//===-- asan_allocator2.cc ------------------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of AddressSanitizer, an address sanity checker. // // Implementation of ASan's memory allocator, 2-nd version. // This variant uses the allocator from sanitizer_common, i.e. the one shared // with ThreadSanitizer and MemorySanitizer. // // Status: under development, not enabled by default yet. //===----------------------------------------------------------------------===// #include "asan_allocator.h" #if ASAN_ALLOCATOR_VERSION == 2 #include "asan_mapping.h" #include "asan_report.h" #include "asan_thread.h" #include "asan_thread_registry.h" #include "sanitizer/asan_interface.h" #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_internal_defs.h" #include "sanitizer_common/sanitizer_list.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_quarantine.h" namespace __asan { struct AsanMapUnmapCallback { void OnMap(uptr p, uptr size) const { PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic); // Statistics. AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); thread_stats.mmaps++; thread_stats.mmaped += size; } void OnUnmap(uptr p, uptr size) const { PoisonShadow(p, size, 0); // We are about to unmap a chunk of user memory. // Mark the corresponding shadow memory as not needed. // Since asan's mapping is compacting, the shadow chunk may be // not page-aligned, so we only flush the page-aligned portion. uptr page_size = GetPageSizeCached(); uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size); uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size); FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg); // Statistics. AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); thread_stats.munmaps++; thread_stats.munmaped += size; } }; #if SANITIZER_WORDSIZE == 64 const uptr kAllocatorSpace = 0x600000000000ULL; const uptr kAllocatorSize = 0x10000000000ULL; // 1T. typedef DefaultSizeClassMap SizeClassMap; typedef SizeClassAllocator64 PrimaryAllocator; #elif SANITIZER_WORDSIZE == 32 static const u64 kAddressSpaceSize = 1ULL << 32; typedef CompactSizeClassMap SizeClassMap; typedef SizeClassAllocator32<0, kAddressSpaceSize, 16, SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator; #endif typedef SizeClassAllocatorLocalCache AllocatorCache; typedef LargeMmapAllocator SecondaryAllocator; typedef CombinedAllocator Allocator; // We can not use THREADLOCAL because it is not supported on some of the // platforms we care about (OSX 10.6, Android). // static THREADLOCAL AllocatorCache cache; AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) { CHECK(ms); CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache)); return reinterpret_cast(ms->allocator2_cache); } static Allocator allocator; static const uptr kMaxAllowedMallocSize = FIRST_32_SECOND_64(3UL << 30, 8UL << 30); static const uptr kMaxThreadLocalQuarantine = FIRST_32_SECOND_64(1 << 18, 1 << 20); static const uptr kReturnOnZeroMalloc = 2048; // Zero page is protected. // Every chunk of memory allocated by this allocator can be in one of 3 states: // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated. // CHUNK_ALLOCATED: the chunk is allocated and not yet freed. // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone. enum { CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it. CHUNK_ALLOCATED = 2, CHUNK_QUARANTINE = 3 }; // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits. // We use adaptive redzones: for larger allocation larger redzones are used. static u32 RZLog2Size(u32 rz_log) { CHECK_LT(rz_log, 8); return 16 << rz_log; } static u32 RZSize2Log(u32 rz_size) { CHECK_GE(rz_size, 16); CHECK_LE(rz_size, 2048); CHECK(IsPowerOfTwo(rz_size)); u32 res = __builtin_ctz(rz_size) - 4; CHECK_EQ(rz_size, RZLog2Size(res)); return res; } static uptr ComputeRZLog(uptr user_requested_size) { u32 rz_log = user_requested_size <= 64 - 16 ? 0 : user_requested_size <= 128 - 32 ? 1 : user_requested_size <= 512 - 64 ? 2 : user_requested_size <= 4096 - 128 ? 3 : user_requested_size <= (1 << 14) - 256 ? 4 : user_requested_size <= (1 << 15) - 512 ? 5 : user_requested_size <= (1 << 16) - 1024 ? 6 : 7; return Max(rz_log, RZSize2Log(flags()->redzone)); } // The memory chunk allocated from the underlying allocator looks like this: // L L L L L L H H U U U U U U R R // L -- left redzone words (0 or more bytes) // H -- ChunkHeader (16 bytes), which is also a part of the left redzone. // U -- user memory. // R -- right redzone (0 or more bytes) // ChunkBase consists of ChunkHeader and other bytes that overlap with user // memory. // If a memory chunk is allocated by memalign and we had to increase the // allocation size to achieve the proper alignment, then we store this magic // value in the first uptr word of the memory block and store the address of // ChunkBase in the next uptr. // M B ? ? ? L L L L L L H H U U U U U U // M -- magic value kMemalignMagic // B -- address of ChunkHeader pointing to the first 'H' static const uptr kMemalignMagic = 0xCC6E96B9; struct ChunkHeader { // 1-st 8 bytes. u32 chunk_state : 8; // Must be first. u32 alloc_tid : 24; u32 free_tid : 24; u32 from_memalign : 1; u32 alloc_type : 2; u32 rz_log : 3; // 2-nd 8 bytes // This field is used for small sizes. For large sizes it is equal to // SizeClassMap::kMaxSize and the actual size is stored in the // SecondaryAllocator's metadata. u32 user_requested_size; u32 alloc_context_id; }; struct ChunkBase : ChunkHeader { // Header2, intersects with user memory. AsanChunk *next; u32 free_context_id; }; static const uptr kChunkHeaderSize = sizeof(ChunkHeader); static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize; COMPILER_CHECK(kChunkHeaderSize == 16); COMPILER_CHECK(kChunkHeader2Size <= 16); struct AsanChunk: ChunkBase { uptr Beg() { return reinterpret_cast(this) + kChunkHeaderSize; } uptr UsedSize() { if (user_requested_size != SizeClassMap::kMaxSize) return user_requested_size; return *reinterpret_cast(allocator.GetMetaData(AllocBeg())); } void *AllocBeg() { if (from_memalign) return allocator.GetBlockBegin(reinterpret_cast(this)); return reinterpret_cast(Beg() - RZLog2Size(rz_log)); } // We store the alloc/free stack traces in the chunk itself. u32 *AllocStackBeg() { return (u32*)(Beg() - RZLog2Size(rz_log)); } uptr AllocStackSize() { CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize); return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32); } u32 *FreeStackBeg() { return (u32*)(Beg() + kChunkHeader2Size); } uptr FreeStackSize() { if (user_requested_size < kChunkHeader2Size) return 0; uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY); return (available - kChunkHeader2Size) / sizeof(u32); } }; uptr AsanChunkView::Beg() { return chunk_->Beg(); } uptr AsanChunkView::End() { return Beg() + UsedSize(); } uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); } uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; } uptr AsanChunkView::FreeTid() { return chunk_->free_tid; } static void GetStackTraceFromId(u32 id, StackTrace *stack) { CHECK(id); uptr size = 0; const uptr *trace = StackDepotGet(id, &size); CHECK_LT(size, kStackTraceMax); internal_memcpy(stack->trace, trace, sizeof(uptr) * size); stack->size = size; } void AsanChunkView::GetAllocStack(StackTrace *stack) { if (flags()->use_stack_depot) GetStackTraceFromId(chunk_->alloc_context_id, stack); else StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(), chunk_->AllocStackSize()); } void AsanChunkView::GetFreeStack(StackTrace *stack) { if (flags()->use_stack_depot) GetStackTraceFromId(chunk_->free_context_id, stack); else StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(), chunk_->FreeStackSize()); } struct QuarantineCallback; typedef Quarantine AsanQuarantine; typedef AsanQuarantine::Cache QuarantineCache; static AsanQuarantine quarantine(LINKER_INITIALIZED); static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED); static AllocatorCache fallback_allocator_cache; static SpinMutex fallback_mutex; QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) { CHECK(ms); CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache)); return reinterpret_cast(ms->quarantine_cache); } struct QuarantineCallback { explicit QuarantineCallback(AllocatorCache *cache) : cache_(cache) { } void Recycle(AsanChunk *m) { CHECK(m->chunk_state == CHUNK_QUARANTINE); m->chunk_state = CHUNK_AVAILABLE; CHECK_NE(m->alloc_tid, kInvalidTid); CHECK_NE(m->free_tid, kInvalidTid); PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), kAsanHeapLeftRedzoneMagic); void *p = reinterpret_cast(m->AllocBeg()); if (m->from_memalign) { uptr *memalign_magic = reinterpret_cast(p); CHECK_EQ(memalign_magic[0], kMemalignMagic); CHECK_EQ(memalign_magic[1], reinterpret_cast(m)); } // Statistics. AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); thread_stats.real_frees++; thread_stats.really_freed += m->UsedSize(); allocator.Deallocate(cache_, p); } void *Allocate(uptr size) { return allocator.Allocate(cache_, size, 1, false); } void Deallocate(void *p) { allocator.Deallocate(cache_, p); } AllocatorCache *cache_; }; static void Init() { static int inited = 0; if (inited) return; __asan_init(); inited = true; // this must happen before any threads are created. allocator.Init(); quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine); } static void *Allocate(uptr size, uptr alignment, StackTrace *stack, AllocType alloc_type) { Init(); CHECK(stack); const uptr min_alignment = SHADOW_GRANULARITY; if (alignment < min_alignment) alignment = min_alignment; if (size == 0) { if (alignment <= kReturnOnZeroMalloc) return reinterpret_cast(kReturnOnZeroMalloc); else return 0; // 0 bytes with large alignment requested. Just return 0. } CHECK(IsPowerOfTwo(alignment)); uptr rz_log = ComputeRZLog(size); uptr rz_size = RZLog2Size(rz_log); uptr rounded_size = RoundUpTo(size, alignment); if (rounded_size < kChunkHeader2Size) rounded_size = kChunkHeader2Size; uptr needed_size = rounded_size + rz_size; if (alignment > min_alignment) needed_size += alignment; bool using_primary_allocator = true; // If we are allocating from the secondary allocator, there will be no // automatic right redzone, so add the right redzone manually. if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) { needed_size += rz_size; using_primary_allocator = false; } CHECK(IsAligned(needed_size, min_alignment)); if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) { Report("WARNING: AddressSanitizer failed to allocate %p bytes\n", (void*)size); return 0; } AsanThread *t = asanThreadRegistry().GetCurrent(); void *allocated; if (t) { AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); allocated = allocator.Allocate(cache, needed_size, 8, false); } else { SpinMutexLock l(&fallback_mutex); AllocatorCache *cache = &fallback_allocator_cache; allocated = allocator.Allocate(cache, needed_size, 8, false); } uptr alloc_beg = reinterpret_cast(allocated); // Clear the first allocated word (an old kMemalignMagic may still be there). reinterpret_cast(alloc_beg)[0] = 0; uptr alloc_end = alloc_beg + needed_size; uptr beg_plus_redzone = alloc_beg + rz_size; uptr user_beg = beg_plus_redzone; if (!IsAligned(user_beg, alignment)) user_beg = RoundUpTo(user_beg, alignment); uptr user_end = user_beg + size; CHECK_LE(user_end, alloc_end); uptr chunk_beg = user_beg - kChunkHeaderSize; AsanChunk *m = reinterpret_cast(chunk_beg); m->chunk_state = CHUNK_ALLOCATED; m->alloc_type = alloc_type; m->rz_log = rz_log; u32 alloc_tid = t ? t->tid() : 0; m->alloc_tid = alloc_tid; CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield? m->free_tid = kInvalidTid; m->from_memalign = user_beg != beg_plus_redzone; if (m->from_memalign) { CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg); uptr *memalign_magic = reinterpret_cast(alloc_beg); memalign_magic[0] = kMemalignMagic; memalign_magic[1] = chunk_beg; } if (using_primary_allocator) { CHECK(size); m->user_requested_size = size; CHECK(allocator.FromPrimary(allocated)); } else { CHECK(!allocator.FromPrimary(allocated)); m->user_requested_size = SizeClassMap::kMaxSize; uptr *meta = reinterpret_cast(allocator.GetMetaData(allocated)); meta[0] = size; meta[1] = chunk_beg; } if (flags()->use_stack_depot) { m->alloc_context_id = StackDepotPut(stack->trace, stack->size); } else { m->alloc_context_id = 0; StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize()); } uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY); // Unpoison the bulk of the memory region. if (size_rounded_down_to_granularity) PoisonShadow(user_beg, size_rounded_down_to_granularity, 0); // Deal with the end of the region if size is not aligned to granularity. if (size != size_rounded_down_to_granularity && flags()->poison_heap) { u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity); *shadow = size & (SHADOW_GRANULARITY - 1); } AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); thread_stats.mallocs++; thread_stats.malloced += size; thread_stats.malloced_redzones += needed_size - size; uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size)); thread_stats.malloced_by_size[class_id]++; if (needed_size > SizeClassMap::kMaxSize) thread_stats.malloc_large++; void *res = reinterpret_cast(user_beg); ASAN_MALLOC_HOOK(res, size); return res; } static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) { uptr p = reinterpret_cast(ptr); if (p == 0 || p == kReturnOnZeroMalloc) return; uptr chunk_beg = p - kChunkHeaderSize; AsanChunk *m = reinterpret_cast(chunk_beg); // Flip the chunk_state atomically to avoid race on double-free. u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE, memory_order_relaxed); if (old_chunk_state == CHUNK_QUARANTINE) ReportDoubleFree((uptr)ptr, stack); else if (old_chunk_state != CHUNK_ALLOCATED) ReportFreeNotMalloced((uptr)ptr, stack); CHECK(old_chunk_state == CHUNK_ALLOCATED); if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch) ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type, (AllocType)alloc_type); CHECK_GE(m->alloc_tid, 0); if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area. CHECK_EQ(m->free_tid, kInvalidTid); AsanThread *t = asanThreadRegistry().GetCurrent(); m->free_tid = t ? t->tid() : 0; if (flags()->use_stack_depot) { m->free_context_id = StackDepotPut(stack->trace, stack->size); } else { m->free_context_id = 0; StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize()); } CHECK(m->chunk_state == CHUNK_QUARANTINE); // Poison the region. PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), kAsanHeapFreeMagic); AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); thread_stats.frees++; thread_stats.freed += m->UsedSize(); // Push into quarantine. if (t) { AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); AllocatorCache *ac = GetAllocatorCache(ms); quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac), m, m->UsedSize()); } else { SpinMutexLock l(&fallback_mutex); AllocatorCache *ac = &fallback_allocator_cache; quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac), m, m->UsedSize()); } ASAN_FREE_HOOK(ptr); } static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) { CHECK(old_ptr && new_size); uptr p = reinterpret_cast(old_ptr); uptr chunk_beg = p - kChunkHeaderSize; AsanChunk *m = reinterpret_cast(chunk_beg); AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); thread_stats.reallocs++; thread_stats.realloced += new_size; CHECK(m->chunk_state == CHUNK_ALLOCATED); uptr old_size = m->UsedSize(); uptr memcpy_size = Min(new_size, old_size); void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC); if (new_ptr) { CHECK(REAL(memcpy) != 0); REAL(memcpy)(new_ptr, old_ptr, memcpy_size); Deallocate(old_ptr, stack, FROM_MALLOC); } return new_ptr; } static AsanChunk *GetAsanChunkByAddr(uptr p) { void *ptr = reinterpret_cast(p); uptr alloc_beg = reinterpret_cast(allocator.GetBlockBegin(ptr)); if (!alloc_beg) return 0; uptr *memalign_magic = reinterpret_cast(alloc_beg); if (memalign_magic[0] == kMemalignMagic) { AsanChunk *m = reinterpret_cast(memalign_magic[1]); CHECK(m->from_memalign); return m; } if (!allocator.FromPrimary(ptr)) { uptr *meta = reinterpret_cast( allocator.GetMetaData(reinterpret_cast(alloc_beg))); AsanChunk *m = reinterpret_cast(meta[1]); return m; } uptr actual_size = allocator.GetActuallyAllocatedSize(ptr); CHECK_LE(actual_size, SizeClassMap::kMaxSize); // We know the actually allocted size, but we don't know the redzone size. // Just try all possible redzone sizes. for (u32 rz_log = 0; rz_log < 8; rz_log++) { u32 rz_size = RZLog2Size(rz_log); uptr max_possible_size = actual_size - rz_size; if (ComputeRZLog(max_possible_size) != rz_log) continue; return reinterpret_cast( alloc_beg + rz_size - kChunkHeaderSize); } return 0; } static uptr AllocationSize(uptr p) { AsanChunk *m = GetAsanChunkByAddr(p); if (!m) return 0; if (m->chunk_state != CHUNK_ALLOCATED) return 0; if (m->Beg() != p) return 0; return m->UsedSize(); } // We have an address between two chunks, and we want to report just one. AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk, AsanChunk *right_chunk) { // Prefer an allocated chunk over freed chunk and freed chunk // over available chunk. if (left_chunk->chunk_state != right_chunk->chunk_state) { if (left_chunk->chunk_state == CHUNK_ALLOCATED) return left_chunk; if (right_chunk->chunk_state == CHUNK_ALLOCATED) return right_chunk; if (left_chunk->chunk_state == CHUNK_QUARANTINE) return left_chunk; if (right_chunk->chunk_state == CHUNK_QUARANTINE) return right_chunk; } // Same chunk_state: choose based on offset. uptr l_offset = 0, r_offset = 0; CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset)); CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset)); if (l_offset < r_offset) return left_chunk; return right_chunk; } AsanChunkView FindHeapChunkByAddress(uptr addr) { AsanChunk *m1 = GetAsanChunkByAddr(addr); if (!m1) return AsanChunkView(m1); uptr offset = 0; if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) { // The address is in the chunk's left redzone, so maybe it is actually // a right buffer overflow from the other chunk to the left. // Search a bit to the left to see if there is another chunk. AsanChunk *m2 = 0; for (uptr l = 1; l < GetPageSizeCached(); l++) { m2 = GetAsanChunkByAddr(addr - l); if (m2 == m1) continue; // Still the same chunk. break; } if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset)) m1 = ChooseChunk(addr, m2, m1); } return AsanChunkView(m1); } void AsanThreadLocalMallocStorage::CommitBack() { AllocatorCache *ac = GetAllocatorCache(this); quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac)); allocator.SwallowCache(GetAllocatorCache(this)); } void PrintInternalAllocatorStats() { allocator.PrintStats(); } SANITIZER_INTERFACE_ATTRIBUTE void *asan_memalign(uptr alignment, uptr size, StackTrace *stack, AllocType alloc_type) { return Allocate(size, alignment, stack, alloc_type); } SANITIZER_INTERFACE_ATTRIBUTE void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) { Deallocate(ptr, stack, alloc_type); } SANITIZER_INTERFACE_ATTRIBUTE void *asan_malloc(uptr size, StackTrace *stack) { return Allocate(size, 8, stack, FROM_MALLOC); } void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) { void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC); if (ptr) REAL(memset)(ptr, 0, nmemb * size); return ptr; } void *asan_realloc(void *p, uptr size, StackTrace *stack) { if (p == 0) return Allocate(size, 8, stack, FROM_MALLOC); if (size == 0) { Deallocate(p, stack, FROM_MALLOC); return 0; } return Reallocate(p, size, stack); } void *asan_valloc(uptr size, StackTrace *stack) { return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC); } void *asan_pvalloc(uptr size, StackTrace *stack) { uptr PageSize = GetPageSizeCached(); size = RoundUpTo(size, PageSize); if (size == 0) { // pvalloc(0) should allocate one page. size = PageSize; } return Allocate(size, PageSize, stack, FROM_MALLOC); } int asan_posix_memalign(void **memptr, uptr alignment, uptr size, StackTrace *stack) { void *ptr = Allocate(size, alignment, stack, FROM_MALLOC); CHECK(IsAligned((uptr)ptr, alignment)); *memptr = ptr; return 0; } uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) { CHECK(stack); if (ptr == 0) return 0; uptr usable_size = AllocationSize(reinterpret_cast(ptr)); if (flags()->check_malloc_usable_size && (usable_size == 0)) ReportMallocUsableSizeNotOwned((uptr)ptr, stack); return usable_size; } uptr asan_mz_size(const void *ptr) { UNIMPLEMENTED(); return 0; } void asan_mz_force_lock() { UNIMPLEMENTED(); } void asan_mz_force_unlock() { UNIMPLEMENTED(); } } // namespace __asan // ---------------------- Interface ---------------- {{{1 using namespace __asan; // NOLINT // ASan allocator doesn't reserve extra bytes, so normally we would // just return "size". We don't want to expose our redzone sizes, etc here. uptr __asan_get_estimated_allocated_size(uptr size) { return size; } bool __asan_get_ownership(const void *p) { uptr ptr = reinterpret_cast(p); return (ptr == kReturnOnZeroMalloc) || (AllocationSize(ptr) > 0); } uptr __asan_get_allocated_size(const void *p) { if (p == 0) return 0; uptr ptr = reinterpret_cast(p); uptr allocated_size = AllocationSize(ptr); // Die if p is not malloced or if it is already freed. if (allocated_size == 0 && ptr != kReturnOnZeroMalloc) { GET_STACK_TRACE_FATAL_HERE; ReportAsanGetAllocatedSizeNotOwned(ptr, &stack); } return allocated_size; } #if !SANITIZER_SUPPORTS_WEAK_HOOKS // Provide default (no-op) implementation of malloc hooks. extern "C" { SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE void __asan_malloc_hook(void *ptr, uptr size) { (void)ptr; (void)size; } SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE void __asan_free_hook(void *ptr) { (void)ptr; } } // extern "C" #endif #endif // ASAN_ALLOCATOR_VERSION