/* Routines required for instrumenting a program. */ /* Compile this one with gcc. */ /* Copyright (C) 1989-2013 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "tconfig.h" #include "tsystem.h" #include "coretypes.h" #include "tm.h" #include "libgcc_tm.h" #include "gthr.h" #if defined(inhibit_libc) #define IN_LIBGCOV (-1) #else #define IN_LIBGCOV 1 #if defined(L_gcov) #define GCOV_LINKAGE /* nothing */ #endif #endif #include "gcov-io.h" #if defined(inhibit_libc) /* If libc and its header files are not available, provide dummy functions. */ #ifdef L_gcov void __gcov_init (struct gcov_info *p __attribute__ ((unused))) {} void __gcov_flush (void) {} #endif #ifdef L_gcov_reset void __gcov_reset (void) {} #endif #ifdef L_gcov_dump void __gcov_dump (void) {} #endif #ifdef L_gcov_merge_add void __gcov_merge_add (gcov_type *counters __attribute__ ((unused)), unsigned n_counters __attribute__ ((unused))) {} #endif #ifdef L_gcov_merge_single void __gcov_merge_single (gcov_type *counters __attribute__ ((unused)), unsigned n_counters __attribute__ ((unused))) {} #endif #ifdef L_gcov_merge_delta void __gcov_merge_delta (gcov_type *counters __attribute__ ((unused)), unsigned n_counters __attribute__ ((unused))) {} #endif #else #include #if GCOV_LOCKED #include #include #include #endif extern void gcov_clear (void) ATTRIBUTE_HIDDEN; extern void gcov_exit (void) ATTRIBUTE_HIDDEN; extern int gcov_dump_complete ATTRIBUTE_HIDDEN; #ifdef L_gcov #include "gcov-io.c" struct gcov_fn_buffer { struct gcov_fn_buffer *next; unsigned fn_ix; struct gcov_fn_info info; /* note gcov_fn_info ends in a trailing array. */ }; struct gcov_summary_buffer { struct gcov_summary_buffer *next; struct gcov_summary summary; }; /* Chain of per-object gcov structures. */ static struct gcov_info *gcov_list; /* Size of the longest file name. */ static size_t gcov_max_filename = 0; /* Flag when the profile has already been dumped via __gcov_dump(). */ int gcov_dump_complete = 0; /* Make sure path component of the given FILENAME exists, create missing directories. FILENAME must be writable. Returns zero on success, or -1 if an error occurred. */ static int create_file_directory (char *filename) { #if !defined(TARGET_POSIX_IO) && !defined(_WIN32) (void) filename; return -1; #else char *s; s = filename; if (HAS_DRIVE_SPEC(s)) s += 2; if (IS_DIR_SEPARATOR(*s)) ++s; for (; *s != '\0'; s++) if (IS_DIR_SEPARATOR(*s)) { char sep = *s; *s = '\0'; /* Try to make directory if it doesn't already exist. */ if (access (filename, F_OK) == -1 #ifdef TARGET_POSIX_IO && mkdir (filename, 0755) == -1 #else && mkdir (filename) == -1 #endif /* The directory might have been made by another process. */ && errno != EEXIST) { fprintf (stderr, "profiling:%s:Cannot create directory\n", filename); *s = sep; return -1; }; *s = sep; }; return 0; #endif } static struct gcov_fn_buffer * free_fn_data (const struct gcov_info *gi_ptr, struct gcov_fn_buffer *buffer, unsigned limit) { struct gcov_fn_buffer *next; unsigned ix, n_ctr = 0; if (!buffer) return 0; next = buffer->next; for (ix = 0; ix != limit; ix++) if (gi_ptr->merge[ix]) free (buffer->info.ctrs[n_ctr++].values); free (buffer); return next; } static struct gcov_fn_buffer ** buffer_fn_data (const char *filename, const struct gcov_info *gi_ptr, struct gcov_fn_buffer **end_ptr, unsigned fn_ix) { unsigned n_ctrs = 0, ix = 0; struct gcov_fn_buffer *fn_buffer; unsigned len; for (ix = GCOV_COUNTERS; ix--;) if (gi_ptr->merge[ix]) n_ctrs++; len = sizeof (*fn_buffer) + sizeof (fn_buffer->info.ctrs[0]) * n_ctrs; fn_buffer = (struct gcov_fn_buffer *)malloc (len); if (!fn_buffer) goto fail; fn_buffer->next = 0; fn_buffer->fn_ix = fn_ix; fn_buffer->info.ident = gcov_read_unsigned (); fn_buffer->info.lineno_checksum = gcov_read_unsigned (); fn_buffer->info.cfg_checksum = gcov_read_unsigned (); for (n_ctrs = ix = 0; ix != GCOV_COUNTERS; ix++) { gcov_unsigned_t length; gcov_type *values; if (!gi_ptr->merge[ix]) continue; if (gcov_read_unsigned () != GCOV_TAG_FOR_COUNTER (ix)) { len = 0; goto fail; } length = GCOV_TAG_COUNTER_NUM (gcov_read_unsigned ()); len = length * sizeof (gcov_type); values = (gcov_type *)malloc (len); if (!values) goto fail; fn_buffer->info.ctrs[n_ctrs].num = length; fn_buffer->info.ctrs[n_ctrs].values = values; while (length--) *values++ = gcov_read_counter (); n_ctrs++; } *end_ptr = fn_buffer; return &fn_buffer->next; fail: fprintf (stderr, "profiling:%s:Function %u %s %u \n", filename, fn_ix, len ? "cannot allocate" : "counter mismatch", len ? len : ix); return (struct gcov_fn_buffer **)free_fn_data (gi_ptr, fn_buffer, ix); } /* Add an unsigned value to the current crc */ static gcov_unsigned_t crc32_unsigned (gcov_unsigned_t crc32, gcov_unsigned_t value) { unsigned ix; for (ix = 32; ix--; value <<= 1) { unsigned feedback; feedback = (value ^ crc32) & 0x80000000 ? 0x04c11db7 : 0; crc32 <<= 1; crc32 ^= feedback; } return crc32; } /* Check if VERSION of the info block PTR matches libgcov one. Return 1 on success, or zero in case of versions mismatch. If FILENAME is not NULL, its value used for reporting purposes instead of value from the info block. */ static int gcov_version (struct gcov_info *ptr, gcov_unsigned_t version, const char *filename) { if (version != GCOV_VERSION) { char v[4], e[4]; GCOV_UNSIGNED2STRING (v, version); GCOV_UNSIGNED2STRING (e, GCOV_VERSION); fprintf (stderr, "profiling:%s:Version mismatch - expected %.4s got %.4s\n", filename? filename : ptr->filename, e, v); return 0; } return 1; } /* Insert counter VALUE into HISTOGRAM. */ static void gcov_histogram_insert(gcov_bucket_type *histogram, gcov_type value) { unsigned i; i = gcov_histo_index(value); histogram[i].num_counters++; histogram[i].cum_value += value; if (value < histogram[i].min_value) histogram[i].min_value = value; } /* Computes a histogram of the arc counters to place in the summary SUM. */ static void gcov_compute_histogram (struct gcov_summary *sum) { struct gcov_info *gi_ptr; const struct gcov_fn_info *gfi_ptr; const struct gcov_ctr_info *ci_ptr; struct gcov_ctr_summary *cs_ptr; unsigned t_ix, f_ix, ctr_info_ix, ix; int h_ix; /* This currently only applies to arc counters. */ t_ix = GCOV_COUNTER_ARCS; /* First check if there are any counts recorded for this counter. */ cs_ptr = &(sum->ctrs[t_ix]); if (!cs_ptr->num) return; for (h_ix = 0; h_ix < GCOV_HISTOGRAM_SIZE; h_ix++) { cs_ptr->histogram[h_ix].num_counters = 0; cs_ptr->histogram[h_ix].min_value = cs_ptr->run_max; cs_ptr->histogram[h_ix].cum_value = 0; } /* Walk through all the per-object structures and record each of the count values in histogram. */ for (gi_ptr = gcov_list; gi_ptr; gi_ptr = gi_ptr->next) { if (!gi_ptr->merge[t_ix]) continue; /* Find the appropriate index into the gcov_ctr_info array for the counter we are currently working on based on the existence of the merge function pointer for this object. */ for (ix = 0, ctr_info_ix = 0; ix < t_ix; ix++) { if (gi_ptr->merge[ix]) ctr_info_ix++; } for (f_ix = 0; f_ix != gi_ptr->n_functions; f_ix++) { gfi_ptr = gi_ptr->functions[f_ix]; if (!gfi_ptr || gfi_ptr->key != gi_ptr) continue; ci_ptr = &gfi_ptr->ctrs[ctr_info_ix]; for (ix = 0; ix < ci_ptr->num; ix++) gcov_histogram_insert (cs_ptr->histogram, ci_ptr->values[ix]); } } } /* Dump the coverage counts. We merge with existing counts when possible, to avoid growing the .da files ad infinitum. We use this program's checksum to make sure we only accumulate whole program statistics to the correct summary. An object file might be embedded in two separate programs, and we must keep the two program summaries separate. */ void gcov_exit (void) { struct gcov_info *gi_ptr; const struct gcov_fn_info *gfi_ptr; struct gcov_summary this_prg; /* summary for program. */ #if !GCOV_LOCKED struct gcov_summary all_prg; /* summary for all instances of program. */ #endif struct gcov_ctr_summary *cs_ptr; const struct gcov_ctr_info *ci_ptr; unsigned t_ix; int f_ix; gcov_unsigned_t c_num; const char *gcov_prefix; int gcov_prefix_strip = 0; size_t prefix_length; char *gi_filename, *gi_filename_up; gcov_unsigned_t crc32 = 0; /* Prevent the counters from being dumped a second time on exit when the application already wrote out the profile using __gcov_dump(). */ if (gcov_dump_complete) return; #if !GCOV_LOCKED memset (&all_prg, 0, sizeof (all_prg)); #endif /* Find the totals for this execution. */ memset (&this_prg, 0, sizeof (this_prg)); for (gi_ptr = gcov_list; gi_ptr; gi_ptr = gi_ptr->next) { crc32 = crc32_unsigned (crc32, gi_ptr->stamp); crc32 = crc32_unsigned (crc32, gi_ptr->n_functions); for (f_ix = 0; (unsigned)f_ix != gi_ptr->n_functions; f_ix++) { gfi_ptr = gi_ptr->functions[f_ix]; if (gfi_ptr && gfi_ptr->key != gi_ptr) gfi_ptr = 0; crc32 = crc32_unsigned (crc32, gfi_ptr ? gfi_ptr->cfg_checksum : 0); crc32 = crc32_unsigned (crc32, gfi_ptr ? gfi_ptr->lineno_checksum : 0); if (!gfi_ptr) continue; ci_ptr = gfi_ptr->ctrs; for (t_ix = 0; t_ix != GCOV_COUNTERS_SUMMABLE; t_ix++) { if (!gi_ptr->merge[t_ix]) continue; cs_ptr = &this_prg.ctrs[t_ix]; cs_ptr->num += ci_ptr->num; crc32 = crc32_unsigned (crc32, ci_ptr->num); for (c_num = 0; c_num < ci_ptr->num; c_num++) { cs_ptr->sum_all += ci_ptr->values[c_num]; if (cs_ptr->run_max < ci_ptr->values[c_num]) cs_ptr->run_max = ci_ptr->values[c_num]; } ci_ptr++; } } } gcov_compute_histogram (&this_prg); { /* Check if the level of dirs to strip off specified. */ char *tmp = getenv("GCOV_PREFIX_STRIP"); if (tmp) { gcov_prefix_strip = atoi (tmp); /* Do not consider negative values. */ if (gcov_prefix_strip < 0) gcov_prefix_strip = 0; } } /* Get file name relocation prefix. Non-absolute values are ignored. */ gcov_prefix = getenv("GCOV_PREFIX"); if (gcov_prefix) { prefix_length = strlen(gcov_prefix); /* Remove an unnecessary trailing '/' */ if (IS_DIR_SEPARATOR (gcov_prefix[prefix_length - 1])) prefix_length--; } else prefix_length = 0; /* If no prefix was specified and a prefix stip, then we assume relative. */ if (gcov_prefix_strip != 0 && prefix_length == 0) { gcov_prefix = "."; prefix_length = 1; } /* Allocate and initialize the filename scratch space plus one. */ gi_filename = (char *) alloca (prefix_length + gcov_max_filename + 2); if (prefix_length) memcpy (gi_filename, gcov_prefix, prefix_length); gi_filename_up = gi_filename + prefix_length; /* Now merge each file. */ for (gi_ptr = gcov_list; gi_ptr; gi_ptr = gi_ptr->next) { unsigned n_counts; struct gcov_summary prg; /* summary for this object over all program. */ struct gcov_ctr_summary *cs_prg, *cs_tprg; #if !GCOV_LOCKED struct gcov_ctr_summary *cs_all; #endif int error = 0; gcov_unsigned_t tag, length; gcov_position_t summary_pos = 0; gcov_position_t eof_pos = 0; const char *fname, *s; struct gcov_fn_buffer *fn_buffer = 0; struct gcov_fn_buffer **fn_tail = &fn_buffer; struct gcov_summary_buffer *next_sum_buffer, *sum_buffer = 0; struct gcov_summary_buffer **sum_tail = &sum_buffer; fname = gi_ptr->filename; /* Avoid to add multiple drive letters into combined path. */ if (prefix_length != 0 && HAS_DRIVE_SPEC(fname)) fname += 2; /* Build relocated filename, stripping off leading directories from the initial filename if requested. */ if (gcov_prefix_strip > 0) { int level = 0; s = fname; if (IS_DIR_SEPARATOR(*s)) ++s; /* Skip selected directory levels. */ for (; (*s != '\0') && (level < gcov_prefix_strip); s++) if (IS_DIR_SEPARATOR(*s)) { fname = s; level++; } } /* Update complete filename with stripped original. */ if (prefix_length != 0 && !IS_DIR_SEPARATOR (*fname)) { /* If prefix is given, add directory separator. */ strcpy (gi_filename_up, "/"); strcpy (gi_filename_up + 1, fname); } else strcpy (gi_filename_up, fname); if (!gcov_open (gi_filename)) { /* Open failed likely due to missed directory. Create directory and retry to open file. */ if (create_file_directory (gi_filename)) { fprintf (stderr, "profiling:%s:Skip\n", gi_filename); continue; } if (!gcov_open (gi_filename)) { fprintf (stderr, "profiling:%s:Cannot open\n", gi_filename); continue; } } tag = gcov_read_unsigned (); if (tag) { /* Merge data from file. */ if (tag != GCOV_DATA_MAGIC) { fprintf (stderr, "profiling:%s:Not a gcov data file\n", gi_filename); goto read_fatal; } length = gcov_read_unsigned (); if (!gcov_version (gi_ptr, length, gi_filename)) goto read_fatal; length = gcov_read_unsigned (); if (length != gi_ptr->stamp) /* Read from a different compilation. Overwrite the file. */ goto rewrite; /* Look for program summary. */ for (f_ix = 0;;) { struct gcov_summary tmp; eof_pos = gcov_position (); tag = gcov_read_unsigned (); if (tag != GCOV_TAG_PROGRAM_SUMMARY) break; f_ix--; length = gcov_read_unsigned (); gcov_read_summary (&tmp); if ((error = gcov_is_error ())) goto read_error; if (summary_pos) { /* Save all summaries after the one that will be merged into below. These will need to be rewritten as histogram merging may change the number of non-zero histogram entries that will be emitted, and thus the size of the merged summary. */ (*sum_tail) = (struct gcov_summary_buffer *) malloc (sizeof(struct gcov_summary_buffer)); (*sum_tail)->summary = tmp; (*sum_tail)->next = 0; sum_tail = &((*sum_tail)->next); goto next_summary; } if (tmp.checksum != crc32) goto next_summary; for (t_ix = 0; t_ix != GCOV_COUNTERS_SUMMABLE; t_ix++) if (tmp.ctrs[t_ix].num != this_prg.ctrs[t_ix].num) goto next_summary; prg = tmp; summary_pos = eof_pos; next_summary:; } /* Merge execution counts for each function. */ for (f_ix = 0; (unsigned)f_ix != gi_ptr->n_functions; f_ix++, tag = gcov_read_unsigned ()) { gfi_ptr = gi_ptr->functions[f_ix]; if (tag != GCOV_TAG_FUNCTION) goto read_mismatch; length = gcov_read_unsigned (); if (!length) /* This function did not appear in the other program. We have nothing to merge. */ continue; if (length != GCOV_TAG_FUNCTION_LENGTH) goto read_mismatch; if (!gfi_ptr || gfi_ptr->key != gi_ptr) { /* This function appears in the other program. We need to buffer the information in order to write it back out -- we'll be inserting data before this point, so cannot simply keep the data in the file. */ fn_tail = buffer_fn_data (gi_filename, gi_ptr, fn_tail, f_ix); if (!fn_tail) goto read_mismatch; continue; } length = gcov_read_unsigned (); if (length != gfi_ptr->ident) goto read_mismatch; length = gcov_read_unsigned (); if (length != gfi_ptr->lineno_checksum) goto read_mismatch; length = gcov_read_unsigned (); if (length != gfi_ptr->cfg_checksum) goto read_mismatch; ci_ptr = gfi_ptr->ctrs; for (t_ix = 0; t_ix < GCOV_COUNTERS; t_ix++) { gcov_merge_fn merge = gi_ptr->merge[t_ix]; if (!merge) continue; tag = gcov_read_unsigned (); length = gcov_read_unsigned (); if (tag != GCOV_TAG_FOR_COUNTER (t_ix) || length != GCOV_TAG_COUNTER_LENGTH (ci_ptr->num)) goto read_mismatch; (*merge) (ci_ptr->values, ci_ptr->num); ci_ptr++; } if ((error = gcov_is_error ())) goto read_error; } if (tag) { read_mismatch:; fprintf (stderr, "profiling:%s:Merge mismatch for %s %u\n", gi_filename, f_ix >= 0 ? "function" : "summary", f_ix < 0 ? -1 - f_ix : f_ix); goto read_fatal; } } goto rewrite; read_error:; fprintf (stderr, "profiling:%s:%s merging\n", gi_filename, error < 0 ? "Overflow": "Error"); goto read_fatal; rewrite:; gcov_rewrite (); if (!summary_pos) { memset (&prg, 0, sizeof (prg)); summary_pos = eof_pos; } /* Merge the summaries. */ for (t_ix = 0; t_ix < GCOV_COUNTERS_SUMMABLE; t_ix++) { cs_prg = &prg.ctrs[t_ix]; cs_tprg = &this_prg.ctrs[t_ix]; if (gi_ptr->merge[t_ix]) { if (!cs_prg->runs++) cs_prg->num = cs_tprg->num; cs_prg->sum_all += cs_tprg->sum_all; if (cs_prg->run_max < cs_tprg->run_max) cs_prg->run_max = cs_tprg->run_max; cs_prg->sum_max += cs_tprg->run_max; if (cs_prg->runs == 1) memcpy (cs_prg->histogram, cs_tprg->histogram, sizeof (gcov_bucket_type) * GCOV_HISTOGRAM_SIZE); else gcov_histogram_merge (cs_prg->histogram, cs_tprg->histogram); } else if (cs_prg->runs) goto read_mismatch; #if !GCOV_LOCKED cs_all = &all_prg.ctrs[t_ix]; if (!cs_all->runs && cs_prg->runs) { cs_all->num = cs_prg->num; cs_all->runs = cs_prg->runs; cs_all->sum_all = cs_prg->sum_all; cs_all->run_max = cs_prg->run_max; cs_all->sum_max = cs_prg->sum_max; } else if (!all_prg.checksum /* Don't compare the histograms, which may have slight variations depending on the order they were updated due to the truncating integer divides used in the merge. */ && (cs_all->num != cs_prg->num || cs_all->runs != cs_prg->runs || cs_all->sum_all != cs_prg->sum_all || cs_all->run_max != cs_prg->run_max || cs_all->sum_max != cs_prg->sum_max)) { fprintf (stderr, "profiling:%s:Data file mismatch - some data files may " "have been concurrently updated without locking support\n", gi_filename); all_prg.checksum = ~0u; } #endif } prg.checksum = crc32; /* Write out the data. */ if (!eof_pos) { gcov_write_tag_length (GCOV_DATA_MAGIC, GCOV_VERSION); gcov_write_unsigned (gi_ptr->stamp); } if (summary_pos) gcov_seek (summary_pos); /* Generate whole program statistics. */ gcov_write_summary (GCOV_TAG_PROGRAM_SUMMARY, &prg); /* Rewrite all the summaries that were after the summary we merged into. This is necessary as the merged summary may have a different size due to the number of non-zero histogram entries changing after merging. */ while (sum_buffer) { gcov_write_summary (GCOV_TAG_PROGRAM_SUMMARY, &sum_buffer->summary); next_sum_buffer = sum_buffer->next; free (sum_buffer); sum_buffer = next_sum_buffer; } /* Write execution counts for each function. */ for (f_ix = 0; (unsigned)f_ix != gi_ptr->n_functions; f_ix++) { unsigned buffered = 0; if (fn_buffer && fn_buffer->fn_ix == (unsigned)f_ix) { /* Buffered data from another program. */ buffered = 1; gfi_ptr = &fn_buffer->info; length = GCOV_TAG_FUNCTION_LENGTH; } else { gfi_ptr = gi_ptr->functions[f_ix]; if (gfi_ptr && gfi_ptr->key == gi_ptr) length = GCOV_TAG_FUNCTION_LENGTH; else length = 0; } gcov_write_tag_length (GCOV_TAG_FUNCTION, length); if (!length) continue; gcov_write_unsigned (gfi_ptr->ident); gcov_write_unsigned (gfi_ptr->lineno_checksum); gcov_write_unsigned (gfi_ptr->cfg_checksum); ci_ptr = gfi_ptr->ctrs; for (t_ix = 0; t_ix < GCOV_COUNTERS; t_ix++) { if (!gi_ptr->merge[t_ix]) continue; n_counts = ci_ptr->num; gcov_write_tag_length (GCOV_TAG_FOR_COUNTER (t_ix), GCOV_TAG_COUNTER_LENGTH (n_counts)); gcov_type *c_ptr = ci_ptr->values; while (n_counts--) gcov_write_counter (*c_ptr++); ci_ptr++; } if (buffered) fn_buffer = free_fn_data (gi_ptr, fn_buffer, GCOV_COUNTERS); } gcov_write_unsigned (0); read_fatal:; while (fn_buffer) fn_buffer = free_fn_data (gi_ptr, fn_buffer, GCOV_COUNTERS); if ((error = gcov_close ())) fprintf (stderr, error < 0 ? "profiling:%s:Overflow writing\n" : "profiling:%s:Error writing\n", gi_filename); } } /* Reset all counters to zero. */ void gcov_clear (void) { const struct gcov_info *gi_ptr; for (gi_ptr = gcov_list; gi_ptr; gi_ptr = gi_ptr->next) { unsigned f_ix; for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++) { unsigned t_ix; const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix]; if (!gfi_ptr || gfi_ptr->key != gi_ptr) continue; const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs; for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++) { if (!gi_ptr->merge[t_ix]) continue; memset (ci_ptr->values, 0, sizeof (gcov_type) * ci_ptr->num); ci_ptr++; } } } } /* Add a new object file onto the bb chain. Invoked automatically when running an object file's global ctors. */ void __gcov_init (struct gcov_info *info) { if (!info->version || !info->n_functions) return; if (gcov_version (info, info->version, 0)) { size_t filename_length = strlen(info->filename); /* Refresh the longest file name information */ if (filename_length > gcov_max_filename) gcov_max_filename = filename_length; if (!gcov_list) atexit (gcov_exit); info->next = gcov_list; gcov_list = info; } info->version = 0; } #ifdef __GTHREAD_MUTEX_INIT ATTRIBUTE_HIDDEN __gthread_mutex_t __gcov_flush_mx = __GTHREAD_MUTEX_INIT; #define init_mx_once() #else __gthread_mutex_t __gcov_flush_mx ATTRIBUTE_HIDDEN; static void init_mx (void) { __GTHREAD_MUTEX_INIT_FUNCTION (&__gcov_flush_mx); } static void init_mx_once (void) { static __gthread_once_t once = __GTHREAD_ONCE_INIT; __gthread_once (&once, init_mx); } #endif /* Called before fork or exec - write out profile information gathered so far and reset it to zero. This avoids duplication or loss of the profile information gathered so far. */ void __gcov_flush (void) { init_mx_once (); __gthread_mutex_lock (&__gcov_flush_mx); gcov_exit (); gcov_clear (); __gthread_mutex_unlock (&__gcov_flush_mx); } #endif /* L_gcov */ #ifdef L_gcov_reset /* Function that can be called from application to reset counters to zero, in order to collect profile in region of interest. */ void __gcov_reset (void) { gcov_clear (); /* Re-enable dumping to support collecting profile in multiple regions of interest. */ gcov_dump_complete = 0; } #endif /* L_gcov_reset */ #ifdef L_gcov_dump /* Function that can be called from application to write profile collected so far, in order to collect profile in region of interest. */ void __gcov_dump (void) { gcov_exit (); /* Prevent profile from being dumped a second time on application exit. */ gcov_dump_complete = 1; } #endif /* L_gcov_dump */ #ifdef L_gcov_merge_add /* The profile merging function that just adds the counters. It is given an array COUNTERS of N_COUNTERS old counters and it reads the same number of counters from the gcov file. */ void __gcov_merge_add (gcov_type *counters, unsigned n_counters) { for (; n_counters; counters++, n_counters--) *counters += gcov_read_counter (); } #endif /* L_gcov_merge_add */ #ifdef L_gcov_merge_ior /* The profile merging function that just adds the counters. It is given an array COUNTERS of N_COUNTERS old counters and it reads the same number of counters from the gcov file. */ void __gcov_merge_ior (gcov_type *counters, unsigned n_counters) { for (; n_counters; counters++, n_counters--) *counters |= gcov_read_counter (); } #endif #ifdef L_gcov_merge_single /* The profile merging function for choosing the most common value. It is given an array COUNTERS of N_COUNTERS old counters and it reads the same number of counters from the gcov file. The counters are split into 3-tuples where the members of the tuple have meanings: -- the stored candidate on the most common value of the measured entity -- counter -- total number of evaluations of the value */ void __gcov_merge_single (gcov_type *counters, unsigned n_counters) { unsigned i, n_measures; gcov_type value, counter, all; gcc_assert (!(n_counters % 3)); n_measures = n_counters / 3; for (i = 0; i < n_measures; i++, counters += 3) { value = gcov_read_counter (); counter = gcov_read_counter (); all = gcov_read_counter (); if (counters[0] == value) counters[1] += counter; else if (counter > counters[1]) { counters[0] = value; counters[1] = counter - counters[1]; } else counters[1] -= counter; counters[2] += all; } } #endif /* L_gcov_merge_single */ #ifdef L_gcov_merge_delta /* The profile merging function for choosing the most common difference between two consecutive evaluations of the value. It is given an array COUNTERS of N_COUNTERS old counters and it reads the same number of counters from the gcov file. The counters are split into 4-tuples where the members of the tuple have meanings: -- the last value of the measured entity -- the stored candidate on the most common difference -- counter -- total number of evaluations of the value */ void __gcov_merge_delta (gcov_type *counters, unsigned n_counters) { unsigned i, n_measures; gcov_type value, counter, all; gcc_assert (!(n_counters % 4)); n_measures = n_counters / 4; for (i = 0; i < n_measures; i++, counters += 4) { /* last = */ gcov_read_counter (); value = gcov_read_counter (); counter = gcov_read_counter (); all = gcov_read_counter (); if (counters[1] == value) counters[2] += counter; else if (counter > counters[2]) { counters[1] = value; counters[2] = counter - counters[2]; } else counters[2] -= counter; counters[3] += all; } } #endif /* L_gcov_merge_delta */ #ifdef L_gcov_interval_profiler /* If VALUE is in interval , then increases the corresponding counter in COUNTERS. If the VALUE is above or below the interval, COUNTERS[STEPS] or COUNTERS[STEPS + 1] is increased instead. */ void __gcov_interval_profiler (gcov_type *counters, gcov_type value, int start, unsigned steps) { gcov_type delta = value - start; if (delta < 0) counters[steps + 1]++; else if (delta >= steps) counters[steps]++; else counters[delta]++; } #endif #ifdef L_gcov_pow2_profiler /* If VALUE is a power of two, COUNTERS[1] is incremented. Otherwise COUNTERS[0] is incremented. */ void __gcov_pow2_profiler (gcov_type *counters, gcov_type value) { if (value & (value - 1)) counters[0]++; else counters[1]++; } #endif /* Tries to determine the most common value among its inputs. Checks if the value stored in COUNTERS[0] matches VALUE. If this is the case, COUNTERS[1] is incremented. If this is not the case and COUNTERS[1] is not zero, COUNTERS[1] is decremented. Otherwise COUNTERS[1] is set to one and VALUE is stored to COUNTERS[0]. This algorithm guarantees that if this function is called more than 50% of the time with one value, this value will be in COUNTERS[0] in the end. In any case, COUNTERS[2] is incremented. */ static inline void __gcov_one_value_profiler_body (gcov_type *counters, gcov_type value) { if (value == counters[0]) counters[1]++; else if (counters[1] == 0) { counters[1] = 1; counters[0] = value; } else counters[1]--; counters[2]++; } #ifdef L_gcov_one_value_profiler void __gcov_one_value_profiler (gcov_type *counters, gcov_type value) { __gcov_one_value_profiler_body (counters, value); } #endif #ifdef L_gcov_indirect_call_profiler /* This function exist only for workaround of binutils bug 14342. Once this compatibility hack is obsolette, it can be removed. */ /* By default, the C++ compiler will use function addresses in the vtable entries. Setting TARGET_VTABLE_USES_DESCRIPTORS to nonzero tells the compiler to use function descriptors instead. The value of this macro says how many words wide the descriptor is (normally 2), but it may be dependent on target flags. Since we do not have access to the target flags here we just check to see if it is set and use that to set VTABLE_USES_DESCRIPTORS to 0 or 1. It is assumed that the address of a function descriptor may be treated as a pointer to a function. */ #ifdef TARGET_VTABLE_USES_DESCRIPTORS #define VTABLE_USES_DESCRIPTORS 1 #else #define VTABLE_USES_DESCRIPTORS 0 #endif /* Tries to determine the most common value among its inputs. */ void __gcov_indirect_call_profiler (gcov_type* counter, gcov_type value, void* cur_func, void* callee_func) { /* If the C++ virtual tables contain function descriptors then one function may have multiple descriptors and we need to dereference the descriptors to see if they point to the same function. */ if (cur_func == callee_func || (VTABLE_USES_DESCRIPTORS && callee_func && *(void **) cur_func == *(void **) callee_func)) __gcov_one_value_profiler_body (counter, value); } #endif #ifdef L_gcov_indirect_call_profiler_v2 /* These two variables are used to actually track caller and callee. Keep them in TLS memory so races are not common (they are written to often). The variables are set directly by GCC instrumented code, so declaration here must match one in tree-profile.c */ #if defined(HAVE_CC_TLS) && !defined (USE_EMUTLS) __thread #endif void * __gcov_indirect_call_callee; #if defined(HAVE_CC_TLS) && !defined (USE_EMUTLS) __thread #endif gcov_type * __gcov_indirect_call_counters; /* By default, the C++ compiler will use function addresses in the vtable entries. Setting TARGET_VTABLE_USES_DESCRIPTORS to nonzero tells the compiler to use function descriptors instead. The value of this macro says how many words wide the descriptor is (normally 2), but it may be dependent on target flags. Since we do not have access to the target flags here we just check to see if it is set and use that to set VTABLE_USES_DESCRIPTORS to 0 or 1. It is assumed that the address of a function descriptor may be treated as a pointer to a function. */ #ifdef TARGET_VTABLE_USES_DESCRIPTORS #define VTABLE_USES_DESCRIPTORS 1 #else #define VTABLE_USES_DESCRIPTORS 0 #endif /* Tries to determine the most common value among its inputs. */ void __gcov_indirect_call_profiler_v2 (gcov_type value, void* cur_func) { /* If the C++ virtual tables contain function descriptors then one function may have multiple descriptors and we need to dereference the descriptors to see if they point to the same function. */ if (cur_func == __gcov_indirect_call_callee || (VTABLE_USES_DESCRIPTORS && __gcov_indirect_call_callee && *(void **) cur_func == *(void **) __gcov_indirect_call_callee)) __gcov_one_value_profiler_body (__gcov_indirect_call_counters, value); } #endif #ifdef L_gcov_average_profiler /* Increase corresponding COUNTER by VALUE. FIXME: Perhaps we want to saturate up. */ void __gcov_average_profiler (gcov_type *counters, gcov_type value) { counters[0] += value; counters[1] ++; } #endif #ifdef L_gcov_ior_profiler /* Bitwise-OR VALUE into COUNTER. */ void __gcov_ior_profiler (gcov_type *counters, gcov_type value) { *counters |= value; } #endif #ifdef L_gcov_fork /* A wrapper for the fork function. Flushes the accumulated profiling data, so that they are not counted twice. */ pid_t __gcov_fork (void) { pid_t pid; extern __gthread_mutex_t __gcov_flush_mx; __gcov_flush (); pid = fork (); if (pid == 0) __GTHREAD_MUTEX_INIT_FUNCTION (&__gcov_flush_mx); return pid; } #endif #ifdef L_gcov_execl /* A wrapper for the execl function. Flushes the accumulated profiling data, so that they are not lost. */ int __gcov_execl (const char *path, char *arg, ...) { va_list ap, aq; unsigned i, length; char **args; __gcov_flush (); va_start (ap, arg); va_copy (aq, ap); length = 2; while (va_arg (ap, char *)) length++; va_end (ap); args = (char **) alloca (length * sizeof (void *)); args[0] = arg; for (i = 1; i < length; i++) args[i] = va_arg (aq, char *); va_end (aq); return execv (path, args); } #endif #ifdef L_gcov_execlp /* A wrapper for the execlp function. Flushes the accumulated profiling data, so that they are not lost. */ int __gcov_execlp (const char *path, char *arg, ...) { va_list ap, aq; unsigned i, length; char **args; __gcov_flush (); va_start (ap, arg); va_copy (aq, ap); length = 2; while (va_arg (ap, char *)) length++; va_end (ap); args = (char **) alloca (length * sizeof (void *)); args[0] = arg; for (i = 1; i < length; i++) args[i] = va_arg (aq, char *); va_end (aq); return execvp (path, args); } #endif #ifdef L_gcov_execle /* A wrapper for the execle function. Flushes the accumulated profiling data, so that they are not lost. */ int __gcov_execle (const char *path, char *arg, ...) { va_list ap, aq; unsigned i, length; char **args; char **envp; __gcov_flush (); va_start (ap, arg); va_copy (aq, ap); length = 2; while (va_arg (ap, char *)) length++; va_end (ap); args = (char **) alloca (length * sizeof (void *)); args[0] = arg; for (i = 1; i < length; i++) args[i] = va_arg (aq, char *); envp = va_arg (aq, char **); va_end (aq); return execve (path, args, envp); } #endif #ifdef L_gcov_execv /* A wrapper for the execv function. Flushes the accumulated profiling data, so that they are not lost. */ int __gcov_execv (const char *path, char *const argv[]) { __gcov_flush (); return execv (path, argv); } #endif #ifdef L_gcov_execvp /* A wrapper for the execvp function. Flushes the accumulated profiling data, so that they are not lost. */ int __gcov_execvp (const char *path, char *const argv[]) { __gcov_flush (); return execvp (path, argv); } #endif #ifdef L_gcov_execve /* A wrapper for the execve function. Flushes the accumulated profiling data, so that they are not lost. */ int __gcov_execve (const char *path, char *const argv[], char *const envp[]) { __gcov_flush (); return execve (path, argv, envp); } #endif #endif /* inhibit_libc */