/* Generic implementation of the CSHIFT intrinsic Copyright 2003, 2005, 2006, 2007 Free Software Foundation, Inc. Contributed by Feng Wang This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #include #include static void cshift0 (gfc_array_char * ret, const gfc_array_char * array, ssize_t shift, int which, index_type size) { /* r.* indicates the return array. */ index_type rstride[GFC_MAX_DIMENSIONS]; index_type rstride0; index_type roffset; char *rptr; /* s.* indicates the source array. */ index_type sstride[GFC_MAX_DIMENSIONS]; index_type sstride0; index_type soffset; const char *sptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type dim; index_type len; index_type n; index_type arraysize; index_type type_size; if (which < 1 || which > GFC_DESCRIPTOR_RANK (array)) runtime_error ("Argument 'DIM' is out of range in call to 'CSHIFT'"); arraysize = size0 ((array_t *) array); if (ret->data == NULL) { int i; ret->offset = 0; ret->dtype = array->dtype; for (i = 0; i < GFC_DESCRIPTOR_RANK (array); i++) { index_type ub, str; ub = GFC_DESCRIPTOR_EXTENT(array,i) - 1; if (i == 0) str = 1; else str = GFC_DESCRIPTOR_EXTENT(ret,i-1) * GFC_DESCRIPTOR_STRIDE(ret,i-1); GFC_DIMENSION_SET(ret->dim[i], 0, ub, str); } if (arraysize > 0) ret->data = internal_malloc_size (size * arraysize); else ret->data = internal_malloc_size (1); } else if (unlikely (compile_options.bounds_check)) { bounds_equal_extents ((array_t *) ret, (array_t *) array, "return value", "CSHIFT"); } if (arraysize == 0) return; type_size = GFC_DTYPE_TYPE_SIZE (array); switch(type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_DERIVED_1: cshift0_i1 ((gfc_array_i1 *)ret, (gfc_array_i1 *) array, shift, which); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: cshift0_i2 ((gfc_array_i2 *)ret, (gfc_array_i2 *) array, shift, which); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift, which); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift, which); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: cshift0_i16 ((gfc_array_i16 *)ret, (gfc_array_i16 *) array, shift, which); return; #endif case GFC_DTYPE_REAL_4: cshift0_r4 ((gfc_array_r4 *)ret, (gfc_array_r4 *) array, shift, which); return; case GFC_DTYPE_REAL_8: cshift0_r8 ((gfc_array_r8 *)ret, (gfc_array_r8 *) array, shift, which); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: cshift0_r10 ((gfc_array_r10 *)ret, (gfc_array_r10 *) array, shift, which); return; # endif # ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: cshift0_r16 ((gfc_array_r16 *)ret, (gfc_array_r16 *) array, shift, which); return; # endif #endif case GFC_DTYPE_COMPLEX_4: cshift0_c4 ((gfc_array_c4 *)ret, (gfc_array_c4 *) array, shift, which); return; case GFC_DTYPE_COMPLEX_8: cshift0_c8 ((gfc_array_c8 *)ret, (gfc_array_c8 *) array, shift, which); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: cshift0_c10 ((gfc_array_c10 *)ret, (gfc_array_c10 *) array, shift, which); return; # endif # ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: cshift0_c16 ((gfc_array_c16 *)ret, (gfc_array_c16 *) array, shift, which); return; # endif #endif default: break; } switch (size) { /* Let's check the actual alignment of the data pointers. If they are suitably aligned, we can safely call the unpack functions. */ case sizeof (GFC_INTEGER_1): cshift0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array, shift, which); break; case sizeof (GFC_INTEGER_2): if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(array->data)) break; else { cshift0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, shift, which); return; } case sizeof (GFC_INTEGER_4): if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(array->data)) break; else { cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift, which); return; } case sizeof (GFC_INTEGER_8): if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(array->data)) { /* Let's try to use the complex routines. First, a sanity check that the sizes match; this should be optimized to a no-op. */ if (sizeof(GFC_INTEGER_8) != sizeof(GFC_COMPLEX_4)) break; if (GFC_UNALIGNED_C4(ret->data) || GFC_UNALIGNED_C4(array->data)) break; cshift0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array, shift, which); return; } else { cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift, which); return; } #ifdef HAVE_GFC_INTEGER_16 case sizeof (GFC_INTEGER_16): if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(array->data)) { /* Let's try to use the complex routines. First, a sanity check that the sizes match; this should be optimized to a no-op. */ if (sizeof(GFC_INTEGER_16) != sizeof(GFC_COMPLEX_8)) break; if (GFC_UNALIGNED_C8(ret->data) || GFC_UNALIGNED_C8(array->data)) break; cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift, which); return; } else { cshift0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array, shift, which); return; } #else case sizeof (GFC_COMPLEX_8): if (GFC_UNALIGNED_C8(ret->data) || GFC_UNALIGNED_C8(array->data)) break; else { cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift, which); return; } #endif default: break; } which = which - 1; sstride[0] = 0; rstride[0] = 0; extent[0] = 1; count[0] = 0; n = 0; /* Initialized for avoiding compiler warnings. */ roffset = size; soffset = size; len = 0; for (dim = 0; dim < GFC_DESCRIPTOR_RANK (array); dim++) { if (dim == which) { roffset = GFC_DESCRIPTOR_STRIDE_BYTES(ret,dim); if (roffset == 0) roffset = size; soffset = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim); if (soffset == 0) soffset = size; len = GFC_DESCRIPTOR_EXTENT(array,dim); } else { count[n] = 0; extent[n] = GFC_DESCRIPTOR_EXTENT(array,dim); rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret,dim); sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim); n++; } } if (sstride[0] == 0) sstride[0] = size; if (rstride[0] == 0) rstride[0] = size; dim = GFC_DESCRIPTOR_RANK (array); rstride0 = rstride[0]; sstride0 = sstride[0]; rptr = ret->data; sptr = array->data; shift = len == 0 ? 0 : shift % (ssize_t)len; if (shift < 0) shift += len; while (rptr) { /* Do the shift for this dimension. */ /* If elements are contiguous, perform the operation in two block moves. */ if (soffset == size && roffset == size) { size_t len1 = shift * size; size_t len2 = (len - shift) * size; memcpy (rptr, sptr + len1, len2); memcpy (rptr + len2, sptr, len1); } else { /* Otherwise, we'll have to perform the copy one element at a time. */ char *dest = rptr; const char *src = &sptr[shift * soffset]; for (n = 0; n < len - shift; n++) { memcpy (dest, src, size); dest += roffset; src += soffset; } for (src = sptr, n = 0; n < shift; n++) { memcpy (dest, src, size); dest += roffset; src += soffset; } } /* Advance to the next section. */ rptr += rstride0; sptr += sstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ rptr -= rstride[n] * extent[n]; sptr -= sstride[n] * extent[n]; n++; if (n >= dim - 1) { /* Break out of the loop. */ rptr = NULL; break; } else { count[n]++; rptr += rstride[n]; sptr += sstride[n]; } } } } #define DEFINE_CSHIFT(N) \ extern void cshift0_##N (gfc_array_char *, const gfc_array_char *, \ const GFC_INTEGER_##N *, const GFC_INTEGER_##N *); \ export_proto(cshift0_##N); \ \ void \ cshift0_##N (gfc_array_char *ret, const gfc_array_char *array, \ const GFC_INTEGER_##N *pshift, const GFC_INTEGER_##N *pdim) \ { \ cshift0 (ret, array, *pshift, pdim ? *pdim : 1, \ GFC_DESCRIPTOR_SIZE (array)); \ } \ \ extern void cshift0_##N##_char (gfc_array_char *, GFC_INTEGER_4, \ const gfc_array_char *, \ const GFC_INTEGER_##N *, \ const GFC_INTEGER_##N *, GFC_INTEGER_4); \ export_proto(cshift0_##N##_char); \ \ void \ cshift0_##N##_char (gfc_array_char *ret, \ GFC_INTEGER_4 ret_length __attribute__((unused)), \ const gfc_array_char *array, \ const GFC_INTEGER_##N *pshift, \ const GFC_INTEGER_##N *pdim, \ GFC_INTEGER_4 array_length) \ { \ cshift0 (ret, array, *pshift, pdim ? *pdim : 1, array_length); \ } \ \ extern void cshift0_##N##_char4 (gfc_array_char *, GFC_INTEGER_4, \ const gfc_array_char *, \ const GFC_INTEGER_##N *, \ const GFC_INTEGER_##N *, GFC_INTEGER_4); \ export_proto(cshift0_##N##_char4); \ \ void \ cshift0_##N##_char4 (gfc_array_char *ret, \ GFC_INTEGER_4 ret_length __attribute__((unused)), \ const gfc_array_char *array, \ const GFC_INTEGER_##N *pshift, \ const GFC_INTEGER_##N *pdim, \ GFC_INTEGER_4 array_length) \ { \ cshift0 (ret, array, *pshift, pdim ? *pdim : 1, \ array_length * sizeof (gfc_char4_t)); \ } DEFINE_CSHIFT (1); DEFINE_CSHIFT (2); DEFINE_CSHIFT (4); DEFINE_CSHIFT (8); #ifdef HAVE_GFC_INTEGER_16 DEFINE_CSHIFT (16); #endif