// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package reflect import ( "math" "runtime" "strconv" "unsafe" ) const bigEndian = false // can be smarter if we find a big-endian machine const ptrSize = unsafe.Sizeof((*byte)(nil)) const cannotSet = "cannot set value obtained from unexported struct field" // TODO: This will have to go away when // the new gc goes in. func memmove(adst, asrc unsafe.Pointer, n uintptr) { dst := uintptr(adst) src := uintptr(asrc) switch { case src < dst && src+n > dst: // byte copy backward // careful: i is unsigned for i := n; i > 0; { i-- *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i)) } case (n|src|dst)&(ptrSize-1) != 0: // byte copy forward for i := uintptr(0); i < n; i++ { *(*byte)(unsafe.Pointer(dst + i)) = *(*byte)(unsafe.Pointer(src + i)) } default: // word copy forward for i := uintptr(0); i < n; i += ptrSize { *(*uintptr)(unsafe.Pointer(dst + i)) = *(*uintptr)(unsafe.Pointer(src + i)) } } } // Value is the reflection interface to a Go value. // // Not all methods apply to all kinds of values. Restrictions, // if any, are noted in the documentation for each method. // Use the Kind method to find out the kind of value before // calling kind-specific methods. Calling a method // inappropriate to the kind of type causes a run time panic. // // The zero Value represents no value. // Its IsValid method returns false, its Kind method returns Invalid, // its String method returns "", and all other methods panic. // Most functions and methods never return an invalid value. // If one does, its documentation states the conditions explicitly. // // A Value can be used concurrently by multiple goroutines provided that // the underlying Go value can be used concurrently for the equivalent // direct operations. type Value struct { // typ holds the type of the value represented by a Value. typ *rtype // val holds the 1-word representation of the value. // If flag's flagIndir bit is set, then val is a pointer to the data. // Otherwise val is a word holding the actual data. // When the data is smaller than a word, it begins at // the first byte (in the memory address sense) of val. // We use unsafe.Pointer so that the garbage collector // knows that val could be a pointer. val unsafe.Pointer // flag holds metadata about the value. // The lowest bits are flag bits: // - flagRO: obtained via unexported field, so read-only // - flagIndir: val holds a pointer to the data // - flagAddr: v.CanAddr is true (implies flagIndir) // - flagMethod: v is a method value. // The next five bits give the Kind of the value. // This repeats typ.Kind() except for method values. // The remaining 23+ bits give a method number for method values. // If flag.kind() != Func, code can assume that flagMethod is unset. // If typ.size > ptrSize, code can assume that flagIndir is set. flag // A method value represents a curried method invocation // like r.Read for some receiver r. The typ+val+flag bits describe // the receiver r, but the flag's Kind bits say Func (methods are // functions), and the top bits of the flag give the method number // in r's type's method table. } type flag uintptr const ( flagRO flag = 1 << iota flagIndir flagAddr flagMethod flagKindShift = iota flagKindWidth = 5 // there are 27 kinds flagKindMask flag = 1<> flagKindShift) & flagKindMask) } // A ValueError occurs when a Value method is invoked on // a Value that does not support it. Such cases are documented // in the description of each method. type ValueError struct { Method string Kind Kind } func (e *ValueError) Error() string { if e.Kind == 0 { return "reflect: call of " + e.Method + " on zero Value" } return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value" } // methodName returns the name of the calling method, // assumed to be two stack frames above. func methodName() string { pc, _, _, _ := runtime.Caller(2) f := runtime.FuncForPC(pc) if f == nil { return "unknown method" } return f.Name() } // An iword is the word that would be stored in an // interface to represent a given value v. Specifically, if v is // bigger than a pointer, its word is a pointer to v's data. // Otherwise, its word holds the data stored // in its leading bytes (so is not a pointer). // Because the value sometimes holds a pointer, we use // unsafe.Pointer to represent it, so that if iword appears // in a struct, the garbage collector knows that might be // a pointer. type iword unsafe.Pointer func (v Value) iword() iword { if v.flag&flagIndir != 0 && (v.kind() == Ptr || v.kind() == UnsafePointer) { // Have indirect but want direct word. return loadIword(v.val, v.typ.size) } return iword(v.val) } // loadIword loads n bytes at p from memory into an iword. func loadIword(p unsafe.Pointer, n uintptr) iword { // Run the copy ourselves instead of calling memmove // to avoid moving w to the heap. var w iword switch n { default: panic("reflect: internal error: loadIword of " + strconv.Itoa(int(n)) + "-byte value") case 0: case 1: *(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p) case 2: *(*uint16)(unsafe.Pointer(&w)) = *(*uint16)(p) case 3: *(*[3]byte)(unsafe.Pointer(&w)) = *(*[3]byte)(p) case 4: *(*uint32)(unsafe.Pointer(&w)) = *(*uint32)(p) case 5: *(*[5]byte)(unsafe.Pointer(&w)) = *(*[5]byte)(p) case 6: *(*[6]byte)(unsafe.Pointer(&w)) = *(*[6]byte)(p) case 7: *(*[7]byte)(unsafe.Pointer(&w)) = *(*[7]byte)(p) case 8: *(*uint64)(unsafe.Pointer(&w)) = *(*uint64)(p) } return w } // storeIword stores n bytes from w into p. func storeIword(p unsafe.Pointer, w iword, n uintptr) { // Run the copy ourselves instead of calling memmove // to avoid moving w to the heap. switch n { default: panic("reflect: internal error: storeIword of " + strconv.Itoa(int(n)) + "-byte value") case 0: case 1: *(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w)) case 2: *(*uint16)(p) = *(*uint16)(unsafe.Pointer(&w)) case 3: *(*[3]byte)(p) = *(*[3]byte)(unsafe.Pointer(&w)) case 4: *(*uint32)(p) = *(*uint32)(unsafe.Pointer(&w)) case 5: *(*[5]byte)(p) = *(*[5]byte)(unsafe.Pointer(&w)) case 6: *(*[6]byte)(p) = *(*[6]byte)(unsafe.Pointer(&w)) case 7: *(*[7]byte)(p) = *(*[7]byte)(unsafe.Pointer(&w)) case 8: *(*uint64)(p) = *(*uint64)(unsafe.Pointer(&w)) } } // emptyInterface is the header for an interface{} value. type emptyInterface struct { typ *rtype word iword } // nonEmptyInterface is the header for a interface value with methods. type nonEmptyInterface struct { // see ../runtime/iface.c:/Itab itab *struct { typ *rtype // dynamic concrete type fun [100000]unsafe.Pointer // method table } word iword } // mustBe panics if f's kind is not expected. // Making this a method on flag instead of on Value // (and embedding flag in Value) means that we can write // the very clear v.mustBe(Bool) and have it compile into // v.flag.mustBe(Bool), which will only bother to copy the // single important word for the receiver. func (f flag) mustBe(expected Kind) { k := f.kind() if k != expected { panic(&ValueError{methodName(), k}) } } // mustBeExported panics if f records that the value was obtained using // an unexported field. func (f flag) mustBeExported() { if f == 0 { panic(&ValueError{methodName(), 0}) } if f&flagRO != 0 { panic(methodName() + " using value obtained using unexported field") } } // mustBeAssignable panics if f records that the value is not assignable, // which is to say that either it was obtained using an unexported field // or it is not addressable. func (f flag) mustBeAssignable() { if f == 0 { panic(&ValueError{methodName(), Invalid}) } // Assignable if addressable and not read-only. if f&flagRO != 0 { panic(methodName() + " using value obtained using unexported field") } if f&flagAddr == 0 { panic(methodName() + " using unaddressable value") } } // Addr returns a pointer value representing the address of v. // It panics if CanAddr() returns false. // Addr is typically used to obtain a pointer to a struct field // or slice element in order to call a method that requires a // pointer receiver. func (v Value) Addr() Value { if v.flag&flagAddr == 0 { panic("reflect.Value.Addr of unaddressable value") } return Value{v.typ.ptrTo(), v.val, (v.flag & flagRO) | flag(Ptr)<> flagMethodShift if v.typ.Kind() == Interface { tt := (*interfaceType)(unsafe.Pointer(v.typ)) if i < 0 || i >= len(tt.methods) { panic("reflect: broken Value") } m := &tt.methods[i] if m.pkgPath != nil { panic(method + " of unexported method") } t = m.typ iface := (*nonEmptyInterface)(v.val) if iface.itab == nil { panic(method + " of method on nil interface value") } fn = iface.itab.fun[i] rcvr = iface.word } else { ut := v.typ.uncommon() if ut == nil || i < 0 || i >= len(ut.methods) { panic("reflect: broken Value") } m := &ut.methods[i] if m.pkgPath != nil { panic(method + " of unexported method") } fn = m.tfn t = m.mtyp rcvr = v.iword() } } else if v.flag&flagIndir != 0 { fn = *(*unsafe.Pointer)(v.val) } else { fn = v.val } if fn == nil { panic("reflect.Value.Call: call of nil function") } isSlice := method == "CallSlice" n := t.NumIn() if isSlice { if !t.IsVariadic() { panic("reflect: CallSlice of non-variadic function") } if len(in) < n { panic("reflect: CallSlice with too few input arguments") } if len(in) > n { panic("reflect: CallSlice with too many input arguments") } } else { if t.IsVariadic() { n-- } if len(in) < n { panic("reflect: Call with too few input arguments") } if !t.IsVariadic() && len(in) > n { panic("reflect: Call with too many input arguments") } } for _, x := range in { if x.Kind() == Invalid { panic("reflect: " + method + " using zero Value argument") } } for i := 0; i < n; i++ { if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) { panic("reflect: " + method + " using " + xt.String() + " as type " + targ.String()) } } if !isSlice && t.IsVariadic() { // prepare slice for remaining values m := len(in) - n slice := MakeSlice(t.In(n), m, m) elem := t.In(n).Elem() for i := 0; i < m; i++ { x := in[n+i] if xt := x.Type(); !xt.AssignableTo(elem) { panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + method) } slice.Index(i).Set(x) } origIn := in in = make([]Value, n+1) copy(in[:n], origIn) in[n] = slice } nin := len(in) if nin != t.NumIn() { panic("reflect.Value.Call: wrong argument count") } nout := t.NumOut() if v.flag&flagMethod != 0 { nin++ } params := make([]unsafe.Pointer, nin) off := 0 if v.flag&flagMethod != 0 { // Hard-wired first argument. p := new(iword) *p = rcvr params[0] = unsafe.Pointer(p) off = 1 } first_pointer := false for i, pv := range in { pv.mustBeExported() targ := t.In(i).(*rtype) pv = pv.assignTo("reflect.Value.Call", targ, nil) if pv.flag&flagIndir == 0 { p := new(unsafe.Pointer) *p = pv.val params[off] = unsafe.Pointer(p) } else { params[off] = pv.val } if i == 0 && Kind(targ.kind) != Ptr && v.flag&flagMethod == 0 && isMethod(v.typ) { p := new(unsafe.Pointer) *p = params[off] params[off] = unsafe.Pointer(p) first_pointer = true } off++ } ret := make([]Value, nout) results := make([]unsafe.Pointer, nout) for i := 0; i < nout; i++ { v := New(t.Out(i)) results[i] = unsafe.Pointer(v.Pointer()) ret[i] = Indirect(v) } var pp *unsafe.Pointer if len(params) > 0 { pp = ¶ms[0] } var pr *unsafe.Pointer if len(results) > 0 { pr = &results[0] } call(t, fn, v.flag&flagMethod != 0, first_pointer, pp, pr) return ret } // gccgo specific test to see if typ is a method. We can tell by // looking at the string to see if there is a receiver. We need this // because for gccgo all methods take pointer receivers. func isMethod(t *rtype) bool { if Kind(t.kind) != Func { return false } s := *t.string parens := 0 params := 0 sawRet := false for i, c := range s { if c == '(' { parens++ params++ } else if c == ')' { parens-- } else if parens == 0 && c == ' ' && s[i+1] != '(' && !sawRet { params++ sawRet = true } } return params > 2 } // callReflect is the call implementation used by a function // returned by MakeFunc. In many ways it is the opposite of the // method Value.call above. The method above converts a call using Values // into a call of a function with a concrete argument frame, while // callReflect converts a call of a function with a concrete argument // frame into a call using Values. // It is in this file so that it can be next to the call method above. // The remainder of the MakeFunc implementation is in makefunc.go. func callReflect(ftyp *funcType, f func([]Value) []Value, frame unsafe.Pointer) { // Copy argument frame into Values. ptr := frame off := uintptr(0) in := make([]Value, 0, len(ftyp.in)) for _, arg := range ftyp.in { typ := arg off += -off & uintptr(typ.align-1) v := Value{typ, nil, flag(typ.Kind()) << flagKindShift} if typ.size <= ptrSize { // value fits in word. v.val = unsafe.Pointer(loadIword(unsafe.Pointer(uintptr(ptr)+off), typ.size)) } else { // value does not fit in word. // Must make a copy, because f might keep a reference to it, // and we cannot let f keep a reference to the stack frame // after this function returns, not even a read-only reference. v.val = unsafe_New(typ) memmove(v.val, unsafe.Pointer(uintptr(ptr)+off), typ.size) v.flag |= flagIndir } in = append(in, v) off += typ.size } // Call underlying function. out := f(in) if len(out) != len(ftyp.out) { panic("reflect: wrong return count from function created by MakeFunc") } // Copy results back into argument frame. if len(ftyp.out) > 0 { off += -off & (ptrSize - 1) for i, arg := range ftyp.out { typ := arg v := out[i] if v.typ != typ { panic("reflect: function created by MakeFunc using " + funcName(f) + " returned wrong type: have " + out[i].typ.String() + " for " + typ.String()) } if v.flag&flagRO != 0 { panic("reflect: function created by MakeFunc using " + funcName(f) + " returned value obtained from unexported field") } off += -off & uintptr(typ.align-1) addr := unsafe.Pointer(uintptr(ptr) + off) if v.flag&flagIndir == 0 { storeIword(addr, iword(v.val), typ.size) } else { memmove(addr, v.val, typ.size) } off += typ.size } } } // funcName returns the name of f, for use in error messages. func funcName(f func([]Value) []Value) string { pc := *(*uintptr)(unsafe.Pointer(&f)) rf := runtime.FuncForPC(pc) if rf != nil { return rf.Name() } return "closure" } // Cap returns v's capacity. // It panics if v's Kind is not Array, Chan, or Slice. func (v Value) Cap() int { k := v.kind() switch k { case Array: return v.typ.Len() case Chan: return int(chancap(*(*iword)(v.iword()))) case Slice: // Slice is always bigger than a word; assume flagIndir. return (*SliceHeader)(v.val).Cap } panic(&ValueError{"reflect.Value.Cap", k}) } // Close closes the channel v. // It panics if v's Kind is not Chan. func (v Value) Close() { v.mustBe(Chan) v.mustBeExported() chanclose(*(*iword)(v.iword())) } // Complex returns v's underlying value, as a complex128. // It panics if v's Kind is not Complex64 or Complex128 func (v Value) Complex() complex128 { k := v.kind() switch k { case Complex64: if v.flag&flagIndir != 0 { return complex128(*(*complex64)(v.val)) } return complex128(*(*complex64)(unsafe.Pointer(&v.val))) case Complex128: // complex128 is always bigger than a word; assume flagIndir. return *(*complex128)(v.val) } panic(&ValueError{"reflect.Value.Complex", k}) } // Elem returns the value that the interface v contains // or that the pointer v points to. // It panics if v's Kind is not Interface or Ptr. // It returns the zero Value if v is nil. func (v Value) Elem() Value { k := v.kind() switch k { case Interface: var ( typ *rtype val unsafe.Pointer ) if v.typ.NumMethod() == 0 { eface := (*emptyInterface)(v.val) if eface.typ == nil { // nil interface value return Value{} } typ = eface.typ val = unsafe.Pointer(eface.word) } else { iface := (*nonEmptyInterface)(v.val) if iface.itab == nil { // nil interface value return Value{} } typ = iface.itab.typ val = unsafe.Pointer(iface.word) } fl := v.flag & flagRO fl |= flag(typ.Kind()) << flagKindShift if typ.Kind() != Ptr && typ.Kind() != UnsafePointer { fl |= flagIndir } return Value{typ, val, fl} case Ptr: val := v.val if v.flag&flagIndir != 0 { val = *(*unsafe.Pointer)(val) } // The returned value's address is v's value. if val == nil { return Value{} } tt := (*ptrType)(unsafe.Pointer(v.typ)) typ := tt.elem fl := v.flag&flagRO | flagIndir | flagAddr fl |= flag(typ.Kind() << flagKindShift) return Value{typ, val, fl} } panic(&ValueError{"reflect.Value.Elem", k}) } // Field returns the i'th field of the struct v. // It panics if v's Kind is not Struct or i is out of range. func (v Value) Field(i int) Value { v.mustBe(Struct) tt := (*structType)(unsafe.Pointer(v.typ)) if i < 0 || i >= len(tt.fields) { panic("reflect: Field index out of range") } field := &tt.fields[i] typ := field.typ // Inherit permission bits from v. fl := v.flag & (flagRO | flagIndir | flagAddr) // Using an unexported field forces flagRO. if field.pkgPath != nil { fl |= flagRO } fl |= flag(typ.Kind()) << flagKindShift var val unsafe.Pointer switch { case fl&flagIndir != 0: // Indirect. Just bump pointer. val = unsafe.Pointer(uintptr(v.val) + field.offset) case bigEndian: // Direct. Discard leading bytes. val = unsafe.Pointer(uintptr(v.val) << (field.offset * 8)) default: // Direct. Discard leading bytes. val = unsafe.Pointer(uintptr(v.val) >> (field.offset * 8)) } return Value{typ, val, fl} } // FieldByIndex returns the nested field corresponding to index. // It panics if v's Kind is not struct. func (v Value) FieldByIndex(index []int) Value { v.mustBe(Struct) for i, x := range index { if i > 0 { if v.Kind() == Ptr && v.Elem().Kind() == Struct { v = v.Elem() } } v = v.Field(x) } return v } // FieldByName returns the struct field with the given name. // It returns the zero Value if no field was found. // It panics if v's Kind is not struct. func (v Value) FieldByName(name string) Value { v.mustBe(Struct) if f, ok := v.typ.FieldByName(name); ok { return v.FieldByIndex(f.Index) } return Value{} } // FieldByNameFunc returns the struct field with a name // that satisfies the match function. // It panics if v's Kind is not struct. // It returns the zero Value if no field was found. func (v Value) FieldByNameFunc(match func(string) bool) Value { v.mustBe(Struct) if f, ok := v.typ.FieldByNameFunc(match); ok { return v.FieldByIndex(f.Index) } return Value{} } // Float returns v's underlying value, as a float64. // It panics if v's Kind is not Float32 or Float64 func (v Value) Float() float64 { k := v.kind() switch k { case Float32: if v.flag&flagIndir != 0 { return float64(*(*float32)(v.val)) } return float64(*(*float32)(unsafe.Pointer(&v.val))) case Float64: if v.flag&flagIndir != 0 { return *(*float64)(v.val) } return *(*float64)(unsafe.Pointer(&v.val)) } panic(&ValueError{"reflect.Value.Float", k}) } var uint8Type = TypeOf(uint8(0)).(*rtype) // Index returns v's i'th element. // It panics if v's Kind is not Array, Slice, or String or i is out of range. func (v Value) Index(i int) Value { k := v.kind() switch k { case Array: tt := (*arrayType)(unsafe.Pointer(v.typ)) if i < 0 || i > int(tt.len) { panic("reflect: array index out of range") } typ := tt.elem fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array fl |= flag(typ.Kind()) << flagKindShift offset := uintptr(i) * typ.size var val unsafe.Pointer switch { case fl&flagIndir != 0: // Indirect. Just bump pointer. val = unsafe.Pointer(uintptr(v.val) + offset) case bigEndian: // Direct. Discard leading bytes. val = unsafe.Pointer(uintptr(v.val) << (offset * 8)) default: // Direct. Discard leading bytes. val = unsafe.Pointer(uintptr(v.val) >> (offset * 8)) } return Value{typ, val, fl} case Slice: // Element flag same as Elem of Ptr. // Addressable, indirect, possibly read-only. fl := flagAddr | flagIndir | v.flag&flagRO s := (*SliceHeader)(v.val) if i < 0 || i >= s.Len { panic("reflect: slice index out of range") } tt := (*sliceType)(unsafe.Pointer(v.typ)) typ := tt.elem fl |= flag(typ.Kind()) << flagKindShift val := unsafe.Pointer(s.Data + uintptr(i)*typ.size) return Value{typ, val, fl} case String: fl := v.flag&flagRO | flag(Uint8<= s.Len { panic("reflect: string index out of range") } val := *(*byte)(unsafe.Pointer(s.Data + uintptr(i))) return Value{uint8Type, unsafe.Pointer(&val), fl} } panic(&ValueError{"reflect.Value.Index", k}) } // Int returns v's underlying value, as an int64. // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64. func (v Value) Int() int64 { k := v.kind() var p unsafe.Pointer if v.flag&flagIndir != 0 { p = v.val } else { // The escape analysis is good enough that &v.val // does not trigger a heap allocation. p = unsafe.Pointer(&v.val) } switch k { case Int: return int64(*(*int)(p)) case Int8: return int64(*(*int8)(p)) case Int16: return int64(*(*int16)(p)) case Int32: return int64(*(*int32)(p)) case Int64: return int64(*(*int64)(p)) } panic(&ValueError{"reflect.Value.Int", k}) } // CanInterface returns true if Interface can be used without panicking. func (v Value) CanInterface() bool { if v.flag == 0 { panic(&ValueError{"reflect.Value.CanInterface", Invalid}) } return v.flag&(flagMethod|flagRO) == 0 } // Interface returns v's current value as an interface{}. // It is equivalent to: // var i interface{} = (v's underlying value) // If v is a method obtained by invoking Value.Method // (as opposed to Type.Method), Interface cannot return an // interface value, so it panics. // It also panics if the Value was obtained by accessing // unexported struct fields. func (v Value) Interface() (i interface{}) { return valueInterface(v, true) } func valueInterface(v Value, safe bool) interface{} { if v.flag == 0 { panic(&ValueError{"reflect.Value.Interface", 0}) } if v.flag&flagMethod != 0 { panic("reflect.Value.Interface: cannot create interface value for method with bound receiver") } if safe && v.flag&flagRO != 0 { // Do not allow access to unexported values via Interface, // because they might be pointers that should not be // writable or methods or function that should not be callable. panic("reflect.Value.Interface: cannot return value obtained from unexported field or method") } k := v.kind() if k == Interface { // Special case: return the element inside the interface. // Empty interface has one layout, all interfaces with // methods have a second layout. if v.NumMethod() == 0 { return *(*interface{})(v.val) } return *(*interface { M() })(v.val) } // Non-interface value. var eface emptyInterface eface.typ = toType(v.typ).common() eface.word = v.iword() if v.flag&flagIndir != 0 && v.kind() != Ptr && v.kind() != UnsafePointer { // eface.word is a pointer to the actual data, // which might be changed. We need to return // a pointer to unchanging data, so make a copy. ptr := unsafe_New(v.typ) memmove(ptr, unsafe.Pointer(eface.word), v.typ.size) eface.word = iword(ptr) } if v.flag&flagIndir == 0 && v.kind() != Ptr && v.kind() != UnsafePointer { panic("missing flagIndir") } return *(*interface{})(unsafe.Pointer(&eface)) } // InterfaceData returns the interface v's value as a uintptr pair. // It panics if v's Kind is not Interface. func (v Value) InterfaceData() [2]uintptr { v.mustBe(Interface) // We treat this as a read operation, so we allow // it even for unexported data, because the caller // has to import "unsafe" to turn it into something // that can be abused. // Interface value is always bigger than a word; assume flagIndir. return *(*[2]uintptr)(v.val) } // IsNil returns true if v is a nil value. // It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice. func (v Value) IsNil() bool { k := v.kind() switch k { case Chan, Func, Map, Ptr: if v.flag&flagMethod != 0 { panic("reflect: IsNil of method Value") } ptr := v.val if v.flag&flagIndir != 0 { ptr = *(*unsafe.Pointer)(ptr) } return ptr == nil case Interface, Slice: // Both interface and slice are nil if first word is 0. // Both are always bigger than a word; assume flagIndir. return *(*unsafe.Pointer)(v.val) == nil } panic(&ValueError{"reflect.Value.IsNil", k}) } // IsValid returns true if v represents a value. // It returns false if v is the zero Value. // If IsValid returns false, all other methods except String panic. // Most functions and methods never return an invalid value. // If one does, its documentation states the conditions explicitly. func (v Value) IsValid() bool { return v.flag != 0 } // Kind returns v's Kind. // If v is the zero Value (IsValid returns false), Kind returns Invalid. func (v Value) Kind() Kind { return v.kind() } // Len returns v's length. // It panics if v's Kind is not Array, Chan, Map, Slice, or String. func (v Value) Len() int { k := v.kind() switch k { case Array: tt := (*arrayType)(unsafe.Pointer(v.typ)) return int(tt.len) case Chan: return chanlen(*(*iword)(v.iword())) case Map: return maplen(*(*iword)(v.iword())) case Slice: // Slice is bigger than a word; assume flagIndir. return (*SliceHeader)(v.val).Len case String: // String is bigger than a word; assume flagIndir. return (*StringHeader)(v.val).Len } panic(&ValueError{"reflect.Value.Len", k}) } // MapIndex returns the value associated with key in the map v. // It panics if v's Kind is not Map. // It returns the zero Value if key is not found in the map or if v represents a nil map. // As in Go, the key's value must be assignable to the map's key type. func (v Value) MapIndex(key Value) Value { v.mustBe(Map) tt := (*mapType)(unsafe.Pointer(v.typ)) // Do not require key to be exported, so that DeepEqual // and other programs can use all the keys returned by // MapKeys as arguments to MapIndex. If either the map // or the key is unexported, though, the result will be // considered unexported. This is consistent with the // behavior for structs, which allow read but not write // of unexported fields. key = key.assignTo("reflect.Value.MapIndex", tt.key, nil) word, ok := mapaccess(v.typ, *(*iword)(v.iword()), key.iword()) if !ok { return Value{} } typ := tt.elem fl := (v.flag | key.flag) & flagRO if typ.Kind() != Ptr && typ.Kind() != UnsafePointer { fl |= flagIndir } fl |= flag(typ.Kind()) << flagKindShift return Value{typ, unsafe.Pointer(word), fl} } // MapKeys returns a slice containing all the keys present in the map, // in unspecified order. // It panics if v's Kind is not Map. // It returns an empty slice if v represents a nil map. func (v Value) MapKeys() []Value { v.mustBe(Map) tt := (*mapType)(unsafe.Pointer(v.typ)) keyType := tt.key fl := v.flag & flagRO fl |= flag(keyType.Kind()) << flagKindShift if keyType.Kind() != Ptr && keyType.Kind() != UnsafePointer { fl |= flagIndir } m := *(*iword)(v.iword()) mlen := int(0) if m != nil { mlen = maplen(m) } it := mapiterinit(v.typ, m) a := make([]Value, mlen) var i int for i = 0; i < len(a); i++ { keyWord, ok := mapiterkey(it) if !ok { break } a[i] = Value{keyType, unsafe.Pointer(keyWord), fl} mapiternext(it) } return a[:i] } // Method returns a function value corresponding to v's i'th method. // The arguments to a Call on the returned function should not include // a receiver; the returned function will always use v as the receiver. // Method panics if i is out of range. func (v Value) Method(i int) Value { if v.typ == nil { panic(&ValueError{"reflect.Value.Method", Invalid}) } if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() { panic("reflect: Method index out of range") } fl := v.flag & (flagRO | flagAddr | flagIndir) fl |= flag(Func) << flagKindShift fl |= flag(i)<> (64 - bitSize) return x != trunc } panic(&ValueError{"reflect.Value.OverflowInt", k}) } // OverflowUint returns true if the uint64 x cannot be represented by v's type. // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64. func (v Value) OverflowUint(x uint64) bool { k := v.kind() switch k { case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64: bitSize := v.typ.size * 8 trunc := (x << (64 - bitSize)) >> (64 - bitSize) return x != trunc } panic(&ValueError{"reflect.Value.OverflowUint", k}) } // Pointer returns v's value as a uintptr. // It returns uintptr instead of unsafe.Pointer so that // code using reflect cannot obtain unsafe.Pointers // without importing the unsafe package explicitly. // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer. func (v Value) Pointer() uintptr { k := v.kind() switch k { case Chan, Func, Map, Ptr, UnsafePointer: if k == Func && v.flag&flagMethod != 0 { panic("reflect.Value.Pointer of method Value") } p := v.val if v.flag&flagIndir != 0 { p = *(*unsafe.Pointer)(p) } return uintptr(p) case Slice: return (*SliceHeader)(v.val).Data } panic(&ValueError{"reflect.Value.Pointer", k}) } // Recv receives and returns a value from the channel v. // It panics if v's Kind is not Chan. // The receive blocks until a value is ready. // The boolean value ok is true if the value x corresponds to a send // on the channel, false if it is a zero value received because the channel is closed. func (v Value) Recv() (x Value, ok bool) { v.mustBe(Chan) v.mustBeExported() return v.recv(false) } // internal recv, possibly non-blocking (nb). // v is known to be a channel. func (v Value) recv(nb bool) (val Value, ok bool) { tt := (*chanType)(unsafe.Pointer(v.typ)) if ChanDir(tt.dir)&RecvDir == 0 { panic("recv on send-only channel") } word, selected, ok := chanrecv(v.typ, *(*iword)(v.iword()), nb) if selected { typ := tt.elem fl := flag(typ.Kind()) << flagKindShift if typ.Kind() != Ptr && typ.Kind() != UnsafePointer { fl |= flagIndir } val = Value{typ, unsafe.Pointer(word), fl} } return } // Send sends x on the channel v. // It panics if v's kind is not Chan or if x's type is not the same type as v's element type. // As in Go, x's value must be assignable to the channel's element type. func (v Value) Send(x Value) { v.mustBe(Chan) v.mustBeExported() v.send(x, false) } // internal send, possibly non-blocking. // v is known to be a channel. func (v Value) send(x Value, nb bool) (selected bool) { tt := (*chanType)(unsafe.Pointer(v.typ)) if ChanDir(tt.dir)&SendDir == 0 { panic("send on recv-only channel") } x.mustBeExported() x = x.assignTo("reflect.Value.Send", tt.elem, nil) return chansend(v.typ, *(*iword)(v.iword()), x.iword(), nb) } // Set assigns x to the value v. // It panics if CanSet returns false. // As in Go, x's value must be assignable to v's type. func (v Value) Set(x Value) { v.mustBeAssignable() x.mustBeExported() // do not let unexported x leak var target *interface{} if v.kind() == Interface { target = (*interface{})(v.val) } x = x.assignTo("reflect.Set", v.typ, target) if x.flag&flagIndir != 0 { memmove(v.val, x.val, v.typ.size) } else { storeIword(v.val, iword(x.val), v.typ.size) } } // SetBool sets v's underlying value. // It panics if v's Kind is not Bool or if CanSet() is false. func (v Value) SetBool(x bool) { v.mustBeAssignable() v.mustBe(Bool) *(*bool)(v.val) = x } // SetBytes sets v's underlying value. // It panics if v's underlying value is not a slice of bytes. func (v Value) SetBytes(x []byte) { v.mustBeAssignable() v.mustBe(Slice) if v.typ.Elem().Kind() != Uint8 { panic("reflect.Value.SetBytes of non-byte slice") } *(*[]byte)(v.val) = x } // setRunes sets v's underlying value. // It panics if v's underlying value is not a slice of runes (int32s). func (v Value) setRunes(x []rune) { v.mustBeAssignable() v.mustBe(Slice) if v.typ.Elem().Kind() != Int32 { panic("reflect.Value.setRunes of non-rune slice") } *(*[]rune)(v.val) = x } // SetComplex sets v's underlying value to x. // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false. func (v Value) SetComplex(x complex128) { v.mustBeAssignable() switch k := v.kind(); k { default: panic(&ValueError{"reflect.Value.SetComplex", k}) case Complex64: *(*complex64)(v.val) = complex64(x) case Complex128: *(*complex128)(v.val) = x } } // SetFloat sets v's underlying value to x. // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false. func (v Value) SetFloat(x float64) { v.mustBeAssignable() switch k := v.kind(); k { default: panic(&ValueError{"reflect.Value.SetFloat", k}) case Float32: *(*float32)(v.val) = float32(x) case Float64: *(*float64)(v.val) = x } } // SetInt sets v's underlying value to x. // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false. func (v Value) SetInt(x int64) { v.mustBeAssignable() switch k := v.kind(); k { default: panic(&ValueError{"reflect.Value.SetInt", k}) case Int: *(*int)(v.val) = int(x) case Int8: *(*int8)(v.val) = int8(x) case Int16: *(*int16)(v.val) = int16(x) case Int32: *(*int32)(v.val) = int32(x) case Int64: *(*int64)(v.val) = x } } // SetLen sets v's length to n. // It panics if v's Kind is not Slice or if n is negative or // greater than the capacity of the slice. func (v Value) SetLen(n int) { v.mustBeAssignable() v.mustBe(Slice) s := (*SliceHeader)(v.val) if n < 0 || n > int(s.Cap) { panic("reflect: slice length out of range in SetLen") } s.Len = n } // SetMapIndex sets the value associated with key in the map v to val. // It panics if v's Kind is not Map. // If val is the zero Value, SetMapIndex deletes the key from the map. // As in Go, key's value must be assignable to the map's key type, // and val's value must be assignable to the map's value type. func (v Value) SetMapIndex(key, val Value) { v.mustBe(Map) v.mustBeExported() key.mustBeExported() tt := (*mapType)(unsafe.Pointer(v.typ)) key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil) if val.typ != nil { val.mustBeExported() val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil) } mapassign(v.typ, *(*iword)(v.iword()), key.iword(), val.iword(), val.typ != nil) } // SetUint sets v's underlying value to x. // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false. func (v Value) SetUint(x uint64) { v.mustBeAssignable() switch k := v.kind(); k { default: panic(&ValueError{"reflect.Value.SetUint", k}) case Uint: *(*uint)(v.val) = uint(x) case Uint8: *(*uint8)(v.val) = uint8(x) case Uint16: *(*uint16)(v.val) = uint16(x) case Uint32: *(*uint32)(v.val) = uint32(x) case Uint64: *(*uint64)(v.val) = x case Uintptr: *(*uintptr)(v.val) = uintptr(x) } } // SetPointer sets the unsafe.Pointer value v to x. // It panics if v's Kind is not UnsafePointer. func (v Value) SetPointer(x unsafe.Pointer) { v.mustBeAssignable() v.mustBe(UnsafePointer) *(*unsafe.Pointer)(v.val) = x } // SetString sets v's underlying value to x. // It panics if v's Kind is not String or if CanSet() is false. func (v Value) SetString(x string) { v.mustBeAssignable() v.mustBe(String) *(*string)(v.val) = x } // Slice returns a slice of v. // It panics if v's Kind is not Array, Slice, or String. func (v Value) Slice(beg, end int) Value { var ( cap int typ *sliceType base unsafe.Pointer ) switch k := v.kind(); k { default: panic(&ValueError{"reflect.Value.Slice", k}) case Array: if v.flag&flagAddr == 0 { panic("reflect.Value.Slice: slice of unaddressable array") } tt := (*arrayType)(unsafe.Pointer(v.typ)) cap = int(tt.len) typ = (*sliceType)(unsafe.Pointer(tt.slice)) base = v.val case Slice: typ = (*sliceType)(unsafe.Pointer(v.typ)) s := (*SliceHeader)(v.val) base = unsafe.Pointer(s.Data) cap = s.Cap case String: s := (*StringHeader)(v.val) if beg < 0 || end < beg || end > s.Len { panic("reflect.Value.Slice: string slice index out of bounds") } var x string val := (*StringHeader)(unsafe.Pointer(&x)) val.Data = s.Data + uintptr(beg) val.Len = end - beg return Value{v.typ, unsafe.Pointer(&x), v.flag} } if beg < 0 || end < beg || end > cap { panic("reflect.Value.Slice: slice index out of bounds") } // Declare slice so that gc can see the base pointer in it. var x []unsafe.Pointer // Reinterpret as *SliceHeader to edit. s := (*SliceHeader)(unsafe.Pointer(&x)) s.Data = uintptr(base) + uintptr(beg)*typ.elem.Size() s.Len = end - beg s.Cap = cap - beg fl := v.flag&flagRO | flagIndir | flag(Slice)<" where T is v's type. func (v Value) String() string { switch k := v.kind(); k { case Invalid: return "" case String: return *(*string)(v.val) } // If you call String on a reflect.Value of other type, it's better to // print something than to panic. Useful in debugging. return "<" + v.typ.String() + " Value>" } // TryRecv attempts to receive a value from the channel v but will not block. // It panics if v's Kind is not Chan. // If the receive cannot finish without blocking, x is the zero Value. // The boolean ok is true if the value x corresponds to a send // on the channel, false if it is a zero value received because the channel is closed. func (v Value) TryRecv() (x Value, ok bool) { v.mustBe(Chan) v.mustBeExported() return v.recv(true) } // TrySend attempts to send x on the channel v but will not block. // It panics if v's Kind is not Chan. // It returns true if the value was sent, false otherwise. // As in Go, x's value must be assignable to the channel's element type. func (v Value) TrySend(x Value) bool { v.mustBe(Chan) v.mustBeExported() return v.send(x, true) } // Type returns v's type. func (v Value) Type() Type { f := v.flag if f == 0 { panic(&ValueError{"reflect.Value.Type", Invalid}) } if f&flagMethod == 0 { // Easy case return toType(v.typ) } // Method value. // v.typ describes the receiver, not the method type. i := int(v.flag) >> flagMethodShift if v.typ.Kind() == Interface { // Method on interface. tt := (*interfaceType)(unsafe.Pointer(v.typ)) if i < 0 || i >= len(tt.methods) { panic("reflect: broken Value") } m := &tt.methods[i] return toType(m.typ) } // Method on concrete type. ut := v.typ.uncommon() if ut == nil || i < 0 || i >= len(ut.methods) { panic("reflect: broken Value") } m := &ut.methods[i] return toType(m.mtyp) } // Uint returns v's underlying value, as a uint64. // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64. func (v Value) Uint() uint64 { k := v.kind() var p unsafe.Pointer if v.flag&flagIndir != 0 { p = v.val } else { // The escape analysis is good enough that &v.val // does not trigger a heap allocation. p = unsafe.Pointer(&v.val) } switch k { case Uint: return uint64(*(*uint)(p)) case Uint8: return uint64(*(*uint8)(p)) case Uint16: return uint64(*(*uint16)(p)) case Uint32: return uint64(*(*uint32)(p)) case Uint64: return uint64(*(*uint64)(p)) case Uintptr: return uint64(*(*uintptr)(p)) } panic(&ValueError{"reflect.Value.Uint", k}) } // UnsafeAddr returns a pointer to v's data. // It is for advanced clients that also import the "unsafe" package. // It panics if v is not addressable. func (v Value) UnsafeAddr() uintptr { if v.typ == nil { panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid}) } if v.flag&flagAddr == 0 { panic("reflect.Value.UnsafeAddr of unaddressable value") } return uintptr(v.val) } // StringHeader is the runtime representation of a string. // It cannot be used safely or portably. type StringHeader struct { Data uintptr Len int } // SliceHeader is the runtime representation of a slice. // It cannot be used safely or portably. type SliceHeader struct { Data uintptr Len int Cap int } func typesMustMatch(what string, t1, t2 Type) { if t1 != t2 { panic(what + ": " + t1.String() + " != " + t2.String()) } } // grow grows the slice s so that it can hold extra more values, allocating // more capacity if needed. It also returns the old and new slice lengths. func grow(s Value, extra int) (Value, int, int) { i0 := s.Len() i1 := i0 + extra if i1 < i0 { panic("reflect.Append: slice overflow") } m := s.Cap() if i1 <= m { return s.Slice(0, i1), i0, i1 } if m == 0 { m = extra } else { for m < i1 { if i0 < 1024 { m += m } else { m += m / 4 } } } t := MakeSlice(s.Type(), i1, m) Copy(t, s) return t, i0, i1 } // Append appends the values x to a slice s and returns the resulting slice. // As in Go, each x's value must be assignable to the slice's element type. func Append(s Value, x ...Value) Value { s.mustBe(Slice) s, i0, i1 := grow(s, len(x)) for i, j := i0, 0; i < i1; i, j = i+1, j+1 { s.Index(i).Set(x[j]) } return s } // AppendSlice appends a slice t to a slice s and returns the resulting slice. // The slices s and t must have the same element type. func AppendSlice(s, t Value) Value { s.mustBe(Slice) t.mustBe(Slice) typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem()) s, i0, i1 := grow(s, t.Len()) Copy(s.Slice(i0, i1), t) return s } // Copy copies the contents of src into dst until either // dst has been filled or src has been exhausted. // It returns the number of elements copied. // Dst and src each must have kind Slice or Array, and // dst and src must have the same element type. func Copy(dst, src Value) int { dk := dst.kind() if dk != Array && dk != Slice { panic(&ValueError{"reflect.Copy", dk}) } if dk == Array { dst.mustBeAssignable() } dst.mustBeExported() sk := src.kind() if sk != Array && sk != Slice { panic(&ValueError{"reflect.Copy", sk}) } src.mustBeExported() de := dst.typ.Elem() se := src.typ.Elem() typesMustMatch("reflect.Copy", de, se) n := dst.Len() if sn := src.Len(); n > sn { n = sn } // If sk is an in-line array, cannot take its address. // Instead, copy element by element. if src.flag&flagIndir == 0 { for i := 0; i < n; i++ { dst.Index(i).Set(src.Index(i)) } return n } // Copy via memmove. var da, sa unsafe.Pointer if dk == Array { da = dst.val } else { da = unsafe.Pointer((*SliceHeader)(dst.val).Data) } if sk == Array { sa = src.val } else { sa = unsafe.Pointer((*SliceHeader)(src.val).Data) } memmove(da, sa, uintptr(n)*de.Size()) return n } // A runtimeSelect is a single case passed to rselect. // This must match ../runtime/chan.c:/runtimeSelect type runtimeSelect struct { dir uintptr // 0, SendDir, or RecvDir typ *rtype // channel type ch iword // interface word for channel val iword // interface word for value (for SendDir) } // rselect runs a select. It returns the index of the chosen case, // and if the case was a receive, the interface word of the received // value and the conventional OK bool to indicate whether the receive // corresponds to a sent value. func rselect([]runtimeSelect) (chosen int, recv iword, recvOK bool) // A SelectDir describes the communication direction of a select case. type SelectDir int // NOTE: These values must match ../runtime/chan.c:/SelectDir. const ( _ SelectDir = iota SelectSend // case Chan <- Send SelectRecv // case <-Chan: SelectDefault // default ) // A SelectCase describes a single case in a select operation. // The kind of case depends on Dir, the communication direction. // // If Dir is SelectDefault, the case represents a default case. // Chan and Send must be zero Values. // // If Dir is SelectSend, the case represents a send operation. // Normally Chan's underlying value must be a channel, and Send's underlying value must be // assignable to the channel's element type. As a special case, if Chan is a zero Value, // then the case is ignored, and the field Send will also be ignored and may be either zero // or non-zero. // // If Dir is SelectRecv, the case represents a receive operation. // Normally Chan's underlying value must be a channel and Send must be a zero Value. // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value. // When a receive operation is selected, the received Value is returned by Select. // type SelectCase struct { Dir SelectDir // direction of case Chan Value // channel to use (for send or receive) Send Value // value to send (for send) } // Select executes a select operation described by the list of cases. // Like the Go select statement, it blocks until one of the cases can // proceed and then executes that case. It returns the index of the chosen case // and, if that case was a receive operation, the value received and a // boolean indicating whether the value corresponds to a send on the channel // (as opposed to a zero value received because the channel is closed). func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) { // NOTE: Do not trust that caller is not modifying cases data underfoot. // The range is safe because the caller cannot modify our copy of the len // and each iteration makes its own copy of the value c. runcases := make([]runtimeSelect, len(cases)) haveDefault := false for i, c := range cases { rc := &runcases[i] rc.dir = uintptr(c.Dir) switch c.Dir { default: panic("reflect.Select: invalid Dir") case SelectDefault: // default if haveDefault { panic("reflect.Select: multiple default cases") } haveDefault = true if c.Chan.IsValid() { panic("reflect.Select: default case has Chan value") } if c.Send.IsValid() { panic("reflect.Select: default case has Send value") } case SelectSend: ch := c.Chan if !ch.IsValid() { break } ch.mustBe(Chan) ch.mustBeExported() tt := (*chanType)(unsafe.Pointer(ch.typ)) if ChanDir(tt.dir)&SendDir == 0 { panic("reflect.Select: SendDir case using recv-only channel") } rc.ch = *(*iword)(ch.iword()) rc.typ = &tt.rtype v := c.Send if !v.IsValid() { panic("reflect.Select: SendDir case missing Send value") } v.mustBeExported() v = v.assignTo("reflect.Select", tt.elem, nil) rc.val = v.iword() case SelectRecv: if c.Send.IsValid() { panic("reflect.Select: RecvDir case has Send value") } ch := c.Chan if !ch.IsValid() { break } ch.mustBe(Chan) ch.mustBeExported() tt := (*chanType)(unsafe.Pointer(ch.typ)) rc.typ = &tt.rtype if ChanDir(tt.dir)&RecvDir == 0 { panic("reflect.Select: RecvDir case using send-only channel") } rc.ch = *(*iword)(ch.iword()) } } chosen, word, recvOK := rselect(runcases) if runcases[chosen].dir == uintptr(SelectRecv) { tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ)) typ := tt.elem fl := flag(typ.Kind()) << flagKindShift if typ.Kind() != Ptr && typ.Kind() != UnsafePointer { fl |= flagIndir } recv = Value{typ, unsafe.Pointer(word), fl} } return chosen, recv, recvOK } /* * constructors */ // implemented in package runtime func unsafe_New(*rtype) unsafe.Pointer func unsafe_NewArray(*rtype, int) unsafe.Pointer // MakeSlice creates a new zero-initialized slice value // for the specified slice type, length, and capacity. func MakeSlice(typ Type, len, cap int) Value { if typ.Kind() != Slice { panic("reflect.MakeSlice of non-slice type") } if len < 0 { panic("reflect.MakeSlice: negative len") } if cap < 0 { panic("reflect.MakeSlice: negative cap") } if len > cap { panic("reflect.MakeSlice: len > cap") } // Declare slice so that gc can see the base pointer in it. var x []unsafe.Pointer // Reinterpret as *SliceHeader to edit. s := (*SliceHeader)(unsafe.Pointer(&x)) s.Data = uintptr(unsafe_NewArray(typ.Elem().(*rtype), cap)) s.Len = len s.Cap = cap return Value{typ.common(), unsafe.Pointer(&x), flagIndir | flag(Slice)< ptrSize { // Assume ptrSize >= 4, so this must be uint64. ptr := unsafe_New(typ) *(*uint64)(unsafe.Pointer(ptr)) = bits return Value{typ, ptr, f | flagIndir | flag(typ.Kind())< ptrSize { // Assume ptrSize >= 4, so this must be float64. ptr := unsafe_New(typ) *(*float64)(unsafe.Pointer(ptr)) = v return Value{typ, ptr, f | flagIndir | flag(typ.Kind())< ptrSize { ptr := unsafe_New(typ) switch typ.size { case 8: *(*complex64)(unsafe.Pointer(ptr)) = complex64(v) case 16: *(*complex128)(unsafe.Pointer(ptr)) = v } return Value{typ, ptr, f | flagIndir | flag(typ.Kind())< [u]intXX func cvtInt(v Value, t Type) Value { return makeInt(v.flag&flagRO, uint64(v.Int()), t) } // convertOp: uintXX -> [u]intXX func cvtUint(v Value, t Type) Value { return makeInt(v.flag&flagRO, v.Uint(), t) } // convertOp: floatXX -> intXX func cvtFloatInt(v Value, t Type) Value { return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t) } // convertOp: floatXX -> uintXX func cvtFloatUint(v Value, t Type) Value { return makeInt(v.flag&flagRO, uint64(v.Float()), t) } // convertOp: intXX -> floatXX func cvtIntFloat(v Value, t Type) Value { return makeFloat(v.flag&flagRO, float64(v.Int()), t) } // convertOp: uintXX -> floatXX func cvtUintFloat(v Value, t Type) Value { return makeFloat(v.flag&flagRO, float64(v.Uint()), t) } // convertOp: floatXX -> floatXX func cvtFloat(v Value, t Type) Value { return makeFloat(v.flag&flagRO, v.Float(), t) } // convertOp: complexXX -> complexXX func cvtComplex(v Value, t Type) Value { return makeComplex(v.flag&flagRO, v.Complex(), t) } // convertOp: intXX -> string func cvtIntString(v Value, t Type) Value { return makeString(v.flag&flagRO, string(v.Int()), t) } // convertOp: uintXX -> string func cvtUintString(v Value, t Type) Value { return makeString(v.flag&flagRO, string(v.Uint()), t) } // convertOp: []byte -> string func cvtBytesString(v Value, t Type) Value { return makeString(v.flag&flagRO, string(v.Bytes()), t) } // convertOp: string -> []byte func cvtStringBytes(v Value, t Type) Value { return makeBytes(v.flag&flagRO, []byte(v.String()), t) } // convertOp: []rune -> string func cvtRunesString(v Value, t Type) Value { return makeString(v.flag&flagRO, string(v.runes()), t) } // convertOp: string -> []rune func cvtStringRunes(v Value, t Type) Value { return makeRunes(v.flag&flagRO, []rune(v.String()), t) } // convertOp: direct copy func cvtDirect(v Value, typ Type) Value { f := v.flag t := typ.common() val := v.val if f&flagAddr != 0 { // indirect, mutable word - make a copy ptr := unsafe_New(t) memmove(ptr, val, t.size) val = ptr f &^= flagAddr } return Value{t, val, v.flag&flagRO | f} } // convertOp: concrete -> interface func cvtT2I(v Value, typ Type) Value { target := new(interface{}) x := valueInterface(v, false) if typ.NumMethod() == 0 { *target = x } else { ifaceE2I(typ.(*rtype), x, unsafe.Pointer(target)) } return Value{typ.common(), unsafe.Pointer(target), v.flag&flagRO | flagIndir | flag(Interface)< interface func cvtI2I(v Value, typ Type) Value { if v.IsNil() { ret := Zero(typ) ret.flag |= v.flag & flagRO return ret } return cvtT2I(v.Elem(), typ) } // implemented in ../pkg/runtime func chancap(ch iword) int func chanclose(ch iword) func chanlen(ch iword) int func chanrecv(t *rtype, ch iword, nb bool) (val iword, selected, received bool) func chansend(t *rtype, ch iword, val iword, nb bool) bool func makechan(typ *rtype, size uint64) (ch iword) func makemap(t *rtype) (m iword) func mapaccess(t *rtype, m iword, key iword) (val iword, ok bool) func mapassign(t *rtype, m iword, key, val iword, ok bool) func mapiterinit(t *rtype, m iword) *byte func mapiterkey(it *byte) (key iword, ok bool) func mapiternext(it *byte) func maplen(m iword) int func call(typ *rtype, fnaddr unsafe.Pointer, isInterface bool, isMethod bool, params *unsafe.Pointer, results *unsafe.Pointer) func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer) // Dummy annotation marking that the value x escapes, // for use in cases where the reflect code is so clever that // the compiler cannot follow. func escapes(x interface{}) { if dummy.b { dummy.x = x } } var dummy struct { b bool x interface{} }