// SGI's rope class -*- C++ -*- // Copyright (C) 2001, 2002 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * Copyright (c) 1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file ext/rope * This file is a GNU extension to the Standard C++ Library (possibly * containing extensions from the HP/SGI STL subset). You should only * include this header if you are using GCC 3 or later. */ #ifndef _ROPE #define _ROPE 1 #include #include #include #include #include #include #include #include # ifdef __GC # define __GC_CONST const # else # include # define __GC_CONST // constant except for deallocation # endif #include // For uninitialized_copy_n namespace __gnu_cxx { using std::size_t; using std::ptrdiff_t; using std::allocator; using std::iterator; using std::reverse_iterator; using std::_Alloc_traits; using std::_Destroy; using std::_Refcount_Base; // The _S_eos function is used for those functions that // convert to/from C-like strings to detect the end of the string. // The end-of-C-string character. // This is what the draft standard says it should be. template inline _CharT _S_eos(_CharT*) { return _CharT(); } // Test for basic character types. // For basic character types leaves having a trailing eos. template inline bool _S_is_basic_char_type(_CharT*) { return false; } template inline bool _S_is_one_byte_char_type(_CharT*) { return false; } inline bool _S_is_basic_char_type(char*) { return true; } inline bool _S_is_one_byte_char_type(char*) { return true; } inline bool _S_is_basic_char_type(wchar_t*) { return true; } // Store an eos iff _CharT is a basic character type. // Do not reference _S_eos if it isn't. template inline void _S_cond_store_eos(_CharT&) {} inline void _S_cond_store_eos(char& __c) { __c = 0; } inline void _S_cond_store_eos(wchar_t& __c) { __c = 0; } // char_producers are logically functions that generate a section of // a string. These can be convereted to ropes. The resulting rope // invokes the char_producer on demand. This allows, for example, // files to be viewed as ropes without reading the entire file. template class char_producer { public: virtual ~char_producer() {}; virtual void operator()(size_t __start_pos, size_t __len, _CharT* __buffer) = 0; // Buffer should really be an arbitrary output iterator. // That way we could flatten directly into an ostream, etc. // This is thoroughly impossible, since iterator types don't // have runtime descriptions. }; // Sequence buffers: // // Sequence must provide an append operation that appends an // array to the sequence. Sequence buffers are useful only if // appending an entire array is cheaper than appending element by element. // This is true for many string representations. // This should perhaps inherit from ostream // and be implemented correspondingly, so that they can be used // for formatted. For the sake of portability, we don't do this yet. // // For now, sequence buffers behave as output iterators. But they also // behave a little like basic_ostringstream and a // little like containers. template class sequence_buffer : public iterator { public: typedef typename _Sequence::value_type value_type; protected: _Sequence* _M_prefix; value_type _M_buffer[_Buf_sz]; size_t _M_buf_count; public: void flush() { _M_prefix->append(_M_buffer, _M_buffer + _M_buf_count); _M_buf_count = 0; } ~sequence_buffer() { flush(); } sequence_buffer() : _M_prefix(0), _M_buf_count(0) {} sequence_buffer(const sequence_buffer& __x) { _M_prefix = __x._M_prefix; _M_buf_count = __x._M_buf_count; copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer); } sequence_buffer(sequence_buffer& __x) { __x.flush(); _M_prefix = __x._M_prefix; _M_buf_count = 0; } sequence_buffer(_Sequence& __s) : _M_prefix(&__s), _M_buf_count(0) {} sequence_buffer& operator= (sequence_buffer& __x) { __x.flush(); _M_prefix = __x._M_prefix; _M_buf_count = 0; return *this; } sequence_buffer& operator= (const sequence_buffer& __x) { _M_prefix = __x._M_prefix; _M_buf_count = __x._M_buf_count; copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer); return *this; } void push_back(value_type __x) { if (_M_buf_count < _Buf_sz) { _M_buffer[_M_buf_count] = __x; ++_M_buf_count; } else { flush(); _M_buffer[0] = __x; _M_buf_count = 1; } } void append(value_type* __s, size_t __len) { if (__len + _M_buf_count <= _Buf_sz) { size_t __i = _M_buf_count; for (size_t __j = 0; __j < __len; __i++, __j++) { _M_buffer[__i] = __s[__j]; } _M_buf_count += __len; } else if (0 == _M_buf_count) { _M_prefix->append(__s, __s + __len); } else { flush(); append(__s, __len); } } sequence_buffer& write(value_type* __s, size_t __len) { append(__s, __len); return *this; } sequence_buffer& put(value_type __x) { push_back(__x); return *this; } sequence_buffer& operator=(const value_type& __rhs) { push_back(__rhs); return *this; } sequence_buffer& operator*() { return *this; } sequence_buffer& operator++() { return *this; } sequence_buffer& operator++(int) { return *this; } }; // The following should be treated as private, at least for now. template class _Rope_char_consumer { public: // If we had member templates, these should not be virtual. // For now we need to use run-time parametrization where // compile-time would do. Hence this should all be private // for now. // The symmetry with char_producer is accidental and temporary. virtual ~_Rope_char_consumer() {}; virtual bool operator()(const _CharT* __buffer, size_t __len) = 0; }; // First a lot of forward declarations. The standard seems to require // much stricter "declaration before use" than many of the implementations // that preceded it. template > class rope; template struct _Rope_RopeConcatenation; template struct _Rope_RopeLeaf; template struct _Rope_RopeFunction; template struct _Rope_RopeSubstring; template class _Rope_iterator; template class _Rope_const_iterator; template class _Rope_char_ref_proxy; template class _Rope_char_ptr_proxy; template bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x, const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y); template _Rope_const_iterator<_CharT,_Alloc> operator- (const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n); template _Rope_const_iterator<_CharT,_Alloc> operator+ (const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n); template _Rope_const_iterator<_CharT,_Alloc> operator+ (ptrdiff_t __n, const _Rope_const_iterator<_CharT,_Alloc>& __x); template bool operator== (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y); template bool operator< (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y); template ptrdiff_t operator- (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y); template _Rope_iterator<_CharT,_Alloc> operator- (const _Rope_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n); template _Rope_iterator<_CharT,_Alloc> operator+ (const _Rope_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n); template _Rope_iterator<_CharT,_Alloc> operator+ (ptrdiff_t __n, const _Rope_iterator<_CharT,_Alloc>& __x); template bool operator== (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y); template bool operator< (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y); template ptrdiff_t operator- (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y); template rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left, const rope<_CharT,_Alloc>& __right); template rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left, const _CharT* __right); template rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left, _CharT __right); // Some helpers, so we can use power on ropes. // See below for why this isn't local to the implementation. // This uses a nonstandard refcount convention. // The result has refcount 0. template struct _Rope_Concat_fn : public std::binary_function, rope<_CharT,_Alloc>, rope<_CharT,_Alloc> > { rope<_CharT,_Alloc> operator() (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { return __x + __y; } }; template inline rope<_CharT,_Alloc> identity_element(_Rope_Concat_fn<_CharT, _Alloc>) { return rope<_CharT,_Alloc>(); } // // What follows should really be local to rope. Unfortunately, // that doesn't work, since it makes it impossible to define generic // equality on rope iterators. According to the draft standard, the // template parameters for such an equality operator cannot be inferred // from the occurrence of a member class as a parameter. // (SGI compilers in fact allow this, but the __result wouldn't be // portable.) // Similarly, some of the static member functions are member functions // only to avoid polluting the global namespace, and to circumvent // restrictions on type inference for template functions. // // // The internal data structure for representing a rope. This is // private to the implementation. A rope is really just a pointer // to one of these. // // A few basic functions for manipulating this data structure // are members of _RopeRep. Most of the more complex algorithms // are implemented as rope members. // // Some of the static member functions of _RopeRep have identically // named functions in rope that simply invoke the _RopeRep versions. // // A macro to introduce various allocation and deallocation functions // These need to be defined differently depending on whether or not // we are using standard conforming allocators, and whether the allocator // instances have real state. Thus this macro is invoked repeatedly // with different definitions of __ROPE_DEFINE_ALLOC. // __ROPE_DEFINE_ALLOC(type,name) defines // type * name_allocate(size_t) and // void name_deallocate(tipe *, size_t) // Both functions may or may not be static. #define __ROPE_DEFINE_ALLOCS(__a) \ __ROPE_DEFINE_ALLOC(_CharT,_Data) /* character data */ \ typedef _Rope_RopeConcatenation<_CharT,__a> __C; \ __ROPE_DEFINE_ALLOC(__C,_C) \ typedef _Rope_RopeLeaf<_CharT,__a> __L; \ __ROPE_DEFINE_ALLOC(__L,_L) \ typedef _Rope_RopeFunction<_CharT,__a> __F; \ __ROPE_DEFINE_ALLOC(__F,_F) \ typedef _Rope_RopeSubstring<_CharT,__a> __S; \ __ROPE_DEFINE_ALLOC(__S,_S) // Internal rope nodes potentially store a copy of the allocator // instance used to allocate them. This is mostly redundant. // But the alternative would be to pass allocator instances around // in some form to nearly all internal functions, since any pointer // assignment may result in a zero reference count and thus require // deallocation. // The _Rope_rep_base class encapsulates // the differences between SGI-style allocators and standard-conforming // allocators. #define __STATIC_IF_SGI_ALLOC /* not static */ // Base class for ordinary allocators. template class _Rope_rep_alloc_base { public: typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type allocator_type; allocator_type get_allocator() const { return _M_data_allocator; } _Rope_rep_alloc_base(size_t __size, const allocator_type& __a) : _M_size(__size), _M_data_allocator(__a) {} size_t _M_size; // This is here only to avoid wasting space // for an otherwise empty base class. protected: allocator_type _M_data_allocator; # define __ROPE_DEFINE_ALLOC(_Tp, __name) \ typedef typename \ _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \ /*static*/ _Tp * __name##_allocate(size_t __n) \ { return __name##Allocator(_M_data_allocator).allocate(__n); } \ void __name##_deallocate(_Tp* __p, size_t __n) \ { __name##Allocator(_M_data_allocator).deallocate(__p, __n); } __ROPE_DEFINE_ALLOCS(_Allocator); # undef __ROPE_DEFINE_ALLOC }; // Specialization for allocators that have the property that we don't // actually have to store an allocator object. template class _Rope_rep_alloc_base<_CharT,_Allocator,true> { public: typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type allocator_type; allocator_type get_allocator() const { return allocator_type(); } _Rope_rep_alloc_base(size_t __size, const allocator_type&) : _M_size(__size) {} size_t _M_size; protected: # define __ROPE_DEFINE_ALLOC(_Tp, __name) \ typedef typename \ _Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \ typedef typename \ _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \ static _Tp* __name##_allocate(size_t __n) \ { return __name##Alloc::allocate(__n); } \ void __name##_deallocate(_Tp *__p, size_t __n) \ { __name##Alloc::deallocate(__p, __n); } __ROPE_DEFINE_ALLOCS(_Allocator); # undef __ROPE_DEFINE_ALLOC }; template struct _Rope_rep_base : public _Rope_rep_alloc_base<_CharT,_Alloc, _Alloc_traits<_CharT,_Alloc>::_S_instanceless> { typedef _Rope_rep_alloc_base<_CharT,_Alloc, _Alloc_traits<_CharT,_Alloc>::_S_instanceless> _Base; typedef typename _Base::allocator_type allocator_type; _Rope_rep_base(size_t __size, const allocator_type& __a) : _Base(__size, __a) {} }; template struct _Rope_RopeRep : public _Rope_rep_base<_CharT,_Alloc> # ifndef __GC , _Refcount_Base # endif { public: enum { _S_max_rope_depth = 45 }; enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function}; _Tag _M_tag:8; bool _M_is_balanced:8; unsigned char _M_depth; __GC_CONST _CharT* _M_c_string; __gthread_mutex_t _M_c_string_lock; /* Flattened version of string, if needed. */ /* typically 0. */ /* If it's not 0, then the memory is owned */ /* by this node. */ /* In the case of a leaf, this may point to */ /* the same memory as the data field. */ typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type; _Rope_RopeRep(_Tag __t, int __d, bool __b, size_t __size, allocator_type __a) : _Rope_rep_base<_CharT,_Alloc>(__size, __a), # ifndef __GC _Refcount_Base(1), # endif _M_tag(__t), _M_is_balanced(__b), _M_depth(__d), _M_c_string(0) #ifdef __GTHREAD_MUTEX_INIT { // Do not copy a POSIX/gthr mutex once in use. However, bits are bits. __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT; _M_c_string_lock = __tmp; } #else { __GTHREAD_MUTEX_INIT_FUNCTION (&_M_c_string_lock); } #endif # ifdef __GC void _M_incr () {} # endif static void _S_free_string(__GC_CONST _CharT*, size_t __len, allocator_type __a); # define __STL_FREE_STRING(__s, __l, __a) _S_free_string(__s, __l, __a); // Deallocate data section of a leaf. // This shouldn't be a member function. // But its hard to do anything else at the // moment, because it's templatized w.r.t. // an allocator. // Does nothing if __GC is defined. # ifndef __GC void _M_free_c_string(); void _M_free_tree(); // Deallocate t. Assumes t is not 0. void _M_unref_nonnil() { if (0 == _M_decr()) _M_free_tree(); } void _M_ref_nonnil() { _M_incr(); } static void _S_unref(_Rope_RopeRep* __t) { if (0 != __t) { __t->_M_unref_nonnil(); } } static void _S_ref(_Rope_RopeRep* __t) { if (0 != __t) __t->_M_incr(); } static void _S_free_if_unref(_Rope_RopeRep* __t) { if (0 != __t && 0 == __t->_M_ref_count) __t->_M_free_tree(); } # else /* __GC */ void _M_unref_nonnil() {} void _M_ref_nonnil() {} static void _S_unref(_Rope_RopeRep*) {} static void _S_ref(_Rope_RopeRep*) {} static void _S_free_if_unref(_Rope_RopeRep*) {} # endif }; template struct _Rope_RopeLeaf : public _Rope_RopeRep<_CharT,_Alloc> { public: // Apparently needed by VC++ // The data fields of leaves are allocated with some // extra space, to accommodate future growth and for basic // character types, to hold a trailing eos character. enum { _S_alloc_granularity = 8 }; static size_t _S_rounded_up_size(size_t __n) { size_t __size_with_eos; if (_S_is_basic_char_type((_CharT*)0)) { __size_with_eos = __n + 1; } else { __size_with_eos = __n; } # ifdef __GC return __size_with_eos; # else // Allow slop for in-place expansion. return (__size_with_eos + _S_alloc_granularity-1) &~ (_S_alloc_granularity-1); # endif } __GC_CONST _CharT* _M_data; /* Not necessarily 0 terminated. */ /* The allocated size is */ /* _S_rounded_up_size(size), except */ /* in the GC case, in which it */ /* doesn't matter. */ typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type; _Rope_RopeLeaf(__GC_CONST _CharT* __d, size_t __size, allocator_type __a) : _Rope_RopeRep<_CharT,_Alloc>(_Rope_RopeRep<_CharT,_Alloc>::_S_leaf, 0, true, __size, __a), _M_data(__d) { if (_S_is_basic_char_type((_CharT *)0)) { // already eos terminated. this->_M_c_string = __d; } } // The constructor assumes that d has been allocated with // the proper allocator and the properly padded size. // In contrast, the destructor deallocates the data: # ifndef __GC ~_Rope_RopeLeaf() { if (_M_data != this->_M_c_string) { this->_M_free_c_string(); } __STL_FREE_STRING(_M_data, this->_M_size, this->get_allocator()); } # endif }; template struct _Rope_RopeConcatenation : public _Rope_RopeRep<_CharT,_Alloc> { public: _Rope_RopeRep<_CharT,_Alloc>* _M_left; _Rope_RopeRep<_CharT,_Alloc>* _M_right; typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type; _Rope_RopeConcatenation(_Rope_RopeRep<_CharT,_Alloc>* __l, _Rope_RopeRep<_CharT,_Alloc>* __r, allocator_type __a) : _Rope_RopeRep<_CharT,_Alloc>(_Rope_RopeRep<_CharT,_Alloc>::_S_concat, std::max(__l->_M_depth, __r->_M_depth) + 1, false, __l->_M_size + __r->_M_size, __a), _M_left(__l), _M_right(__r) {} # ifndef __GC ~_Rope_RopeConcatenation() { this->_M_free_c_string(); _M_left->_M_unref_nonnil(); _M_right->_M_unref_nonnil(); } # endif }; template struct _Rope_RopeFunction : public _Rope_RopeRep<_CharT,_Alloc> { public: char_producer<_CharT>* _M_fn; # ifndef __GC bool _M_delete_when_done; // Char_producer is owned by the // rope and should be explicitly // deleted when the rope becomes // inaccessible. # else // In the GC case, we either register the rope for // finalization, or not. Thus the field is unnecessary; // the information is stored in the collector data structures. // We do need a finalization procedure to be invoked by the // collector. static void _S_fn_finalization_proc(void * __tree, void *) { delete ((_Rope_RopeFunction *)__tree) -> _M_fn; } # endif typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type; _Rope_RopeFunction(char_producer<_CharT>* __f, size_t __size, bool __d, allocator_type __a) : _Rope_RopeRep<_CharT,_Alloc>(_Rope_RopeRep<_CharT,_Alloc>::_S_function, 0, true, __size, __a) , _M_fn(__f) # ifndef __GC , _M_delete_when_done(__d) # endif { # ifdef __GC if (__d) { GC_REGISTER_FINALIZER( this, _Rope_RopeFunction::_S_fn_finalization_proc, 0, 0, 0); } # endif } # ifndef __GC ~_Rope_RopeFunction() { this->_M_free_c_string(); if (_M_delete_when_done) { delete _M_fn; } } # endif }; // Substring results are usually represented using just // concatenation nodes. But in the case of very long flat ropes // or ropes with a functional representation that isn't practical. // In that case, we represent the __result as a special case of // RopeFunction, whose char_producer points back to the rope itself. // In all cases except repeated substring operations and // deallocation, we treat the __result as a RopeFunction. template struct _Rope_RopeSubstring : public _Rope_RopeFunction<_CharT,_Alloc>, public char_producer<_CharT> { public: // XXX this whole class should be rewritten. _Rope_RopeRep<_CharT,_Alloc>* _M_base; // not 0 size_t _M_start; virtual void operator()(size_t __start_pos, size_t __req_len, _CharT* __buffer) { switch(_M_base->_M_tag) { case _Rope_RopeFunction<_CharT,_Alloc>::_S_function: case _Rope_RopeFunction<_CharT,_Alloc>::_S_substringfn: { char_producer<_CharT>* __fn = ((_Rope_RopeFunction<_CharT,_Alloc>*)_M_base)->_M_fn; (*__fn)(__start_pos + _M_start, __req_len, __buffer); } break; case _Rope_RopeFunction<_CharT,_Alloc>::_S_leaf: { __GC_CONST _CharT* __s = ((_Rope_RopeLeaf<_CharT,_Alloc>*)_M_base)->_M_data; uninitialized_copy_n(__s + __start_pos + _M_start, __req_len, __buffer); } break; default: break; } } typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type allocator_type; _Rope_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s, size_t __l, allocator_type __a) : _Rope_RopeFunction<_CharT,_Alloc>(this, __l, false, __a), char_producer<_CharT>(), _M_base(__b), _M_start(__s) { # ifndef __GC _M_base->_M_ref_nonnil(); # endif this->_M_tag = _Rope_RopeFunction<_CharT,_Alloc>::_S_substringfn; } virtual ~_Rope_RopeSubstring() { # ifndef __GC _M_base->_M_unref_nonnil(); // _M_free_c_string(); -- done by parent class # endif } }; // Self-destructing pointers to Rope_rep. // These are not conventional smart pointers. Their // only purpose in life is to ensure that unref is called // on the pointer either at normal exit or if an exception // is raised. It is the caller's responsibility to // adjust reference counts when these pointers are initialized // or assigned to. (This convention significantly reduces // the number of potentially expensive reference count // updates.) #ifndef __GC template struct _Rope_self_destruct_ptr { _Rope_RopeRep<_CharT,_Alloc>* _M_ptr; ~_Rope_self_destruct_ptr() { _Rope_RopeRep<_CharT,_Alloc>::_S_unref(_M_ptr); } #ifdef __EXCEPTIONS _Rope_self_destruct_ptr() : _M_ptr(0) {}; #else _Rope_self_destruct_ptr() {}; #endif _Rope_self_destruct_ptr(_Rope_RopeRep<_CharT,_Alloc>* __p) : _M_ptr(__p) {} _Rope_RopeRep<_CharT,_Alloc>& operator*() { return *_M_ptr; } _Rope_RopeRep<_CharT,_Alloc>* operator->() { return _M_ptr; } operator _Rope_RopeRep<_CharT,_Alloc>*() { return _M_ptr; } _Rope_self_destruct_ptr& operator= (_Rope_RopeRep<_CharT,_Alloc>* __x) { _M_ptr = __x; return *this; } }; #endif // Dereferencing a nonconst iterator has to return something // that behaves almost like a reference. It's not possible to // return an actual reference since assignment requires extra // work. And we would get into the same problems as with the // CD2 version of basic_string. template class _Rope_char_ref_proxy { friend class rope<_CharT,_Alloc>; friend class _Rope_iterator<_CharT,_Alloc>; friend class _Rope_char_ptr_proxy<_CharT,_Alloc>; # ifdef __GC typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr; # else typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr; # endif typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; typedef rope<_CharT,_Alloc> _My_rope; size_t _M_pos; _CharT _M_current; bool _M_current_valid; _My_rope* _M_root; // The whole rope. public: _Rope_char_ref_proxy(_My_rope* __r, size_t __p) : _M_pos(__p), _M_current_valid(false), _M_root(__r) {} _Rope_char_ref_proxy(const _Rope_char_ref_proxy& __x) : _M_pos(__x._M_pos), _M_current_valid(false), _M_root(__x._M_root) {} // Don't preserve cache if the reference can outlive the // expression. We claim that's not possible without calling // a copy constructor or generating reference to a proxy // reference. We declare the latter to have undefined semantics. _Rope_char_ref_proxy(_My_rope* __r, size_t __p, _CharT __c) : _M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) {} inline operator _CharT () const; _Rope_char_ref_proxy& operator= (_CharT __c); _Rope_char_ptr_proxy<_CharT,_Alloc> operator& () const; _Rope_char_ref_proxy& operator= (const _Rope_char_ref_proxy& __c) { return operator=((_CharT)__c); } }; template inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a, _Rope_char_ref_proxy <_CharT, __Alloc > __b) { _CharT __tmp = __a; __a = __b; __b = __tmp; } template class _Rope_char_ptr_proxy { // XXX this class should be rewritten. friend class _Rope_char_ref_proxy<_CharT,_Alloc>; size_t _M_pos; rope<_CharT,_Alloc>* _M_root; // The whole rope. public: _Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x) : _M_pos(__x._M_pos), _M_root(__x._M_root) {} _Rope_char_ptr_proxy(const _Rope_char_ptr_proxy& __x) : _M_pos(__x._M_pos), _M_root(__x._M_root) {} _Rope_char_ptr_proxy() {} _Rope_char_ptr_proxy(_CharT* __x) : _M_root(0), _M_pos(0) { } _Rope_char_ptr_proxy& operator= (const _Rope_char_ptr_proxy& __x) { _M_pos = __x._M_pos; _M_root = __x._M_root; return *this; } template friend bool operator== (const _Rope_char_ptr_proxy<_CharT2,_Alloc2>& __x, const _Rope_char_ptr_proxy<_CharT2,_Alloc2>& __y); _Rope_char_ref_proxy<_CharT,_Alloc> operator*() const { return _Rope_char_ref_proxy<_CharT,_Alloc>(_M_root, _M_pos); } }; // Rope iterators: // Unlike in the C version, we cache only part of the stack // for rope iterators, since they must be efficiently copyable. // When we run out of cache, we have to reconstruct the iterator // value. // Pointers from iterators are not included in reference counts. // Iterators are assumed to be thread private. Ropes can // be shared. template class _Rope_iterator_base : public iterator { friend class rope<_CharT,_Alloc>; public: typedef _Alloc _allocator_type; // used in _Rope_rotate, VC++ workaround typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; // Borland doesn't want this to be protected. protected: enum { _S_path_cache_len = 4 }; // Must be <= 9. enum { _S_iterator_buf_len = 15 }; size_t _M_current_pos; _RopeRep* _M_root; // The whole rope. size_t _M_leaf_pos; // Starting position for current leaf __GC_CONST _CharT* _M_buf_start; // Buffer possibly // containing current char. __GC_CONST _CharT* _M_buf_ptr; // Pointer to current char in buffer. // != 0 ==> buffer valid. __GC_CONST _CharT* _M_buf_end; // One past __last valid char in buffer. // What follows is the path cache. We go out of our // way to make this compact. // Path_end contains the bottom section of the path from // the root to the current leaf. const _RopeRep* _M_path_end[_S_path_cache_len]; int _M_leaf_index; // Last valid __pos in path_end; // _M_path_end[0] ... _M_path_end[leaf_index-1] // point to concatenation nodes. unsigned char _M_path_directions; // (path_directions >> __i) & 1 is 1 // iff we got from _M_path_end[leaf_index - __i - 1] // to _M_path_end[leaf_index - __i] by going to the // __right. Assumes path_cache_len <= 9. _CharT _M_tmp_buf[_S_iterator_buf_len]; // Short buffer for surrounding chars. // This is useful primarily for // RopeFunctions. We put the buffer // here to avoid locking in the // multithreaded case. // The cached path is generally assumed to be valid // only if the buffer is valid. static void _S_setbuf(_Rope_iterator_base& __x); // Set buffer contents given // path cache. static void _S_setcache(_Rope_iterator_base& __x); // Set buffer contents and // path cache. static void _S_setcache_for_incr(_Rope_iterator_base& __x); // As above, but assumes path // cache is valid for previous posn. _Rope_iterator_base() {} _Rope_iterator_base(_RopeRep* __root, size_t __pos) : _M_current_pos(__pos), _M_root(__root), _M_buf_ptr(0) {} void _M_incr(size_t __n); void _M_decr(size_t __n); public: size_t index() const { return _M_current_pos; } _Rope_iterator_base(const _Rope_iterator_base& __x) { if (0 != __x._M_buf_ptr) { *this = __x; } else { _M_current_pos = __x._M_current_pos; _M_root = __x._M_root; _M_buf_ptr = 0; } } }; template class _Rope_iterator; template class _Rope_const_iterator : public _Rope_iterator_base<_CharT,_Alloc> { friend class rope<_CharT,_Alloc>; protected: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; // The one from the base class may not be directly visible. _Rope_const_iterator(const _RopeRep* __root, size_t __pos): _Rope_iterator_base<_CharT,_Alloc>( const_cast<_RopeRep*>(__root), __pos) // Only nonconst iterators modify root ref count {} public: typedef _CharT reference; // Really a value. Returning a reference // Would be a mess, since it would have // to be included in refcount. typedef const _CharT* pointer; public: _Rope_const_iterator() {}; _Rope_const_iterator(const _Rope_const_iterator& __x) : _Rope_iterator_base<_CharT,_Alloc>(__x) { } _Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x); _Rope_const_iterator(const rope<_CharT,_Alloc>& __r, size_t __pos) : _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos) {} _Rope_const_iterator& operator= (const _Rope_const_iterator& __x) { if (0 != __x._M_buf_ptr) { *(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x; } else { this->_M_current_pos = __x._M_current_pos; this->_M_root = __x._M_root; this->_M_buf_ptr = 0; } return(*this); } reference operator*() { if (0 == this->_M_buf_ptr) _S_setcache(*this); return *this->_M_buf_ptr; } _Rope_const_iterator& operator++() { __GC_CONST _CharT* __next; if (0 != this->_M_buf_ptr && (__next = this->_M_buf_ptr + 1) < this->_M_buf_end) { this->_M_buf_ptr = __next; ++this->_M_current_pos; } else { this->_M_incr(1); } return *this; } _Rope_const_iterator& operator+=(ptrdiff_t __n) { if (__n >= 0) { this->_M_incr(__n); } else { this->_M_decr(-__n); } return *this; } _Rope_const_iterator& operator--() { this->_M_decr(1); return *this; } _Rope_const_iterator& operator-=(ptrdiff_t __n) { if (__n >= 0) { this->_M_decr(__n); } else { this->_M_incr(-__n); } return *this; } _Rope_const_iterator operator++(int) { size_t __old_pos = this->_M_current_pos; this->_M_incr(1); return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos); // This makes a subsequent dereference expensive. // Perhaps we should instead copy the iterator // if it has a valid cache? } _Rope_const_iterator operator--(int) { size_t __old_pos = this->_M_current_pos; this->_M_decr(1); return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos); } template friend _Rope_const_iterator<_CharT2,_Alloc2> operator- (const _Rope_const_iterator<_CharT2,_Alloc2>& __x, ptrdiff_t __n); template friend _Rope_const_iterator<_CharT2,_Alloc2> operator+ (const _Rope_const_iterator<_CharT2,_Alloc2>& __x, ptrdiff_t __n); template friend _Rope_const_iterator<_CharT2,_Alloc2> operator+ (ptrdiff_t __n, const _Rope_const_iterator<_CharT2,_Alloc2>& __x); reference operator[](size_t __n) { return rope<_CharT,_Alloc>::_S_fetch(this->_M_root, this->_M_current_pos + __n); } template friend bool operator== (const _Rope_const_iterator<_CharT2,_Alloc2>& __x, const _Rope_const_iterator<_CharT2,_Alloc2>& __y); template friend bool operator< (const _Rope_const_iterator<_CharT2,_Alloc2>& __x, const _Rope_const_iterator<_CharT2,_Alloc2>& __y); template friend ptrdiff_t operator- (const _Rope_const_iterator<_CharT2,_Alloc2>& __x, const _Rope_const_iterator<_CharT2,_Alloc2>& __y); }; template class _Rope_iterator : public _Rope_iterator_base<_CharT,_Alloc> { friend class rope<_CharT,_Alloc>; protected: typedef typename _Rope_iterator_base<_CharT,_Alloc>::_RopeRep _RopeRep; rope<_CharT,_Alloc>* _M_root_rope; // root is treated as a cached version of this, // and is used to detect changes to the underlying // rope. // Root is included in the reference count. // This is necessary so that we can detect changes reliably. // Unfortunately, it requires careful bookkeeping for the // nonGC case. _Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos) : _Rope_iterator_base<_CharT,_Alloc>(__r->_M_tree_ptr, __pos), _M_root_rope(__r) { _RopeRep::_S_ref(this->_M_root); if (!(__r -> empty()))_S_setcache(*this); } void _M_check(); public: typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference; typedef _Rope_char_ref_proxy<_CharT,_Alloc>* pointer; public: rope<_CharT,_Alloc>& container() { return *_M_root_rope; } _Rope_iterator() { this->_M_root = 0; // Needed for reference counting. }; _Rope_iterator(const _Rope_iterator& __x) : _Rope_iterator_base<_CharT,_Alloc>(__x) { _M_root_rope = __x._M_root_rope; _RopeRep::_S_ref(this->_M_root); } _Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos); ~_Rope_iterator() { _RopeRep::_S_unref(this->_M_root); } _Rope_iterator& operator= (const _Rope_iterator& __x) { _RopeRep* __old = this->_M_root; _RopeRep::_S_ref(__x._M_root); if (0 != __x._M_buf_ptr) { _M_root_rope = __x._M_root_rope; *(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x; } else { this->_M_current_pos = __x._M_current_pos; this->_M_root = __x._M_root; _M_root_rope = __x._M_root_rope; this->_M_buf_ptr = 0; } _RopeRep::_S_unref(__old); return(*this); } reference operator*() { _M_check(); if (0 == this->_M_buf_ptr) { return _Rope_char_ref_proxy<_CharT,_Alloc>( _M_root_rope, this->_M_current_pos); } else { return _Rope_char_ref_proxy<_CharT,_Alloc>( _M_root_rope, this->_M_current_pos, *this->_M_buf_ptr); } } _Rope_iterator& operator++() { this->_M_incr(1); return *this; } _Rope_iterator& operator+=(ptrdiff_t __n) { if (__n >= 0) { this->_M_incr(__n); } else { this->_M_decr(-__n); } return *this; } _Rope_iterator& operator--() { this->_M_decr(1); return *this; } _Rope_iterator& operator-=(ptrdiff_t __n) { if (__n >= 0) { this->_M_decr(__n); } else { this->_M_incr(-__n); } return *this; } _Rope_iterator operator++(int) { size_t __old_pos = this->_M_current_pos; this->_M_incr(1); return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos); } _Rope_iterator operator--(int) { size_t __old_pos = this->_M_current_pos; this->_M_decr(1); return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos); } reference operator[](ptrdiff_t __n) { return _Rope_char_ref_proxy<_CharT,_Alloc>( _M_root_rope, this->_M_current_pos + __n); } template friend bool operator== (const _Rope_iterator<_CharT2,_Alloc2>& __x, const _Rope_iterator<_CharT2,_Alloc2>& __y); template friend bool operator< (const _Rope_iterator<_CharT2,_Alloc2>& __x, const _Rope_iterator<_CharT2,_Alloc2>& __y); template friend ptrdiff_t operator- (const _Rope_iterator<_CharT2,_Alloc2>& __x, const _Rope_iterator<_CharT2,_Alloc2>& __y); template friend _Rope_iterator<_CharT2,_Alloc2> operator- (const _Rope_iterator<_CharT2,_Alloc2>& __x, ptrdiff_t __n); template friend _Rope_iterator<_CharT2,_Alloc2> operator+ (const _Rope_iterator<_CharT2,_Alloc2>& __x, ptrdiff_t __n); template friend _Rope_iterator<_CharT2,_Alloc2> operator+ (ptrdiff_t __n, const _Rope_iterator<_CharT2,_Alloc2>& __x); }; // The rope base class encapsulates // the differences between SGI-style allocators and standard-conforming // allocators. // Base class for ordinary allocators. template class _Rope_alloc_base { public: typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep; typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type allocator_type; allocator_type get_allocator() const { return _M_data_allocator; } _Rope_alloc_base(_RopeRep *__t, const allocator_type& __a) : _M_tree_ptr(__t), _M_data_allocator(__a) {} _Rope_alloc_base(const allocator_type& __a) : _M_data_allocator(__a) {} protected: // The only data members of a rope: allocator_type _M_data_allocator; _RopeRep* _M_tree_ptr; # define __ROPE_DEFINE_ALLOC(_Tp, __name) \ typedef typename \ _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \ _Tp* __name##_allocate(size_t __n) const \ { return __name##Allocator(_M_data_allocator).allocate(__n); } \ void __name##_deallocate(_Tp *__p, size_t __n) const \ { __name##Allocator(_M_data_allocator).deallocate(__p, __n); } __ROPE_DEFINE_ALLOCS(_Allocator) # undef __ROPE_DEFINE_ALLOC }; // Specialization for allocators that have the property that we don't // actually have to store an allocator object. template class _Rope_alloc_base<_CharT,_Allocator,true> { public: typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep; typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type allocator_type; allocator_type get_allocator() const { return allocator_type(); } _Rope_alloc_base(_RopeRep *__t, const allocator_type&) : _M_tree_ptr(__t) {} _Rope_alloc_base(const allocator_type&) {} protected: // The only data member of a rope: _RopeRep *_M_tree_ptr; # define __ROPE_DEFINE_ALLOC(_Tp, __name) \ typedef typename \ _Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \ typedef typename \ _Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \ static _Tp* __name##_allocate(size_t __n) \ { return __name##Alloc::allocate(__n); } \ static void __name##_deallocate(_Tp *__p, size_t __n) \ { __name##Alloc::deallocate(__p, __n); } __ROPE_DEFINE_ALLOCS(_Allocator) # undef __ROPE_DEFINE_ALLOC }; template struct _Rope_base : public _Rope_alloc_base<_CharT,_Alloc, _Alloc_traits<_CharT,_Alloc>::_S_instanceless> { typedef _Rope_alloc_base<_CharT,_Alloc, _Alloc_traits<_CharT,_Alloc>::_S_instanceless> _Base; typedef typename _Base::allocator_type allocator_type; typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; // The one in _Base may not be visible due to template rules. _Rope_base(_RopeRep* __t, const allocator_type& __a) : _Base(__t, __a) {} _Rope_base(const allocator_type& __a) : _Base(__a) {} }; /** * This is an SGI extension. * @ingroup SGIextensions * @doctodo */ template class rope : public _Rope_base<_CharT,_Alloc> { public: typedef _CharT value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef _CharT const_reference; typedef const _CharT* const_pointer; typedef _Rope_iterator<_CharT,_Alloc> iterator; typedef _Rope_const_iterator<_CharT,_Alloc> const_iterator; typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference; typedef _Rope_char_ptr_proxy<_CharT,_Alloc> pointer; friend class _Rope_iterator<_CharT,_Alloc>; friend class _Rope_const_iterator<_CharT,_Alloc>; friend struct _Rope_RopeRep<_CharT,_Alloc>; friend class _Rope_iterator_base<_CharT,_Alloc>; friend class _Rope_char_ptr_proxy<_CharT,_Alloc>; friend class _Rope_char_ref_proxy<_CharT,_Alloc>; friend struct _Rope_RopeSubstring<_CharT,_Alloc>; protected: typedef _Rope_base<_CharT,_Alloc> _Base; typedef typename _Base::allocator_type allocator_type; using _Base::_M_tree_ptr; typedef __GC_CONST _CharT* _Cstrptr; static _CharT _S_empty_c_str[1]; static bool _S_is0(_CharT __c) { return __c == _S_eos((_CharT*)0); } enum { _S_copy_max = 23 }; // For strings shorter than _S_copy_max, we copy to // concatenate. typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation; typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf; typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction; typedef _Rope_RopeSubstring<_CharT,_Alloc> _RopeSubstring; // Retrieve a character at the indicated position. static _CharT _S_fetch(_RopeRep* __r, size_type __pos); # ifndef __GC // Obtain a pointer to the character at the indicated position. // The pointer can be used to change the character. // If such a pointer cannot be produced, as is frequently the // case, 0 is returned instead. // (Returns nonzero only if all nodes in the path have a refcount // of 1.) static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos); # endif static bool _S_apply_to_pieces( // should be template parameter _Rope_char_consumer<_CharT>& __c, const _RopeRep* __r, size_t __begin, size_t __end); // begin and end are assumed to be in range. # ifndef __GC static void _S_unref(_RopeRep* __t) { _RopeRep::_S_unref(__t); } static void _S_ref(_RopeRep* __t) { _RopeRep::_S_ref(__t); } # else /* __GC */ static void _S_unref(_RopeRep*) {} static void _S_ref(_RopeRep*) {} # endif # ifdef __GC typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr; # else typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr; # endif // _Result is counted in refcount. static _RopeRep* _S_substring(_RopeRep* __base, size_t __start, size_t __endp1); static _RopeRep* _S_concat_char_iter(_RopeRep* __r, const _CharT* __iter, size_t __slen); // Concatenate rope and char ptr, copying __s. // Should really take an arbitrary iterator. // Result is counted in refcount. static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r, const _CharT* __iter, size_t __slen) // As above, but one reference to __r is about to be // destroyed. Thus the pieces may be recycled if all // relevant reference counts are 1. # ifdef __GC // We can't really do anything since refcounts are unavailable. { return _S_concat_char_iter(__r, __iter, __slen); } # else ; # endif static _RopeRep* _S_concat(_RopeRep* __left, _RopeRep* __right); // General concatenation on _RopeRep. _Result // has refcount of 1. Adjusts argument refcounts. public: void apply_to_pieces( size_t __begin, size_t __end, _Rope_char_consumer<_CharT>& __c) const { _S_apply_to_pieces(__c, this->_M_tree_ptr, __begin, __end); } protected: static size_t _S_rounded_up_size(size_t __n) { return _RopeLeaf::_S_rounded_up_size(__n); } static size_t _S_allocated_capacity(size_t __n) { if (_S_is_basic_char_type((_CharT*)0)) { return _S_rounded_up_size(__n) - 1; } else { return _S_rounded_up_size(__n); } } // Allocate and construct a RopeLeaf using the supplied allocator // Takes ownership of s instead of copying. static _RopeLeaf* _S_new_RopeLeaf(__GC_CONST _CharT *__s, size_t __size, allocator_type __a) { _RopeLeaf* __space = typename _Base::_LAllocator(__a).allocate(1); return new(__space) _RopeLeaf(__s, __size, __a); } static _RopeConcatenation* _S_new_RopeConcatenation( _RopeRep* __left, _RopeRep* __right, allocator_type __a) { _RopeConcatenation* __space = typename _Base::_CAllocator(__a).allocate(1); return new(__space) _RopeConcatenation(__left, __right, __a); } static _RopeFunction* _S_new_RopeFunction(char_producer<_CharT>* __f, size_t __size, bool __d, allocator_type __a) { _RopeFunction* __space = typename _Base::_FAllocator(__a).allocate(1); return new(__space) _RopeFunction(__f, __size, __d, __a); } static _RopeSubstring* _S_new_RopeSubstring( _Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s, size_t __l, allocator_type __a) { _RopeSubstring* __space = typename _Base::_SAllocator(__a).allocate(1); return new(__space) _RopeSubstring(__b, __s, __l, __a); } static _RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s, size_t __size, allocator_type __a) # define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \ _S_RopeLeaf_from_unowned_char_ptr(__s, __size, __a) { if (0 == __size) return 0; _CharT* __buf = __a.allocate(_S_rounded_up_size(__size)); uninitialized_copy_n(__s, __size, __buf); _S_cond_store_eos(__buf[__size]); try { return _S_new_RopeLeaf(__buf, __size, __a); } catch(...) { _RopeRep::__STL_FREE_STRING(__buf, __size, __a); __throw_exception_again; } } // Concatenation of nonempty strings. // Always builds a concatenation node. // Rebalances if the result is too deep. // Result has refcount 1. // Does not increment left and right ref counts even though // they are referenced. static _RopeRep* _S_tree_concat(_RopeRep* __left, _RopeRep* __right); // Concatenation helper functions static _RopeLeaf* _S_leaf_concat_char_iter(_RopeLeaf* __r, const _CharT* __iter, size_t __slen); // Concatenate by copying leaf. // should take an arbitrary iterator // result has refcount 1. # ifndef __GC static _RopeLeaf* _S_destr_leaf_concat_char_iter (_RopeLeaf* __r, const _CharT* __iter, size_t __slen); // A version that potentially clobbers __r if __r->_M_ref_count == 1. # endif private: static size_t _S_char_ptr_len(const _CharT* __s); // slightly generalized strlen rope(_RopeRep* __t, const allocator_type& __a = allocator_type()) : _Base(__t,__a) { } // Copy __r to the _CharT buffer. // Returns __buffer + __r->_M_size. // Assumes that buffer is uninitialized. static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer); // Again, with explicit starting position and length. // Assumes that buffer is uninitialized. static _CharT* _S_flatten(_RopeRep* __r, size_t __start, size_t __len, _CharT* __buffer); static const unsigned long _S_min_len[_RopeRep::_S_max_rope_depth + 1]; static bool _S_is_balanced(_RopeRep* __r) { return (__r->_M_size >= _S_min_len[__r->_M_depth]); } static bool _S_is_almost_balanced(_RopeRep* __r) { return (__r->_M_depth == 0 || __r->_M_size >= _S_min_len[__r->_M_depth - 1]); } static bool _S_is_roughly_balanced(_RopeRep* __r) { return (__r->_M_depth <= 1 || __r->_M_size >= _S_min_len[__r->_M_depth - 2]); } // Assumes the result is not empty. static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left, _RopeRep* __right) { _RopeRep* __result = _S_concat(__left, __right); if (_S_is_balanced(__result)) __result->_M_is_balanced = true; return __result; } // The basic rebalancing operation. Logically copies the // rope. The result has refcount of 1. The client will // usually decrement the reference count of __r. // The result is within height 2 of balanced by the above // definition. static _RopeRep* _S_balance(_RopeRep* __r); // Add all unbalanced subtrees to the forest of balanceed trees. // Used only by balance. static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest); // Add __r to forest, assuming __r is already balanced. static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest); // Print to stdout, exposing structure static void _S_dump(_RopeRep* __r, int __indent = 0); // Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp. static int _S_compare(const _RopeRep* __x, const _RopeRep* __y); public: bool empty() const { return 0 == this->_M_tree_ptr; } // Comparison member function. This is public only for those // clients that need a ternary comparison. Others // should use the comparison operators below. int compare(const rope& __y) const { return _S_compare(this->_M_tree_ptr, __y._M_tree_ptr); } rope(const _CharT* __s, const allocator_type& __a = allocator_type()) : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, _S_char_ptr_len(__s), __a),__a) { } rope(const _CharT* __s, size_t __len, const allocator_type& __a = allocator_type()) : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __len, __a), __a) { } // Should perhaps be templatized with respect to the iterator type // and use Sequence_buffer. (It should perhaps use sequence_buffer // even now.) rope(const _CharT *__s, const _CharT *__e, const allocator_type& __a = allocator_type()) : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __e - __s, __a), __a) { } rope(const const_iterator& __s, const const_iterator& __e, const allocator_type& __a = allocator_type()) : _Base(_S_substring(__s._M_root, __s._M_current_pos, __e._M_current_pos), __a) { } rope(const iterator& __s, const iterator& __e, const allocator_type& __a = allocator_type()) : _Base(_S_substring(__s._M_root, __s._M_current_pos, __e._M_current_pos), __a) { } rope(_CharT __c, const allocator_type& __a = allocator_type()) : _Base(__a) { _CharT* __buf = _Data_allocate(_S_rounded_up_size(1)); std::_Construct(__buf, __c); try { this->_M_tree_ptr = _S_new_RopeLeaf(__buf, 1, __a); } catch(...) { _RopeRep::__STL_FREE_STRING(__buf, 1, __a); __throw_exception_again; } } rope(size_t __n, _CharT __c, const allocator_type& __a = allocator_type()); rope(const allocator_type& __a = allocator_type()) : _Base(0, __a) {} // Construct a rope from a function that can compute its members rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn, const allocator_type& __a = allocator_type()) : _Base(__a) { this->_M_tree_ptr = (0 == __len) ? 0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a); } rope(const rope& __x, const allocator_type& __a = allocator_type()) : _Base(__x._M_tree_ptr, __a) { _S_ref(this->_M_tree_ptr); } ~rope() { _S_unref(this->_M_tree_ptr); } rope& operator=(const rope& __x) { _RopeRep* __old = this->_M_tree_ptr; this->_M_tree_ptr = __x._M_tree_ptr; _S_ref(this->_M_tree_ptr); _S_unref(__old); return(*this); } void clear() { _S_unref(this->_M_tree_ptr); this->_M_tree_ptr = 0; } void push_back(_CharT __x) { _RopeRep* __old = this->_M_tree_ptr; this->_M_tree_ptr = _S_destr_concat_char_iter(this->_M_tree_ptr, &__x, 1); _S_unref(__old); } void pop_back() { _RopeRep* __old = this->_M_tree_ptr; this->_M_tree_ptr = _S_substring(this->_M_tree_ptr, 0, this->_M_tree_ptr->_M_size - 1); _S_unref(__old); } _CharT back() const { return _S_fetch(this->_M_tree_ptr, this->_M_tree_ptr->_M_size - 1); } void push_front(_CharT __x) { _RopeRep* __old = this->_M_tree_ptr; _RopeRep* __left = __STL_ROPE_FROM_UNOWNED_CHAR_PTR(&__x, 1, this->get_allocator()); try { this->_M_tree_ptr = _S_concat(__left, this->_M_tree_ptr); _S_unref(__old); _S_unref(__left); } catch(...) { _S_unref(__left); __throw_exception_again; } } void pop_front() { _RopeRep* __old = this->_M_tree_ptr; this->_M_tree_ptr = _S_substring(this->_M_tree_ptr, 1, this->_M_tree_ptr->_M_size); _S_unref(__old); } _CharT front() const { return _S_fetch(this->_M_tree_ptr, 0); } void balance() { _RopeRep* __old = this->_M_tree_ptr; this->_M_tree_ptr = _S_balance(this->_M_tree_ptr); _S_unref(__old); } void copy(_CharT* __buffer) const { _Destroy(__buffer, __buffer + size()); _S_flatten(this->_M_tree_ptr, __buffer); } // This is the copy function from the standard, but // with the arguments reordered to make it consistent with the // rest of the interface. // Note that this guaranteed not to compile if the draft standard // order is assumed. size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const { size_t __size = size(); size_t __len = (__pos + __n > __size? __size - __pos : __n); _Destroy(__buffer, __buffer + __len); _S_flatten(this->_M_tree_ptr, __pos, __len, __buffer); return __len; } // Print to stdout, exposing structure. May be useful for // performance debugging. void dump() { _S_dump(this->_M_tree_ptr); } // Convert to 0 terminated string in new allocated memory. // Embedded 0s in the input do not terminate the copy. const _CharT* c_str() const; // As above, but lso use the flattened representation as the // the new rope representation. const _CharT* replace_with_c_str(); // Reclaim memory for the c_str generated flattened string. // Intentionally undocumented, since it's hard to say when this // is safe for multiple threads. void delete_c_str () { if (0 == this->_M_tree_ptr) return; if (_RopeRep::_S_leaf == this->_M_tree_ptr->_M_tag && ((_RopeLeaf*)this->_M_tree_ptr)->_M_data == this->_M_tree_ptr->_M_c_string) { // Representation shared return; } # ifndef __GC this->_M_tree_ptr->_M_free_c_string(); # endif this->_M_tree_ptr->_M_c_string = 0; } _CharT operator[] (size_type __pos) const { return _S_fetch(this->_M_tree_ptr, __pos); } _CharT at(size_type __pos) const { // if (__pos >= size()) throw out_of_range; // XXX return (*this)[__pos]; } const_iterator begin() const { return(const_iterator(this->_M_tree_ptr, 0)); } // An easy way to get a const iterator from a non-const container. const_iterator const_begin() const { return(const_iterator(this->_M_tree_ptr, 0)); } const_iterator end() const { return(const_iterator(this->_M_tree_ptr, size())); } const_iterator const_end() const { return(const_iterator(this->_M_tree_ptr, size())); } size_type size() const { return(0 == this->_M_tree_ptr? 0 : this->_M_tree_ptr->_M_size); } size_type length() const { return size(); } size_type max_size() const { return _S_min_len[_RopeRep::_S_max_rope_depth-1] - 1; // Guarantees that the result can be sufficirntly // balanced. Longer ropes will probably still work, // but it's harder to make guarantees. } typedef reverse_iterator const_reverse_iterator; const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } const_reverse_iterator const_rbegin() const { return const_reverse_iterator(end()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } const_reverse_iterator const_rend() const { return const_reverse_iterator(begin()); } template friend rope<_CharT2,_Alloc2> operator+ (const rope<_CharT2,_Alloc2>& __left, const rope<_CharT2,_Alloc2>& __right); template friend rope<_CharT2,_Alloc2> operator+ (const rope<_CharT2,_Alloc2>& __left, const _CharT2* __right); template friend rope<_CharT2,_Alloc2> operator+ (const rope<_CharT2,_Alloc2>& __left, _CharT2 __right); // The symmetric cases are intentionally omitted, since they're presumed // to be less common, and we don't handle them as well. // The following should really be templatized. // The first argument should be an input iterator or // forward iterator with value_type _CharT. rope& append(const _CharT* __iter, size_t __n) { _RopeRep* __result = _S_destr_concat_char_iter(this->_M_tree_ptr, __iter, __n); _S_unref(this->_M_tree_ptr); this->_M_tree_ptr = __result; return *this; } rope& append(const _CharT* __c_string) { size_t __len = _S_char_ptr_len(__c_string); append(__c_string, __len); return(*this); } rope& append(const _CharT* __s, const _CharT* __e) { _RopeRep* __result = _S_destr_concat_char_iter(this->_M_tree_ptr, __s, __e - __s); _S_unref(this->_M_tree_ptr); this->_M_tree_ptr = __result; return *this; } rope& append(const_iterator __s, const_iterator __e) { _Self_destruct_ptr __appendee(_S_substring( __s._M_root, __s._M_current_pos, __e._M_current_pos)); _RopeRep* __result = _S_concat(this->_M_tree_ptr, (_RopeRep*)__appendee); _S_unref(this->_M_tree_ptr); this->_M_tree_ptr = __result; return *this; } rope& append(_CharT __c) { _RopeRep* __result = _S_destr_concat_char_iter(this->_M_tree_ptr, &__c, 1); _S_unref(this->_M_tree_ptr); this->_M_tree_ptr = __result; return *this; } rope& append() { return append(_CharT()); } // XXX why? rope& append(const rope& __y) { _RopeRep* __result = _S_concat(this->_M_tree_ptr, __y._M_tree_ptr); _S_unref(this->_M_tree_ptr); this->_M_tree_ptr = __result; return *this; } rope& append(size_t __n, _CharT __c) { rope<_CharT,_Alloc> __last(__n, __c); return append(__last); } void swap(rope& __b) { _RopeRep* __tmp = this->_M_tree_ptr; this->_M_tree_ptr = __b._M_tree_ptr; __b._M_tree_ptr = __tmp; } protected: // Result is included in refcount. static _RopeRep* replace(_RopeRep* __old, size_t __pos1, size_t __pos2, _RopeRep* __r) { if (0 == __old) { _S_ref(__r); return __r; } _Self_destruct_ptr __left( _S_substring(__old, 0, __pos1)); _Self_destruct_ptr __right( _S_substring(__old, __pos2, __old->_M_size)); _RopeRep* __result; if (0 == __r) { __result = _S_concat(__left, __right); } else { _Self_destruct_ptr __left_result(_S_concat(__left, __r)); __result = _S_concat(__left_result, __right); } return __result; } public: void insert(size_t __p, const rope& __r) { _RopeRep* __result = replace(this->_M_tree_ptr, __p, __p, __r._M_tree_ptr); _S_unref(this->_M_tree_ptr); this->_M_tree_ptr = __result; } void insert(size_t __p, size_t __n, _CharT __c) { rope<_CharT,_Alloc> __r(__n,__c); insert(__p, __r); } void insert(size_t __p, const _CharT* __i, size_t __n) { _Self_destruct_ptr __left(_S_substring(this->_M_tree_ptr, 0, __p)); _Self_destruct_ptr __right(_S_substring(this->_M_tree_ptr, __p, size())); _Self_destruct_ptr __left_result( _S_concat_char_iter(__left, __i, __n)); // _S_ destr_concat_char_iter should be safe here. // But as it stands it's probably not a win, since __left // is likely to have additional references. _RopeRep* __result = _S_concat(__left_result, __right); _S_unref(this->_M_tree_ptr); this->_M_tree_ptr = __result; } void insert(size_t __p, const _CharT* __c_string) { insert(__p, __c_string, _S_char_ptr_len(__c_string)); } void insert(size_t __p, _CharT __c) { insert(__p, &__c, 1); } void insert(size_t __p) { _CharT __c = _CharT(); insert(__p, &__c, 1); } void insert(size_t __p, const _CharT* __i, const _CharT* __j) { rope __r(__i, __j); insert(__p, __r); } void insert(size_t __p, const const_iterator& __i, const const_iterator& __j) { rope __r(__i, __j); insert(__p, __r); } void insert(size_t __p, const iterator& __i, const iterator& __j) { rope __r(__i, __j); insert(__p, __r); } // (position, length) versions of replace operations: void replace(size_t __p, size_t __n, const rope& __r) { _RopeRep* __result = replace(this->_M_tree_ptr, __p, __p + __n, __r._M_tree_ptr); _S_unref(this->_M_tree_ptr); this->_M_tree_ptr = __result; } void replace(size_t __p, size_t __n, const _CharT* __i, size_t __i_len) { rope __r(__i, __i_len); replace(__p, __n, __r); } void replace(size_t __p, size_t __n, _CharT __c) { rope __r(__c); replace(__p, __n, __r); } void replace(size_t __p, size_t __n, const _CharT* __c_string) { rope __r(__c_string); replace(__p, __n, __r); } void replace(size_t __p, size_t __n, const _CharT* __i, const _CharT* __j) { rope __r(__i, __j); replace(__p, __n, __r); } void replace(size_t __p, size_t __n, const const_iterator& __i, const const_iterator& __j) { rope __r(__i, __j); replace(__p, __n, __r); } void replace(size_t __p, size_t __n, const iterator& __i, const iterator& __j) { rope __r(__i, __j); replace(__p, __n, __r); } // Single character variants: void replace(size_t __p, _CharT __c) { iterator __i(this, __p); *__i = __c; } void replace(size_t __p, const rope& __r) { replace(__p, 1, __r); } void replace(size_t __p, const _CharT* __i, size_t __i_len) { replace(__p, 1, __i, __i_len); } void replace(size_t __p, const _CharT* __c_string) { replace(__p, 1, __c_string); } void replace(size_t __p, const _CharT* __i, const _CharT* __j) { replace(__p, 1, __i, __j); } void replace(size_t __p, const const_iterator& __i, const const_iterator& __j) { replace(__p, 1, __i, __j); } void replace(size_t __p, const iterator& __i, const iterator& __j) { replace(__p, 1, __i, __j); } // Erase, (position, size) variant. void erase(size_t __p, size_t __n) { _RopeRep* __result = replace(this->_M_tree_ptr, __p, __p + __n, 0); _S_unref(this->_M_tree_ptr); this->_M_tree_ptr = __result; } // Erase, single character void erase(size_t __p) { erase(__p, __p + 1); } // Insert, iterator variants. iterator insert(const iterator& __p, const rope& __r) { insert(__p.index(), __r); return __p; } iterator insert(const iterator& __p, size_t __n, _CharT __c) { insert(__p.index(), __n, __c); return __p; } iterator insert(const iterator& __p, _CharT __c) { insert(__p.index(), __c); return __p; } iterator insert(const iterator& __p ) { insert(__p.index()); return __p; } iterator insert(const iterator& __p, const _CharT* c_string) { insert(__p.index(), c_string); return __p; } iterator insert(const iterator& __p, const _CharT* __i, size_t __n) { insert(__p.index(), __i, __n); return __p; } iterator insert(const iterator& __p, const _CharT* __i, const _CharT* __j) { insert(__p.index(), __i, __j); return __p; } iterator insert(const iterator& __p, const const_iterator& __i, const const_iterator& __j) { insert(__p.index(), __i, __j); return __p; } iterator insert(const iterator& __p, const iterator& __i, const iterator& __j) { insert(__p.index(), __i, __j); return __p; } // Replace, range variants. void replace(const iterator& __p, const iterator& __q, const rope& __r) { replace(__p.index(), __q.index() - __p.index(), __r); } void replace(const iterator& __p, const iterator& __q, _CharT __c) { replace(__p.index(), __q.index() - __p.index(), __c); } void replace(const iterator& __p, const iterator& __q, const _CharT* __c_string) { replace(__p.index(), __q.index() - __p.index(), __c_string); } void replace(const iterator& __p, const iterator& __q, const _CharT* __i, size_t __n) { replace(__p.index(), __q.index() - __p.index(), __i, __n); } void replace(const iterator& __p, const iterator& __q, const _CharT* __i, const _CharT* __j) { replace(__p.index(), __q.index() - __p.index(), __i, __j); } void replace(const iterator& __p, const iterator& __q, const const_iterator& __i, const const_iterator& __j) { replace(__p.index(), __q.index() - __p.index(), __i, __j); } void replace(const iterator& __p, const iterator& __q, const iterator& __i, const iterator& __j) { replace(__p.index(), __q.index() - __p.index(), __i, __j); } // Replace, iterator variants. void replace(const iterator& __p, const rope& __r) { replace(__p.index(), __r); } void replace(const iterator& __p, _CharT __c) { replace(__p.index(), __c); } void replace(const iterator& __p, const _CharT* __c_string) { replace(__p.index(), __c_string); } void replace(const iterator& __p, const _CharT* __i, size_t __n) { replace(__p.index(), __i, __n); } void replace(const iterator& __p, const _CharT* __i, const _CharT* __j) { replace(__p.index(), __i, __j); } void replace(const iterator& __p, const_iterator __i, const_iterator __j) { replace(__p.index(), __i, __j); } void replace(const iterator& __p, iterator __i, iterator __j) { replace(__p.index(), __i, __j); } // Iterator and range variants of erase iterator erase(const iterator& __p, const iterator& __q) { size_t __p_index = __p.index(); erase(__p_index, __q.index() - __p_index); return iterator(this, __p_index); } iterator erase(const iterator& __p) { size_t __p_index = __p.index(); erase(__p_index, 1); return iterator(this, __p_index); } rope substr(size_t __start, size_t __len = 1) const { return rope<_CharT,_Alloc>( _S_substring(this->_M_tree_ptr, __start, __start + __len)); } rope substr(iterator __start, iterator __end) const { return rope<_CharT,_Alloc>( _S_substring(this->_M_tree_ptr, __start.index(), __end.index())); } rope substr(iterator __start) const { size_t __pos = __start.index(); return rope<_CharT,_Alloc>( _S_substring(this->_M_tree_ptr, __pos, __pos + 1)); } rope substr(const_iterator __start, const_iterator __end) const { // This might eventually take advantage of the cache in the // iterator. return rope<_CharT,_Alloc>( _S_substring(this->_M_tree_ptr, __start.index(), __end.index())); } rope<_CharT,_Alloc> substr(const_iterator __start) { size_t __pos = __start.index(); return rope<_CharT,_Alloc>( _S_substring(this->_M_tree_ptr, __pos, __pos + 1)); } static const size_type npos; size_type find(_CharT __c, size_type __pos = 0) const; size_type find(const _CharT* __s, size_type __pos = 0) const { size_type __result_pos; const_iterator __result = std::search(const_begin() + __pos, const_end(), __s, __s + _S_char_ptr_len(__s)); __result_pos = __result.index(); # ifndef __STL_OLD_ROPE_SEMANTICS if (__result_pos == size()) __result_pos = npos; # endif return __result_pos; } iterator mutable_begin() { return(iterator(this, 0)); } iterator mutable_end() { return(iterator(this, size())); } typedef reverse_iterator reverse_iterator; reverse_iterator mutable_rbegin() { return reverse_iterator(mutable_end()); } reverse_iterator mutable_rend() { return reverse_iterator(mutable_begin()); } reference mutable_reference_at(size_type __pos) { return reference(this, __pos); } # ifdef __STD_STUFF reference operator[] (size_type __pos) { return _char_ref_proxy(this, __pos); } reference at(size_type __pos) { // if (__pos >= size()) throw out_of_range; // XXX return (*this)[__pos]; } void resize(size_type __n, _CharT __c) {} void resize(size_type __n) {} void reserve(size_type __res_arg = 0) {} size_type capacity() const { return max_size(); } // Stuff below this line is dangerous because it's error prone. // I would really like to get rid of it. // copy function with funny arg ordering. size_type copy(_CharT* __buffer, size_type __n, size_type __pos = 0) const { return copy(__pos, __n, __buffer); } iterator end() { return mutable_end(); } iterator begin() { return mutable_begin(); } reverse_iterator rend() { return mutable_rend(); } reverse_iterator rbegin() { return mutable_rbegin(); } # else const_iterator end() { return const_end(); } const_iterator begin() { return const_begin(); } const_reverse_iterator rend() { return const_rend(); } const_reverse_iterator rbegin() { return const_rbegin(); } # endif }; template const typename rope<_CharT, _Alloc>::size_type rope<_CharT, _Alloc>::npos = (size_type)(-1); template inline bool operator== (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return (__x._M_current_pos == __y._M_current_pos && __x._M_root == __y._M_root); } template inline bool operator< (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return (__x._M_current_pos < __y._M_current_pos); } template inline bool operator!= (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return !(__x == __y); } template inline bool operator> (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return __y < __x; } template inline bool operator<= (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return !(__y < __x); } template inline bool operator>= (const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return !(__x < __y); } template inline ptrdiff_t operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, const _Rope_const_iterator<_CharT,_Alloc>& __y) { return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos; } template inline _Rope_const_iterator<_CharT,_Alloc> operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) { return _Rope_const_iterator<_CharT,_Alloc>( __x._M_root, __x._M_current_pos - __n); } template inline _Rope_const_iterator<_CharT,_Alloc> operator+(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) { return _Rope_const_iterator<_CharT,_Alloc>( __x._M_root, __x._M_current_pos + __n); } template inline _Rope_const_iterator<_CharT,_Alloc> operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT,_Alloc>& __x) { return _Rope_const_iterator<_CharT,_Alloc>( __x._M_root, __x._M_current_pos + __n); } template inline bool operator== (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return (__x._M_current_pos == __y._M_current_pos && __x._M_root_rope == __y._M_root_rope); } template inline bool operator< (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return (__x._M_current_pos < __y._M_current_pos); } template inline bool operator!= (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return !(__x == __y); } template inline bool operator> (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return __y < __x; } template inline bool operator<= (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return !(__y < __x); } template inline bool operator>= (const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return !(__x < __y); } template inline ptrdiff_t operator-(const _Rope_iterator<_CharT,_Alloc>& __x, const _Rope_iterator<_CharT,_Alloc>& __y) { return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos; } template inline _Rope_iterator<_CharT,_Alloc> operator-(const _Rope_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) { return _Rope_iterator<_CharT,_Alloc>( __x._M_root_rope, __x._M_current_pos - __n); } template inline _Rope_iterator<_CharT,_Alloc> operator+(const _Rope_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) { return _Rope_iterator<_CharT,_Alloc>( __x._M_root_rope, __x._M_current_pos + __n); } template inline _Rope_iterator<_CharT,_Alloc> operator+(ptrdiff_t __n, const _Rope_iterator<_CharT,_Alloc>& __x) { return _Rope_iterator<_CharT,_Alloc>( __x._M_root_rope, __x._M_current_pos + __n); } template inline rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left, const rope<_CharT,_Alloc>& __right) { return rope<_CharT,_Alloc>( rope<_CharT,_Alloc>::_S_concat(__left._M_tree_ptr, __right._M_tree_ptr)); // Inlining this should make it possible to keep __left and // __right in registers. } template inline rope<_CharT,_Alloc>& operator+= (rope<_CharT,_Alloc>& __left, const rope<_CharT,_Alloc>& __right) { __left.append(__right); return __left; } template inline rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left, const _CharT* __right) { size_t __rlen = rope<_CharT,_Alloc>::_S_char_ptr_len(__right); return rope<_CharT,_Alloc>( rope<_CharT,_Alloc>::_S_concat_char_iter( __left._M_tree_ptr, __right, __rlen)); } template inline rope<_CharT,_Alloc>& operator+= (rope<_CharT,_Alloc>& __left, const _CharT* __right) { __left.append(__right); return __left; } template inline rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left, _CharT __right) { return rope<_CharT,_Alloc>( rope<_CharT,_Alloc>::_S_concat_char_iter( __left._M_tree_ptr, &__right, 1)); } template inline rope<_CharT,_Alloc>& operator+= (rope<_CharT,_Alloc>& __left, _CharT __right) { __left.append(__right); return __left; } template bool operator< (const rope<_CharT,_Alloc>& __left, const rope<_CharT,_Alloc>& __right) { return __left.compare(__right) < 0; } template bool operator== (const rope<_CharT,_Alloc>& __left, const rope<_CharT,_Alloc>& __right) { return __left.compare(__right) == 0; } template inline bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x, const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) { return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root); } template inline bool operator!= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { return !(__x == __y); } template inline bool operator> (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { return __y < __x; } template inline bool operator<= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { return !(__y < __x); } template inline bool operator>= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { return !(__x < __y); } template inline bool operator!= (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x, const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) { return !(__x == __y); } template std::basic_ostream<_CharT, _Traits>& operator<< (std::basic_ostream<_CharT, _Traits>& __o, const rope<_CharT, _Alloc>& __r); typedef rope crope; typedef rope wrope; inline crope::reference __mutable_reference_at(crope& __c, size_t __i) { return __c.mutable_reference_at(__i); } inline wrope::reference __mutable_reference_at(wrope& __c, size_t __i) { return __c.mutable_reference_at(__i); } template inline void swap(rope<_CharT,_Alloc>& __x, rope<_CharT,_Alloc>& __y) { __x.swap(__y); } // Hash functions should probably be revisited later: template<> struct hash { size_t operator()(const crope& __str) const { size_t __size = __str.size(); if (0 == __size) return 0; return 13*__str[0] + 5*__str[__size - 1] + __size; } }; template<> struct hash { size_t operator()(const wrope& __str) const { size_t __size = __str.size(); if (0 == __size) return 0; return 13*__str[0] + 5*__str[__size - 1] + __size; } }; } // namespace __gnu_cxx # include #endif