// The template and inlines for the -*- C++ -*- internal _Meta class. // Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. // Written by Gabriel Dos Reis /** @file valarray_meta.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _CPP_VALARRAY_META_H #define _CPP_VALARRAY_META_H 1 #pragma GCC system_header namespace std { // // Implementing a loosened valarray return value is tricky. // First we need to meet 26.3.1/3: we should not add more than // two levels of template nesting. Therefore we resort to template // template to "flatten" loosened return value types. // At some point we use partial specialization to remove one level // template nesting due to _Expr<> // // This class is NOT defined. It doesn't need to. template class _Constant; // Implementations of unary functions applied to valarray<>s. // I use hard-coded object functions here instead of a generic // approach like pointers to function: // 1) correctness: some functions take references, others values. // we can't deduce the correct type afterwards. // 2) efficiency -- object functions can be easily inlined // 3) be Koenig-lookup-friendly struct __abs { template _Tp operator()(const _Tp& __t) const { return abs(__t); } }; struct __cos { template _Tp operator()(const _Tp& __t) const { return cos(__t); } }; struct __acos { template _Tp operator()(const _Tp& __t) const { return acos(__t); } }; struct __cosh { template _Tp operator()(const _Tp& __t) const { return cosh(__t); } }; struct __sin { template _Tp operator()(const _Tp& __t) const { return sin(__t); } }; struct __asin { template _Tp operator()(const _Tp& __t) const { return asin(__t); } }; struct __sinh { template _Tp operator()(const _Tp& __t) const { return sinh(__t); } }; struct __tan { template _Tp operator()(const _Tp& __t) const { return tan(__t); } }; struct __atan { template _Tp operator()(const _Tp& __t) const { return atan(__t); } }; struct __tanh { template _Tp operator()(const _Tp& __t) const { return tanh(__t); } }; struct __exp { template _Tp operator()(const _Tp& __t) const { return exp(__t); } }; struct __log { template _Tp operator()(const _Tp& __t) const { return log(__t); } }; struct __log10 { template _Tp operator()(const _Tp& __t) const { return log10(__t); } }; struct __sqrt { template _Tp operator()(const _Tp& __t) const { return sqrt(__t); } }; // In the past, we used to tailor operator applications semantics // to the specialization of standard function objects (i.e. plus<>, etc.) // That is incorrect. Therefore we provide our own surrogates. struct __unary_plus { template _Tp operator()(const _Tp& __t) const { return +__t; } }; struct __negate { template _Tp operator()(const _Tp& __t) const { return -__t; } }; struct __bitwise_not { template _Tp operator()(const _Tp& __t) const { return ~__t; } }; struct __plus { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } }; struct __minus { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; } }; struct __multiplies { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } }; struct __divides { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; } }; struct __modulus { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; } }; struct __bitwise_xor { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x ^ __y; } }; struct __bitwise_and { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x & __y; } }; struct __bitwise_or { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x | __y; } }; struct __shift_left { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x << __y; } }; struct __shift_right { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x >> __y; } }; struct __logical_and { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; } }; struct __logical_or { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; } }; struct __logical_not { template bool operator()(const _Tp& __x) const { return !__x; } }; struct __equal_to { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } }; struct __not_equal_to { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } }; struct __less { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } }; struct __greater { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; } }; struct __less_equal { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; } }; struct __greater_equal { template bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; } }; // The few binary functions we miss. struct __atan2 { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return atan2(__x, __y); } }; struct __pow { template _Tp operator()(const _Tp& __x, const _Tp& __y) const { return pow(__x, __y); } }; // We need these bits in order to recover the return type of // some functions/operators now that we're no longer using // function templates. template struct __fun { typedef _Tp result_type; }; // several specializations for relational operators. template struct __fun<__logical_not, _Tp> { typedef bool result_type; }; template struct __fun<__logical_and, _Tp> { typedef bool result_type; }; template struct __fun<__logical_or, _Tp> { typedef bool result_type; }; template struct __fun<__less, _Tp> { typedef bool result_type; }; template struct __fun<__greater, _Tp> { typedef bool result_type; }; template struct __fun<__less_equal, _Tp> { typedef bool result_type; }; template struct __fun<__greater_equal, _Tp> { typedef bool result_type; }; template struct __fun<__equal_to, _Tp> { typedef bool result_type; }; template struct __fun<__not_equal_to, _Tp> { typedef bool result_type; }; // // Apply function taking a value/const reference closure // template class _FunBase { public: typedef typename _Dom::value_type value_type; _FunBase(const _Dom& __e, value_type __f(_Arg)) : _M_expr(__e), _M_func(__f) {} value_type operator[](size_t __i) const { return _M_func (_M_expr[__i]); } size_t size() const { return _M_expr.size ();} private: const _Dom& _M_expr; value_type (*_M_func)(_Arg); }; template struct _ValFunClos<_Expr,_Dom> : _FunBase<_Dom, typename _Dom::value_type> { typedef _FunBase<_Dom, typename _Dom::value_type> _Base; typedef typename _Base::value_type value_type; typedef value_type _Tp; _ValFunClos(const _Dom& __e, _Tp __f(_Tp)) : _Base(__e, __f) {} }; template struct _ValFunClos<_ValArray,_Tp> : _FunBase, _Tp> { typedef _FunBase, _Tp> _Base; typedef _Tp value_type; _ValFunClos(const valarray<_Tp>& __v, _Tp __f(_Tp)) : _Base(__v, __f) {} }; template struct _RefFunClos<_Expr,_Dom> : _FunBase<_Dom, const typename _Dom::value_type&> { typedef _FunBase<_Dom, const typename _Dom::value_type&> _Base; typedef typename _Base::value_type value_type; typedef value_type _Tp; _RefFunClos(const _Dom& __e, _Tp __f(const _Tp&)) : _Base(__e, __f) {} }; template struct _RefFunClos<_ValArray,_Tp> : _FunBase, const _Tp&> { typedef _FunBase, const _Tp&> _Base; typedef _Tp value_type; _RefFunClos(const valarray<_Tp>& __v, _Tp __f(const _Tp&)) : _Base(__v, __f) {} }; // // Unary expression closure. // template class _UnBase { public: typedef typename _Arg::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type; _UnBase(const _Arg& __e) : _M_expr(__e) {} value_type operator[](size_t __i) const { return _M_expr[__i]; } size_t size() const { return _M_expr.size(); } private: const _Arg& _M_expr; }; template struct _UnClos<_Oper, _Expr, _Dom> : _UnBase<_Oper, _Dom> { typedef _Dom _Arg; typedef _UnBase<_Oper, _Dom> _Base; typedef typename _Base::value_type value_type; _UnClos(const _Arg& __e) : _Base(__e) {} }; template struct _UnClos<_Oper, _ValArray, _Tp> : _UnBase<_Oper, valarray<_Tp> > { typedef valarray<_Tp> _Arg; typedef _UnBase<_Oper, valarray<_Tp> > _Base; typedef typename _Base::value_type value_type; _UnClos(const _Arg& __e) : _Base(__e) {} }; // // Binary expression closure. // template class _BinBase { public: typedef typename _FirstArg::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type; _BinBase(const _FirstArg& __e1, const _SecondArg& __e2) : _M_expr1(__e1), _M_expr2(__e2) {} value_type operator[](size_t __i) const { return _Oper()(_M_expr1[__i], _M_expr2[__i]); } size_t size() const { return _M_expr1.size(); } private: const _FirstArg& _M_expr1; const _SecondArg& _M_expr2; }; template class _BinBase2 { public: typedef typename _Clos::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type; _BinBase2(const _Clos& __e, const _Vt& __t) : _M_expr1(__e), _M_expr2(__t) {} value_type operator[](size_t __i) const { return _Oper()(_M_expr1[__i], _M_expr2); } size_t size() const { return _M_expr1.size(); } private: const _Clos& _M_expr1; const _Vt& _M_expr2; }; template class _BinBase1 { public: typedef typename _Clos::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type; _BinBase1(const _Vt& __t, const _Clos& __e) : _M_expr1(__t), _M_expr2(__e) {} value_type operator[](size_t __i) const { return _Oper()(_M_expr1, _M_expr2[__i]); } size_t size() const { return _M_expr2.size(); } private: const _Vt& _M_expr1; const _Clos& _M_expr2; }; template struct _BinClos<_Oper, _Expr, _Expr, _Dom1, _Dom2> : _BinBase<_Oper,_Dom1,_Dom2> { typedef _BinBase<_Oper,_Dom1,_Dom2> _Base; typedef typename _Base::value_type value_type; _BinClos(const _Dom1& __e1, const _Dom2& __e2) : _Base(__e1, __e2) {} }; template struct _BinClos<_Oper,_ValArray,_ValArray,_Tp,_Tp> : _BinBase<_Oper,valarray<_Tp>,valarray<_Tp> > { typedef _BinBase<_Oper,valarray<_Tp>,valarray<_Tp> > _Base; typedef _Tp value_type; _BinClos(const valarray<_Tp>& __v, const valarray<_Tp>& __w) : _Base(__v, __w) {} }; template struct _BinClos<_Oper,_Expr,_ValArray,_Dom,typename _Dom::value_type> : _BinBase<_Oper,_Dom,valarray > { typedef typename _Dom::value_type _Tp; typedef _BinBase<_Oper,_Dom,valarray<_Tp> > _Base; typedef typename _Base::value_type value_type; _BinClos(const _Dom& __e1, const valarray<_Tp>& __e2) : _Base(__e1, __e2) {} }; template struct _BinClos<_Oper,_ValArray,_Expr,typename _Dom::value_type,_Dom> : _BinBase<_Oper,valarray,_Dom> { typedef typename _Dom::value_type _Tp; typedef _BinBase<_Oper,valarray<_Tp>,_Dom> _Base; typedef typename _Base::value_type value_type; _BinClos(const valarray<_Tp>& __e1, const _Dom& __e2) : _Base(__e1, __e2) {} }; template struct _BinClos<_Oper,_Expr,_Constant,_Dom,typename _Dom::value_type> : _BinBase2<_Oper,_Dom> { typedef typename _Dom::value_type _Tp; typedef _BinBase2<_Oper,_Dom> _Base; typedef typename _Base::value_type value_type; _BinClos(const _Dom& __e1, const _Tp& __e2) : _Base(__e1, __e2) {} }; template struct _BinClos<_Oper,_Constant,_Expr,typename _Dom::value_type,_Dom> : _BinBase1<_Oper,_Dom> { typedef typename _Dom::value_type _Tp; typedef _BinBase1<_Oper,_Dom> _Base; typedef typename _Base::value_type value_type; _BinClos(const _Tp& __e1, const _Dom& __e2) : _Base(__e1, __e2) {} }; template struct _BinClos<_Oper,_ValArray,_Constant,_Tp,_Tp> : _BinBase2<_Oper,valarray<_Tp> > { typedef _BinBase2<_Oper,valarray<_Tp> > _Base; typedef typename _Base::value_type value_type; _BinClos(const valarray<_Tp>& __v, const _Tp& __t) : _Base(__v, __t) {} }; template struct _BinClos<_Oper,_Constant,_ValArray,_Tp,_Tp> : _BinBase1<_Oper,valarray<_Tp> > { typedef _BinBase1<_Oper,valarray<_Tp> > _Base; typedef typename _Base::value_type value_type; _BinClos(const _Tp& __t, const valarray<_Tp>& __v) : _Base(__t, __v) {} }; // // slice_array closure. // template class _SBase { public: typedef typename _Dom::value_type value_type; _SBase (const _Dom& __e, const slice& __s) : _M_expr (__e), _M_slice (__s) {} value_type operator[] (size_t __i) const { return _M_expr[_M_slice.start () + __i * _M_slice.stride ()]; } size_t size() const { return _M_slice.size (); } private: const _Dom& _M_expr; const slice& _M_slice; }; template class _SBase<_Array<_Tp> > { public: typedef _Tp value_type; _SBase (_Array<_Tp> __a, const slice& __s) : _M_array (__a._M_data+__s.start()), _M_size (__s.size()), _M_stride (__s.stride()) {} value_type operator[] (size_t __i) const { return _M_array._M_data[__i * _M_stride]; } size_t size() const { return _M_size; } private: const _Array<_Tp> _M_array; const size_t _M_size; const size_t _M_stride; }; template struct _SClos<_Expr,_Dom> : _SBase<_Dom> { typedef _SBase<_Dom> _Base; typedef typename _Base::value_type value_type; _SClos (const _Dom& __e, const slice& __s) : _Base (__e, __s) {} }; template struct _SClos<_ValArray,_Tp> : _SBase<_Array<_Tp> > { typedef _SBase<_Array<_Tp> > _Base; typedef _Tp value_type; _SClos (_Array<_Tp> __a, const slice& __s) : _Base (__a, __s) {} }; // // gslice_array closure. // template class _GBase { public: typedef typename _Dom::value_type value_type; _GBase (const _Dom& __e, const valarray& __i) : _M_expr (__e), _M_index(__i) {} value_type operator[] (size_t __i) const { return _M_expr[_M_index[__i]]; } size_t size () const { return _M_index.size(); } private: const _Dom& _M_expr; const valarray& _M_index; }; template class _GBase<_Array<_Tp> > { public: typedef _Tp value_type; _GBase (_Array<_Tp> __a, const valarray& __i) : _M_array (__a), _M_index(__i) {} value_type operator[] (size_t __i) const { return _M_array._M_data[_M_index[__i]]; } size_t size () const { return _M_index.size(); } private: const _Array<_Tp> _M_array; const valarray& _M_index; }; template struct _GClos<_Expr,_Dom> : _GBase<_Dom> { typedef _GBase<_Dom> _Base; typedef typename _Base::value_type value_type; _GClos (const _Dom& __e, const valarray& __i) : _Base (__e, __i) {} }; template struct _GClos<_ValArray,_Tp> : _GBase<_Array<_Tp> > { typedef _GBase<_Array<_Tp> > _Base; typedef typename _Base::value_type value_type; _GClos (_Array<_Tp> __a, const valarray& __i) : _Base (__a, __i) {} }; // // indirect_array closure // template class _IBase { public: typedef typename _Dom::value_type value_type; _IBase (const _Dom& __e, const valarray& __i) : _M_expr (__e), _M_index (__i) {} value_type operator[] (size_t __i) const { return _M_expr[_M_index[__i]]; } size_t size() const { return _M_index.size(); } private: const _Dom& _M_expr; const valarray& _M_index; }; template struct _IClos<_Expr,_Dom> : _IBase<_Dom> { typedef _IBase<_Dom> _Base; typedef typename _Base::value_type value_type; _IClos (const _Dom& __e, const valarray& __i) : _Base (__e, __i) {} }; template struct _IClos<_ValArray,_Tp> : _IBase > { typedef _IBase > _Base; typedef _Tp value_type; _IClos (const valarray<_Tp>& __a, const valarray& __i) : _Base (__a, __i) {} }; // // class _Expr // template class _Expr { public: typedef _Tp value_type; _Expr(const _Clos&); const _Clos& operator()() const; value_type operator[](size_t) const; valarray operator[](slice) const; valarray operator[](const gslice&) const; valarray operator[](const valarray&) const; valarray operator[](const valarray&) const; _Expr<_UnClos<__unary_plus,std::_Expr,_Clos>, value_type> operator+() const; _Expr<_UnClos<__negate,std::_Expr,_Clos>, value_type> operator-() const; _Expr<_UnClos<__bitwise_not,std::_Expr,_Clos>, value_type> operator~() const; _Expr<_UnClos<__logical_not,std::_Expr,_Clos>, bool> operator!() const; size_t size() const; value_type sum() const; valarray shift(int) const; valarray cshift(int) const; value_type min() const; value_type max() const; valarray apply(value_type (*)(const value_type&)) const; valarray apply(value_type (*)(value_type)) const; private: const _Clos _M_closure; }; template inline _Expr<_Clos,_Tp>::_Expr(const _Clos& __c) : _M_closure(__c) {} template inline const _Clos& _Expr<_Clos,_Tp>::operator()() const { return _M_closure; } template inline _Tp _Expr<_Clos,_Tp>::operator[](size_t __i) const { return _M_closure[__i]; } template inline valarray<_Tp> _Expr<_Clos,_Tp>::operator[](slice __s) const { return _M_closure[__s]; } template inline valarray<_Tp> _Expr<_Clos,_Tp>::operator[](const gslice& __gs) const { return _M_closure[__gs]; } template inline valarray<_Tp> _Expr<_Clos,_Tp>::operator[](const valarray& __m) const { return _M_closure[__m]; } template inline valarray<_Tp> _Expr<_Clos,_Tp>::operator[](const valarray& __i) const { return _M_closure[__i]; } template inline size_t _Expr<_Clos,_Tp>::size() const { return _M_closure.size (); } template inline valarray<_Tp> _Expr<_Clos, _Tp>::shift(int __n) const { return valarray<_Tp>(_M_closure).shift(__n); } template inline valarray<_Tp> _Expr<_Clos, _Tp>::cshift(int __n) const { return valarray<_Tp>(_M_closure).cshift(__n); } template inline valarray<_Tp> _Expr<_Clos, _Tp>::apply(_Tp __f(const _Tp&)) const { return valarray<_Tp>(_M_closure).apply(__f); } template inline valarray<_Tp> _Expr<_Clos, _Tp>::apply(_Tp __f(_Tp)) const { return valarray<_Tp>(_M_closure).apply(__f); } // XXX: replace this with a more robust summation algorithm. template inline _Tp _Expr<_Clos,_Tp>::sum() const { size_t __n = _M_closure.size(); if (__n == 0) return _Tp(); else { _Tp __s = _M_closure[--__n]; while (__n != 0) __s += _M_closure[--__n]; return __s; } } template inline _Tp _Expr<_Clos, _Tp>::min() const { return __valarray_min(_M_closure); } template inline _Tp _Expr<_Clos, _Tp>::max() const { return __valarray_max(_M_closure); } template inline _Expr<_UnClos<__logical_not,_Expr,_Dom>, bool> _Expr<_Dom,_Tp>::operator!() const { typedef _UnClos<__logical_not,std::_Expr,_Dom> _Closure; return _Expr<_Closure,_Tp>(_Closure(this->_M_closure)); } #define _DEFINE_EXPR_UNARY_OPERATOR(_Op, _Name) \ template \ inline _Expr<_UnClos<_Name,std::_Expr,_Dom>,_Tp> \ _Expr<_Dom,_Tp>::operator _Op() const \ { \ typedef _UnClos<_Name,std::_Expr,_Dom> _Closure; \ return _Expr<_Closure,_Tp>(_Closure(this->_M_closure)); \ } _DEFINE_EXPR_UNARY_OPERATOR(+, __unary_plus) _DEFINE_EXPR_UNARY_OPERATOR(-, __negate) _DEFINE_EXPR_UNARY_OPERATOR(~, __bitwise_not) #undef _DEFINE_EXPR_UNARY_OPERATOR #define _DEFINE_EXPR_BINARY_OPERATOR(_Op, _Name) \ template \ inline _Expr<_BinClos<_Name,_Expr,_Expr,_Dom1,_Dom2>, \ typename __fun<_Name, typename _Dom1::value_type>::result_type>\ operator _Op(const _Expr<_Dom1,typename _Dom1::value_type>& __v, \ const _Expr<_Dom2,typename _Dom2::value_type>& __w) \ { \ typedef typename _Dom1::value_type _Arg; \ typedef typename __fun<_Name, _Arg>::result_type _Value; \ typedef _BinClos<_Name,_Expr,_Expr,_Dom1,_Dom2> _Closure; \ return _Expr<_Closure,_Value>(_Closure(__v(), __w())); \ } \ \ template \ inline _Expr<_BinClos<_Name,_Expr,_Constant,_Dom,typename _Dom::value_type>,\ typename __fun<_Name, typename _Dom::value_type>::result_type>\ operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __v, \ const typename _Dom::value_type& __t) \ { \ typedef typename _Dom::value_type _Arg; \ typedef typename __fun<_Name, _Arg>::result_type _Value; \ typedef _BinClos<_Name,_Expr,_Constant,_Dom,_Arg> _Closure; \ return _Expr<_Closure,_Value>(_Closure(__v(), __t)); \ } \ \ template \ inline _Expr<_BinClos<_Name,_Constant,_Expr,typename _Dom::value_type,_Dom>,\ typename __fun<_Name, typename _Dom::value_type>::result_type>\ operator _Op(const typename _Dom::value_type& __t, \ const _Expr<_Dom,typename _Dom::value_type>& __v) \ { \ typedef typename _Dom::value_type _Arg; \ typedef typename __fun<_Name, _Arg>::result_type _Value; \ typedef _BinClos<_Name,_Constant,_Expr,_Arg,_Dom> _Closure; \ return _Expr<_Closure,_Value>(_Closure(__t, __v())); \ } \ \ template \ inline _Expr<_BinClos<_Name,_Expr,_ValArray,_Dom,typename _Dom::value_type>,\ typename __fun<_Name, typename _Dom::value_type>::result_type>\ operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __e, \ const valarray& __v) \ { \ typedef typename _Dom::value_type _Arg; \ typedef typename __fun<_Name, _Arg>::result_type _Value; \ typedef _BinClos<_Name,_Expr,_ValArray,_Dom,_Arg> _Closure; \ return _Expr<_Closure,_Value>(_Closure(__e(), __v)); \ } \ \ template \ inline _Expr<_BinClos<_Name,_ValArray,_Expr,typename _Dom::value_type,_Dom>,\ typename __fun<_Name, typename _Dom::value_type>::result_type>\ operator _Op(const valarray& __v, \ const _Expr<_Dom,typename _Dom::value_type>& __e) \ { \ typedef typename _Dom::value_type _Tp; \ typedef typename __fun<_Name, _Tp>::result_type _Value; \ typedef _BinClos<_Name,_ValArray,_Expr,_Tp,_Dom> _Closure; \ return _Expr<_Closure,_Value> (_Closure (__v, __e ())); \ } _DEFINE_EXPR_BINARY_OPERATOR(+, __plus) _DEFINE_EXPR_BINARY_OPERATOR(-, __minus) _DEFINE_EXPR_BINARY_OPERATOR(*, __multiplies) _DEFINE_EXPR_BINARY_OPERATOR(/, __divides) _DEFINE_EXPR_BINARY_OPERATOR(%, __modulus) _DEFINE_EXPR_BINARY_OPERATOR(^, __bitwise_xor) _DEFINE_EXPR_BINARY_OPERATOR(&, __bitwise_and) _DEFINE_EXPR_BINARY_OPERATOR(|, __bitwise_or) _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left) _DEFINE_EXPR_BINARY_OPERATOR(>>, __shift_right) _DEFINE_EXPR_BINARY_OPERATOR(&&, __logical_and) _DEFINE_EXPR_BINARY_OPERATOR(||, __logical_or) _DEFINE_EXPR_BINARY_OPERATOR(==, __equal_to) _DEFINE_EXPR_BINARY_OPERATOR(!=, __not_equal_to) _DEFINE_EXPR_BINARY_OPERATOR(<, __less) _DEFINE_EXPR_BINARY_OPERATOR(>, __greater) _DEFINE_EXPR_BINARY_OPERATOR(<=, __less_equal) _DEFINE_EXPR_BINARY_OPERATOR(>=, __greater_equal) #undef _DEFINE_EXPR_BINARY_OPERATOR #define _DEFINE_EXPR_UNARY_FUNCTION(_Name) \ template \ inline _Expr<_UnClos<__##_Name,_Expr,_Dom>,typename _Dom::value_type>\ _Name(const _Expr<_Dom,typename _Dom::value_type>& __e) \ { \ typedef typename _Dom::value_type _Tp; \ typedef _UnClos<__##_Name,_Expr,_Dom> _Closure; \ return _Expr<_Closure,_Tp>(_Closure(__e())); \ } \ \ template \ inline _Expr<_UnClos<__##_Name,_ValArray,_Tp>,_Tp> \ _Name(const valarray<_Tp>& __v) \ { \ typedef _UnClos<__##_Name,_ValArray,_Tp> _Closure; \ return _Expr<_Closure,_Tp>(_Closure(__v)); \ } _DEFINE_EXPR_UNARY_FUNCTION(abs) _DEFINE_EXPR_UNARY_FUNCTION(cos) _DEFINE_EXPR_UNARY_FUNCTION(acos) _DEFINE_EXPR_UNARY_FUNCTION(cosh) _DEFINE_EXPR_UNARY_FUNCTION(sin) _DEFINE_EXPR_UNARY_FUNCTION(asin) _DEFINE_EXPR_UNARY_FUNCTION(sinh) _DEFINE_EXPR_UNARY_FUNCTION(tan) _DEFINE_EXPR_UNARY_FUNCTION(tanh) _DEFINE_EXPR_UNARY_FUNCTION(atan) _DEFINE_EXPR_UNARY_FUNCTION(exp) _DEFINE_EXPR_UNARY_FUNCTION(log) _DEFINE_EXPR_UNARY_FUNCTION(log10) _DEFINE_EXPR_UNARY_FUNCTION(sqrt) #undef _DEFINE_EXPR_UNARY_FUNCTION #define _DEFINE_EXPR_BINARY_FUNCTION(_Fun) \ template \ inline _Expr<_BinClos<__##_Fun,_Expr,_Expr,_Dom1,_Dom2>, \ typename _Dom1::value_type> \ _Fun(const _Expr<_Dom1,typename _Dom1::value_type>& __e1, \ const _Expr<_Dom2,typename _Dom2::value_type>& __e2) \ { \ typedef typename _Dom1::value_type _Tp; \ typedef _BinClos<__##_Fun,_Expr,_Expr,_Dom1,_Dom2> _Closure; \ return _Expr<_Closure,_Tp>(_Closure(__e1(), __e2())); \ } \ \ template \ inline _Expr<_BinClos<__##_Fun, _Expr, _ValArray, _Dom, \ typename _Dom::value_type>, \ typename _Dom::value_type> \ _Fun(const _Expr<_Dom,typename _Dom::value_type>& __e, \ const valarray& __v) \ { \ typedef typename _Dom::value_type _Tp; \ typedef _BinClos<__##_Fun, _Expr, _ValArray, _Dom, _Tp> _Closure;\ return _Expr<_Closure,_Tp>(_Closure(__e(), __v)); \ } \ \ template \ inline _Expr<_BinClos<__##_Fun, _ValArray, _Expr, \ typename _Dom::value_type,_Dom>, \ typename _Dom::value_type> \ _Fun(const valarray& __v, \ const _Expr<_Dom,typename _Dom::value_type>& __e) \ { \ typedef typename _Dom::value_type _Tp; \ typedef _BinClos<__##_Fun,_ValArray,_Expr,_Tp,_Dom> _Closure; \ return _Expr<_Closure,_Tp>(_Closure(__v, __e())); \ } \ \ template \ inline _Expr<_BinClos<__##_Fun,_Expr,_Constant,_Dom, \ typename _Dom::value_type>, \ typename _Dom::value_type> \ _Fun(const _Expr<_Dom, typename _Dom::value_type>& __e, \ const typename _Dom::value_type& __t) \ { \ typedef typename _Dom::value_type _Tp; \ typedef _BinClos<__##_Fun,_Expr,_Constant,_Dom,_Tp> _Closure; \ return _Expr<_Closure,_Tp>(_Closure(__e(), __t)); \ } \ \ template \ inline _Expr<_BinClos<__##_Fun,_Constant,_Expr, \ typename _Dom::value_type,_Dom>, \ typename _Dom::value_type> \ _Fun(const typename _Dom::value_type& __t, \ const _Expr<_Dom,typename _Dom::value_type>& __e) \ { \ typedef typename _Dom::value_type _Tp; \ typedef _BinClos<__##_Fun, _Constant,_Expr,_Tp,_Dom> _Closure; \ return _Expr<_Closure,_Tp>(_Closure(__t, __e())); \ } \ \ template \ inline _Expr<_BinClos<__##_Fun,_ValArray,_ValArray,_Tp,_Tp>, _Tp> \ _Fun(const valarray<_Tp>& __v, const valarray<_Tp>& __w) \ { \ typedef _BinClos<__##_Fun,_ValArray,_ValArray,_Tp,_Tp> _Closure; \ return _Expr<_Closure,_Tp>(_Closure(__v, __w)); \ } \ \ template \ inline _Expr<_BinClos<__##_Fun,_ValArray,_Constant,_Tp,_Tp>,_Tp> \ _Fun(const valarray<_Tp>& __v, const _Tp& __t) \ { \ typedef _BinClos<__##_Fun,_ValArray,_Constant,_Tp,_Tp> _Closure; \ return _Expr<_Closure,_Tp>(_Closure(__v, __t)); \ } \ \ template \ inline _Expr<_BinClos<__##_Fun,_Constant,_ValArray,_Tp,_Tp>,_Tp> \ _Fun(const _Tp& __t, const valarray<_Tp>& __v) \ { \ typedef _BinClos<__##_Fun,_Constant,_ValArray,_Tp,_Tp> _Closure; \ return _Expr<_Closure,_Tp>(_Closure(__t, __v)); \ } _DEFINE_EXPR_BINARY_FUNCTION(atan2) _DEFINE_EXPR_BINARY_FUNCTION(pow) #undef _DEFINE_EXPR_BINARY_FUNCTION } // std:: #endif /* _CPP_VALARRAY_META_H */ // Local Variables: // mode:c++ // End: