg, const tuple<_Args...>& __tuple, const _Index_tuple<_Indexes...>&) const volatile { return __arg(_GLIBCXX_TR1 get<_Indexes>(__tuple)...); } }; /** * If the argument is a placeholder for the Nth argument, returns * a reference to the Nth argument to the bind function object. * [TR1 3.6.3/5 bullet 3] */ template class _Mu<_Arg, false, true> { public: template class result; template class result<_CVMu(_CVArg, _Tuple)> { // Add a reference, if it hasn't already been done for us. // This allows us to be a little bit sloppy in constructing // the tuple that we pass to result_of<...>. typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value - 1), _Tuple>::type __base_type; public: #ifdef _GLIBCXX_INCLUDE_AS_CXX0X typedef typename add_lvalue_reference<__base_type>::type type; #else typedef typename add_reference<__base_type>::type type; #endif }; template typename result<_Mu(_Arg, _Tuple)>::type operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile { return ::std::_GLIBCXX_TR1 get<(is_placeholder<_Arg>::value - 1)>(__tuple); } }; /** * If the argument is just a value, returns a reference to that * value. The cv-qualifiers on the reference are the same as the * cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4] */ template class _Mu<_Arg, false, false> { public: template struct result; template struct result<_CVMu(_CVArg, _Tuple)> { #ifdef _GLIBCXX_INCLUDE_AS_CXX0X typedef typename add_lvalue_reference<_CVArg>::type type; #else typedef typename add_reference<_CVArg>::type type; #endif }; // Pick up the cv-qualifiers of the argument template _CVArg& operator()(_CVArg& __arg, const _Tuple&) const volatile { return __arg; } }; /** * Maps member pointers into instances of _Mem_fn but leaves all * other function objects untouched. Used by tr1::bind(). The * primary template handles the non--member-pointer case. */ template struct _Maybe_wrap_member_pointer { typedef _Tp type; static const _Tp& __do_wrap(const _Tp& __x) { return __x; } }; /** * Maps member pointers into instances of _Mem_fn but leaves all * other function objects untouched. Used by tr1::bind(). This * partial specialization handles the member pointer case. */ template struct _Maybe_wrap_member_pointer<_Tp _Class::*> { typedef _Mem_fn<_Tp _Class::*> type; static type __do_wrap(_Tp _Class::* __pm) { return type(__pm); } }; /// Type of the function object returned from bind(). template struct _Bind; template class _Bind<_Functor(_Bound_args...)> : public _Weak_result_type<_Functor> { typedef _Bind __self_type; typedef typename _Build_index_tuple::__type _Bound_indexes; _Functor _M_f; tuple<_Bound_args...> _M_bound_args; // Call unqualified template typename result_of< _Functor(typename result_of<_Mu<_Bound_args> (_Bound_args, tuple<_Args...>)>::type...) >::type __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) { return _M_f(_Mu<_Bound_args>() (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...); } // Call as const template typename result_of< const _Functor(typename result_of<_Mu<_Bound_args> (const _Bound_args, tuple<_Args...>) >::type...)>::type __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const { return _M_f(_Mu<_Bound_args>() (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...); } // Call as volatile template typename result_of< volatile _Functor(typename result_of<_Mu<_Bound_args> (volatile _Bound_args, tuple<_Args...>) >::type...)>::type __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) volatile { return _M_f(_Mu<_Bound_args>() (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...); } // Call as const volatile template typename result_of< const volatile _Functor(typename result_of<_Mu<_Bound_args> (const volatile _Bound_args, tuple<_Args...>) >::type...)>::type __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const volatile { return _M_f(_Mu<_Bound_args>() (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...); } public: explicit _Bind(_Functor __f, _Bound_args... __bound_args) : _M_f(__f), _M_bound_args(__bound_args...) { } // Call unqualified template typename result_of< _Functor(typename result_of<_Mu<_Bound_args> (_Bound_args, tuple<_Args...>)>::type...) >::type operator()(_Args&... __args) { return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes()); } // Call as const template typename result_of< const _Functor(typename result_of<_Mu<_Bound_args> (const _Bound_args, tuple<_Args...>)>::type...) >::type operator()(_Args&... __args) const { return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes()); } // Call as volatile template typename result_of< volatile _Functor(typename result_of<_Mu<_Bound_args> (volatile _Bound_args, tuple<_Args...>)>::type...) >::type operator()(_Args&... __args) volatile { return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes()); } // Call as const volatile template typename result_of< const volatile _Functor(typename result_of<_Mu<_Bound_args> (const volatile _Bound_args, tuple<_Args...>)>::type...) >::type operator()(_Args&... __args) const volatile { return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes()); } }; /// Type of the function object returned from bind(). template struct _Bind_result; template class _Bind_result<_Result, _Functor(_Bound_args...)> { typedef _Bind_result __self_type; typedef typename _Build_index_tuple::__type _Bound_indexes; _Functor _M_f; tuple<_Bound_args...> _M_bound_args; // Call unqualified template _Result __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) { return _M_f(_Mu<_Bound_args>() (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...); } // Call as const template _Result __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const { return _M_f(_Mu<_Bound_args>() (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...); } // Call as volatile template _Result __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) volatile { return _M_f(_Mu<_Bound_args>() (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...); } // Call as const volatile template _Result __call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const volatile { return _M_f(_Mu<_Bound_args>() (_GLIBCXX_TR1 get<_Indexes>(_M_bound_args), __args)...); } public: typedef _Result result_type; explicit _Bind_result(_Functor __f, _Bound_args... __bound_args) : _M_f(__f), _M_bound_args(__bound_args...) { } // Call unqualified template result_type operator()(_Args&... __args) { return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes()); } // Call as const template result_type operator()(_Args&... __args) const { return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes()); } // Call as volatile template result_type operator()(_Args&... __args) volatile { return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes()); } // Call as const volatile template result_type operator()(_Args&... __args) const volatile { return this->__call(_GLIBCXX_TR1 tie(__args...), _Bound_indexes()); } }; /// Class template _Bind is always a bind expression. template struct is_bind_expression<_Bind<_Signature> > { static const bool value = true; }; template const bool is_bind_expression<_Bind<_Signature> >::value; /// Class template _Bind_result is always a bind expression. template struct is_bind_expression<_Bind_result<_Result, _Signature> > { static const bool value = true; }; template const bool is_bind_expression<_Bind_result<_Result, _Signature> >::value; /// bind template inline _Bind::type(_ArgTypes...)> bind(_Functor __f, _ArgTypes... __args) { typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type; typedef typename __maybe_type::type __functor_type; typedef _Bind<__functor_type(_ArgTypes...)> __result_type; return __result_type(__maybe_type::__do_wrap(__f), __args...); } template inline _Bind_result<_Result, typename _Maybe_wrap_member_pointer<_Functor>::type (_ArgTypes...)> bind(_Functor __f, _ArgTypes... __args) { typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type; typedef typename __maybe_type::type __functor_type; typedef _Bind_result<_Result, __functor_type(_ArgTypes...)> __result_type; return __result_type(__maybe_type::__do_wrap(__f), __args...); } /** * @brief Exception class thrown when class template function's * operator() is called with an empty target. * @ingroup exceptions */ class bad_function_call : public std::exception { }; /** * The integral constant expression 0 can be converted into a * pointer to this type. It is used by the function template to * accept NULL pointers. */ struct _M_clear_type; /** * Trait identifying "location-invariant" types, meaning that the * address of the object (or any of its members) will not escape. * Also implies a trivial copy constructor and assignment operator. */ template struct __is_location_invariant : integral_constant::value || is_member_pointer<_Tp>::value)> { }; class _Undefined_class; union _Nocopy_types { void* _M_object; const void* _M_const_object; void (*_M_function_pointer)(); void (_Undefined_class::*_M_member_pointer)(); }; union _Any_data { void* _M_access() { return &_M_pod_data[0]; } const void* _M_access() const { return &_M_pod_data[0]; } template _Tp& _M_access() { return *static_cast<_Tp*>(_M_access()); } template const _Tp& _M_access() const { return *static_cast(_M_access()); } _Nocopy_types _M_unused; char _M_pod_data[sizeof(_Nocopy_types)]; }; enum _Manager_operation { __get_type_info, __get_functor_ptr, __clone_functor, __destroy_functor }; // Simple type wrapper that helps avoid annoying const problems // when casting between void pointers and pointers-to-pointers. template struct _Simple_type_wrapper { _Simple_type_wrapper(_Tp __value) : __value(__value) { } _Tp __value; }; template struct __is_location_invariant<_Simple_type_wrapper<_Tp> > : __is_location_invariant<_Tp> { }; // Converts a reference to a function object into a callable // function object. template inline _Functor& __callable_functor(_Functor& __f) { return __f; } template inline _Mem_fn<_Member _Class::*> __callable_functor(_Member _Class::* &__p) { return mem_fn(__p); } template inline _Mem_fn<_Member _Class::*> __callable_functor(_Member _Class::* const &__p) { return mem_fn(__p); } template class function; /// Base class of all polymorphic function object wrappers. class _Function_base { public: static const std::size_t _M_max_size = sizeof(_Nocopy_types); static const std::size_t _M_max_align = __alignof__(_Nocopy_types); template class _Base_manager { protected: static const bool __stored_locally = (__is_location_invariant<_Functor>::value && sizeof(_Functor) <= _M_max_size && __alignof__(_Functor) <= _M_max_align && (_M_max_align % __alignof__(_Functor) == 0)); typedef integral_constant _Local_storage; // Retrieve a pointer to the function object static _Functor* _M_get_pointer(const _Any_data& __source) { const _Functor* __ptr = __stored_locally? &__source._M_access<_Functor>() /* have stored a pointer */ : __source._M_access<_Functor*>(); return const_cast<_Functor*>(__ptr); } // Clone a location-invariant function object that fits within // an _Any_data structure. static void _M_clone(_Any_data& __dest, const _Any_data& __source, true_type) { new (__dest._M_access()) _Functor(__source._M_access<_Functor>()); } // Clone a function object that is not location-invariant or // that cannot fit into an _Any_data structure. static void _M_clone(_Any_data& __dest, const _Any_data& __source, false_type) { __dest._M_access<_Functor*>() = new _Functor(*__source._M_access<_Functor*>()); } // Destroying a location-invariant object may still require // destruction. static void _M_destroy(_Any_data& __victim, true_type) { __victim._M_access<_Functor>().~_Functor(); } // Destroying an object located on the heap. static void _M_destroy(_Any_data& __victim, false_type) { delete __victim._M_access<_Functor*>(); } public: static bool _M_manager(_Any_data& __dest, const _Any_data& __source, _Manager_operation __op) { switch (__op) { #ifdef __GXX_RTTI case __get_type_info: __dest._M_access() = &typeid(_Functor); break; #endif case __get_functor_ptr: __dest._M_access<_Functor*>() = _M_get_pointer(__source); break; case __clone_functor: _M_clone(__dest, __source, _Local_storage()); break; case __destroy_functor: _M_destroy(__dest, _Local_storage()); break; } return false; } static void _M_init_functor(_Any_data& __functor, const _Functor& __f) { _M_init_functor(__functor, __f, _Local_storage()); } template static bool _M_not_empty_function(const function<_Signature>& __f) { return static_cast(__f); } template static bool _M_not_empty_function(const _Tp*& __fp) { return __fp; } template static bool _M_not_empty_function(_Tp _Class::* const& __mp) { return __mp; } template static bool _M_not_empty_function(const _Tp&) { return true; } private: static void _M_init_functor(_Any_data& __functor, const _Functor& __f, true_type) { new (__functor._M_access()) _Functor(__f); } static void _M_init_functor(_Any_data& __functor, const _Functor& __f, false_type) { __functor._M_access<_Functor*>() = new _Functor(__f); } }; template class _Ref_manager : public _Base_manager<_Functor*> { typedef _Function_base::_Base_manager<_Functor*> _Base; public: static bool _M_manager(_Any_data& __dest, const _Any_data& __source, _Manager_operation __op) { switch (__op) { #ifdef __GXX_RTTI case __get_type_info: __dest._M_access() = &typeid(_Functor); break; #endif case __get_functor_ptr: __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source); return is_const<_Functor>::value; break; default: _Base::_M_manager(__dest, __source, __op); } return false; } static void _M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f) { // TBD: Use address_of function instead. _Base::_M_init_functor(__functor, &__f.get()); } }; _Function_base() : _M_manager(0) { } ~_Function_base() { if (_M_manager) _M_manager(_M_functor, _M_functor, __destroy_functor); } bool _M_empty() const { return !_M_manager; } typedef bool (*_Manager_type)(_Any_data&, const _Any_data&, _Manager_operation); _Any_data _M_functor; _Manager_type _M_manager; }; template class _Function_handler; template class _Function_handler<_Res(_ArgTypes...), _Functor> : public _Function_base::_Base_manager<_Functor> { typedef _Function_base::_Base_manager<_Functor> _Base; public: static _Res _M_invoke(const _Any_data& __functor, _ArgTypes... __args) { return (*_Base::_M_get_pointer(__functor))(__args...); } }; template class _Function_handler : public _Function_base::_Base_manager<_Functor> { typedef _Function_base::_Base_manager<_Functor> _Base; public: static void _M_invoke(const _Any_data& __functor, _ArgTypes... __args) { (*_Base::_M_get_pointer(__functor))(__args...); } }; template class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> > : public _Function_base::_Ref_manager<_Functor> { typedef _Function_base::_Ref_manager<_Functor> _Base; public: static _Res _M_invoke(const _Any_data& __functor, _ArgTypes... __args) { return __callable_functor(**_Base::_M_get_pointer(__functor))(__args...); } }; template class _Function_handler > : public _Function_base::_Ref_manager<_Functor> { typedef _Function_base::_Ref_manager<_Functor> _Base; public: static void _M_invoke(const _Any_data& __functor, _ArgTypes... __args) { __callable_functor(**_Base::_M_get_pointer(__functor))(__args...); } }; template class _Function_handler<_Res(_ArgTypes...), _Member _Class::*> : public _Function_handler { typedef _Function_handler _Base; public: static _Res _M_invoke(const _Any_data& __functor, _ArgTypes... __args) { return _GLIBCXX_TR1 mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...); } }; template class _Function_handler : public _Function_base::_Base_manager< _Simple_type_wrapper< _Member _Class::* > > { typedef _Member _Class::* _Functor; typedef _Simple_type_wrapper<_Functor> _Wrapper; typedef _Function_base::_Base_manager<_Wrapper> _Base; public: static bool _M_manager(_Any_data& __dest, const _Any_data& __source, _Manager_operation __op) { switch (__op) { #ifdef __GXX_RTTI case __get_type_info: __dest._M_access() = &typeid(_Functor); break; #endif case __get_functor_ptr: __dest._M_access<_Functor*>() = &_Base::_M_get_pointer(__source)->__value; break; default: _Base::_M_manager(__dest, __source, __op); } return false; } static void _M_invoke(const _Any_data& __functor, _ArgTypes... __args) { _GLIBCXX_TR1 mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...); } }; /// class function template class function<_Res(_ArgTypes...)> : public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>, private _Function_base { #ifndef __GXX_EXPERIMENTAL_CXX0X__ /// This class is used to implement the safe_bool idiom. struct _Hidden_type { _Hidden_type* _M_bool; }; /// This typedef is used to implement the safe_bool idiom. typedef _Hidden_type* _Hidden_type::* _Safe_bool; #endif typedef _Res _Signature_type(_ArgTypes...); struct _Useless { }; public: typedef _Res result_type; // [3.7.2.1] construct/copy/destroy /** * @brief Default construct creates an empty function call wrapper. * @post @c !(bool)*this */ function() : _Function_base() { } /** * @brief Default construct creates an empty function call wrapper. * @post @c !(bool)*this */ function(_M_clear_type*) : _Function_base() { } /** * @brief %Function copy constructor. * @param x A %function object with identical call signature. * @pre @c (bool)*this == (bool)x * * The newly-created %function contains a copy of the target of @a * x (if it has one). */ function(const function& __x); /** * @brief Builds a %function that targets a copy of the incoming * function object. * @param f A %function object that is callable with parameters of * type @c T1, @c T2, ..., @c TN and returns a value convertible * to @c Res. * * The newly-created %function object will target a copy of @a * f. If @a f is @c reference_wrapper, then this function * object will contain a reference to the function object @c * f.get(). If @a f is a NULL function pointer or NULL * pointer-to-member, the newly-created object will be empty. * * If @a f is a non-NULL function pointer or an object of type @c * reference_wrapper, this function will not throw. */ template function(_Functor __f, typename __gnu_cxx::__enable_if< !is_integral<_Functor>::value, _Useless>::__type = _Useless()); /** * @brief %Function assignment operator. * @param x A %function with identical call signature. * @post @c (bool)*this == (bool)x * @returns @c *this * * The target of @a x is copied to @c *this. If @a x has no * target, then @c *this will be empty. * * If @a x targets a function pointer or a reference to a function * object, then this operation will not throw an exception. */ function& operator=(const function& __x) { function(__x).swap(*this); return *this; } /** * @brief %Function assignment to zero. * @post @c !(bool)*this * @returns @c *this * * The target of @a *this is deallocated, leaving it empty. */ function& operator=(_M_clear_type*) { if (_M_manager) { _M_manager(_M_functor, _M_functor, __destroy_functor); _M_manager = 0; _M_invoker = 0; } return *this; } /** * @brief %Function assignment to a new target. * @param f A %function object that is callable with parameters of * type @c T1, @c T2, ..., @c TN and returns a value convertible * to @c Res. * @return @c *this * * This %function object wrapper will target a copy of @a * f. If @a f is @c reference_wrapper, then this function * object will contain a reference to the function object @c * f.get(). If @a f is a NULL function pointer or NULL * pointer-to-member, @c this object will be empty. * * If @a f is a non-NULL function pointer or an object of type @c * reference_wrapper, this function will not throw. */ template typename __gnu_cxx::__enable_if::value, function&>::__type operator=(_Functor __f) { function(__f).swap(*this); return *this; } // [3.7.2.2] function modifiers /** * @brief Swap the targets of two %function objects. * @param f A %function with identical call signature. * * Swap the targets of @c this function object and @a f. This * function will not throw an exception. */ void swap(function& __x) { _Any_data __old_functor = _M_functor; _M_functor = __x._M_functor; __x._M_functor = __old_functor; _Manager_type __old_manager = _M_manager; _M_manager = __x._M_manager; __x._M_manager = __old_manager; _Invoker_type __old_invoker = _M_invoker; _M_invoker = __x._M_invoker; __x._M_invoker = __old_invoker; } // [3.7.2.3] function capacity /** * @brief Determine if the %function wrapper has a target. * * @return @c true when this %function object contains a target, * or @c false when it is empty. * * This function will not throw an exception. */ #ifdef __GXX_EXPERIMENTAL_CXX0X__ explicit operator bool() const { return !_M_empty(); } #else operator _Safe_bool() const { if (_M_empty()) return 0; else return &_Hidden_type::_M_bool; } #endif // [3.7.2.4] function invocation /** * @brief Invokes the function targeted by @c *this. * @returns the result of the target. * @throws bad_function_call when @c !(bool)*this * * The function call operator invokes the target function object * stored by @c this. */ _Res operator()(_ArgTypes... __args) const; #ifdef __GXX_RTTI // [3.7.2.5] function target access /** * @brief Determine the type of the target of this function object * wrapper. * * @returns the type identifier of the target function object, or * @c typeid(void) if @c !(bool)*this. * * This function will not throw an exception. */ const type_info& target_type() const; /** * @brief Access the stored target function object. * * @return Returns a pointer to the stored target function object, * if @c typeid(Functor).equals(target_type()); otherwise, a NULL * pointer. * * This function will not throw an exception. */ template _Functor* target(); /// @overload template const _Functor* target() const; #endif private: // [3.7.2.6] undefined operators template void operator==(const function<_Function>&) const; template void operator!=(const function<_Function>&) const; typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...); _Invoker_type _M_invoker; }; template function<_Res(_ArgTypes...)>:: function(const function& __x) : _Function_base() { if (static_cast(__x)) { _M_invoker = __x._M_invoker; _M_manager = __x._M_manager; __x._M_manager(_M_functor, __x._M_functor, __clone_functor); } } template template function<_Res(_ArgTypes...)>:: function(_Functor __f, typename __gnu_cxx::__enable_if< !is_integral<_Functor>::value, _Useless>::__type) : _Function_base() { typedef _Function_handler<_Signature_type, _Functor> _My_handler; if (_My_handler::_M_not_empty_function(__f)) { _M_invoker = &_My_handler::_M_invoke; _M_manager = &_My_handler::_M_manager; _My_handler::_M_init_functor(_M_functor, __f); } } template _Res function<_Res(_ArgTypes...)>:: operator()(_ArgTypes... __args) const { if (_M_empty()) { #if __EXCEPTIONS throw bad_function_call(); #else __builtin_abort(); #endif } return _M_invoker(_M_functor, __args...); } #ifdef __GXX_RTTI template const type_info& function<_Res(_ArgTypes...)>:: target_type() const { if (_M_manager) { _Any_data __typeinfo_result; _M_manager(__typeinfo_result, _M_functor, __get_type_info); return *__typeinfo_result._M_access(); } else return typeid(void); } template template _Functor* function<_Res(_ArgTypes...)>:: target() { if (typeid(_Functor) == target_type() && _M_manager) { _Any_data __ptr; if (_M_manager(__ptr, _M_functor, __get_functor_ptr) && !is_const<_Functor>::value) return 0; else return __ptr._M_access<_Functor*>(); } else return 0; } template template const _Functor* function<_Res(_ArgTypes...)>:: target() const { if (typeid(_Functor) == target_type() && _M_manager) { _Any_data __ptr; _M_manager(__ptr, _M_functor, __get_functor_ptr); return __ptr._M_access(); } else return 0; } #endif // [3.7.2.7] null pointer comparisons /** * @brief Compares a polymorphic function object wrapper against 0 * (the NULL pointer). * @returns @c true if the wrapper has no target, @c false otherwise * * This function will not throw an exception. */ template inline bool operator==(const function<_Signature>& __f, _M_clear_type*) { return !static_cast(__f); } /// @overload template inline bool operator==(_M_clear_type*, const function<_Signature>& __f) { return !static_cast(__f); } /** * @brief Compares a polymorphic function object wrapper against 0 * (the NULL pointer). * @returns @c false if the wrapper has no target, @c true otherwise * * This function will not throw an exception. */ template inline bool operator!=(const function<_Signature>& __f, _M_clear_type*) { return static_cast(__f); } /// @overload template inline bool operator!=(_M_clear_type*, const function<_Signature>& __f) { return static_cast(__f); } // [3.7.2.8] specialized algorithms /** * @brief Swap the targets of two polymorphic function object wrappers. * * This function will not throw an exception. */ template inline void swap(function<_Signature>& __x, function<_Signature>& __y) { __x.swap(__y); } _GLIBCXX_END_NAMESPACE_TR1 }