// -*- C++ -*- // Copyright (C) 2007, 2008 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the terms // of the GNU General Public License as published by the Free Software // Foundation; either version 2, or (at your option) any later // version. // This library is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // You should have received a copy of the GNU General Public License // along with this library; see the file COPYING. If not, write to // the Free Software Foundation, 59 Temple Place - Suite 330, Boston, // MA 02111-1307, USA. // As a special exception, you may use this file as part of a free // software library without restriction. Specifically, if other files // instantiate templates or use macros or inline functions from this // file, or you compile this file and link it with other files to // produce an executable, this file does not by itself cause the // resulting executable to be covered by the GNU General Public // License. This exception does not however invalidate any other // reasons why the executable file might be covered by the GNU General // Public License. /** @file parallel/base.h * @brief Sequential helper functions. * This file is a GNU parallel extension to the Standard C++ Library. */ // Written by Johannes Singler. #ifndef _GLIBCXX_PARALLEL_BASE_H #define _GLIBCXX_PARALLEL_BASE_H 1 #include #include #include #include #include #include // Parallel mode namespaces. /** * @namespace std::__parallel * @brief GNU parallel code, replaces standard behavior with parallel behavior. */ namespace std { namespace __parallel { } } /** * @namespace __gnu_parallel * @brief GNU parallel code for public use. */ namespace __gnu_parallel { // Import all the parallel versions of components in namespace std. using namespace std::__parallel; } /** * @namespace __gnu_sequential * @brief GNU sequential classes for public use. */ namespace __gnu_sequential { // Import whatever is the serial version. #ifdef _GLIBCXX_PARALLEL using namespace std::__norm; #else using namespace std; #endif } namespace __gnu_parallel { // NB: Including this file cannot produce (unresolved) symbols from // the OpenMP runtime unless the parallel mode is actually invoked // and active, which imples that the OpenMP runtime is actually // going to be linked in. inline int get_max_threads() { int __i = omp_get_max_threads(); return __i > 1 ? __i : 1; } inline bool is_parallel(const _Parallelism __p) { return __p != sequential; } // XXX remove std::duplicates from here if possible, // XXX but keep minimal dependencies. /** @brief Calculates the rounded-down logarithm of @c n for base 2. * @param n Argument. * @return Returns 0 for any argument <1. */ template inline Size __log2(Size n) { Size k; for (k = 0; n > 1; n >>= 1) ++k; return k; } /** @brief Encode two integers into one __gnu_parallel::lcas_t. * @param a First integer, to be encoded in the most-significant @c * lcas_t_bits/2 bits. * @param b Second integer, to be encoded in the least-significant * @c lcas_t_bits/2 bits. * @return __gnu_parallel::lcas_t value encoding @c a and @c b. * @see decode2 */ inline lcas_t encode2(int a, int b) //must all be non-negative, actually { return (((lcas_t)a) << (lcas_t_bits / 2)) | (((lcas_t)b) << 0); } /** @brief Decode two integers from one __gnu_parallel::lcas_t. * @param x __gnu_parallel::lcas_t to decode integers from. * @param a First integer, to be decoded from the most-significant * @c lcas_t_bits/2 bits of @c x. * @param b Second integer, to be encoded in the least-significant * @c lcas_t_bits/2 bits of @c x. * @see encode2 */ inline void decode2(lcas_t x, int& a, int& b) { a = (int)((x >> (lcas_t_bits / 2)) & lcas_t_mask); b = (int)((x >> 0 ) & lcas_t_mask); } /** @brief Equivalent to std::min. */ template const T& min(const T& a, const T& b) { return (a < b) ? a : b; } /** @brief Equivalent to std::max. */ template const T& max(const T& a, const T& b) { return (a > b) ? a : b; } /** @brief Constructs predicate for equality from strict weak * ordering predicate */ // XXX comparator at the end, as per others template class equal_from_less : public std::binary_function { private: Comparator& comp; public: equal_from_less(Comparator& _comp) : comp(_comp) { } bool operator()(const T1& a, const T2& b) { return !comp(a, b) && !comp(b, a); } }; /** @brief Similar to std::binder1st, * but giving the argument types explicitly. */ template class unary_negate : public std::unary_function { protected: _Predicate _M_pred; public: explicit unary_negate(const _Predicate& __x) : _M_pred(__x) { } bool operator()(const argument_type& __x) { return !_M_pred(__x); } }; /** @brief Similar to std::binder1st, * but giving the argument types explicitly. */ template class binder1st : public std::unary_function { protected: _Operation op; first_argument_type value; public: binder1st(const _Operation& __x, const first_argument_type& __y) : op(__x), value(__y) { } result_type operator()(const second_argument_type& __x) { return op(value, __x); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 109. Missing binders for non-const sequence elements result_type operator()(second_argument_type& __x) const { return op(value, __x); } }; /** * @brief Similar to std::binder2nd, but giving the argument types * explicitly. */ template class binder2nd : public std::unary_function { protected: _Operation op; second_argument_type value; public: binder2nd(const _Operation& __x, const second_argument_type& __y) : op(__x), value(__y) { } result_type operator()(const first_argument_type& __x) const { return op(__x, value); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 109. Missing binders for non-const sequence elements result_type operator()(first_argument_type& __x) { return op(__x, value); } }; /** @brief Similar to std::equal_to, but allows two different types. */ template struct equal_to : std::binary_function { bool operator()(const T1& t1, const T2& t2) const { return t1 == t2; } }; /** @brief Similar to std::less, but allows two different types. */ template struct less : std::binary_function { bool operator()(const T1& t1, const T2& t2) const { return t1 < t2; } bool operator()(const T2& t2, const T1& t1) const { return t2 < t1; } }; // Partial specialization for one type. Same as std::less. template struct less<_Tp, _Tp> : public std::binary_function<_Tp, _Tp, bool> { bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } }; /** @brief Similar to std::plus, but allows two different types. */ template struct plus : public std::binary_function<_Tp1, _Tp2, _Tp1> { typedef __typeof__(*static_cast<_Tp1*>(NULL) + *static_cast<_Tp2*>(NULL)) result; result operator()(const _Tp1& __x, const _Tp2& __y) const { return __x + __y; } }; // Partial specialization for one type. Same as std::plus. template struct plus<_Tp, _Tp> : public std::binary_function<_Tp, _Tp, _Tp> { typedef __typeof__(*static_cast<_Tp*>(NULL) + *static_cast<_Tp*>(NULL)) result; result operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } }; /** @brief Similar to std::multiplies, but allows two different types. */ template struct multiplies : public std::binary_function<_Tp1, _Tp2, _Tp1> { typedef __typeof__(*static_cast<_Tp1*>(NULL) * *static_cast<_Tp2*>(NULL)) result; result operator()(const _Tp1& __x, const _Tp2& __y) const { return __x * __y; } }; // Partial specialization for one type. Same as std::multiplies. template struct multiplies<_Tp, _Tp> : public std::binary_function<_Tp, _Tp, _Tp> { typedef __typeof__(*static_cast<_Tp*>(NULL) * *static_cast<_Tp*>(NULL)) result; result operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } }; template class pseudo_sequence; /** @brief Iterator associated with __gnu_parallel::pseudo_sequence. * If features the usual random-access iterator functionality. * @param T Sequence value type. * @param difference_type Sequence difference type. */ template class pseudo_sequence_iterator { public: typedef _DifferenceTp difference_type; private: typedef pseudo_sequence_iterator type; const T& val; difference_type pos; public: pseudo_sequence_iterator(const T& val, difference_type pos) : val(val), pos(pos) { } // Pre-increment operator. type& operator++() { ++pos; return *this; } // Post-increment operator. const type operator++(int) { return type(pos++); } const T& operator*() const { return val; } const T& operator[](difference_type) const { return val; } bool operator==(const type& i2) { return pos == i2.pos; } difference_type operator!=(const type& i2) { return pos != i2.pos; } difference_type operator-(const type& i2) { return pos - i2.pos; } }; /** @brief Sequence that conceptually consists of multiple copies of the same element. * The copies are not stored explicitly, of course. * @param T Sequence value type. * @param difference_type Sequence difference type. */ template class pseudo_sequence { typedef pseudo_sequence type; public: typedef _DifferenceTp difference_type; // Better case down to uint64, than up to _DifferenceTp. typedef pseudo_sequence_iterator iterator; /** @brief Constructor. * @param val Element of the sequence. * @param count Number of (virtual) copies. */ pseudo_sequence(const T& val, difference_type count) : val(val), count(count) { } /** @brief Begin iterator. */ iterator begin() const { return iterator(val, 0); } /** @brief End iterator. */ iterator end() const { return iterator(val, count); } private: const T& val; difference_type count; }; /** @brief Functor that does nothing */ template class void_functor { inline void operator()(const _ValueTp& v) const { } }; /** @brief Compute the median of three referenced elements, according to @c comp. * @param a First iterator. * @param b Second iterator. * @param c Third iterator. * @param comp Comparator. */ template RandomAccessIterator median_of_three_iterators(RandomAccessIterator a, RandomAccessIterator b, RandomAccessIterator c, Comparator& comp) { if (comp(*a, *b)) if (comp(*b, *c)) return b; else if (comp(*a, *c)) return c; else return a; else { // Just swap a and b. if (comp(*a, *c)) return a; else if (comp(*b, *c)) return c; else return b; } } // Avoid the use of assert, because we're trying to keep the // include out of the mix. (Same as debug mode). inline void __replacement_assert(const char* __file, int __line, const char* __function, const char* __condition) { std::printf("%s:%d: %s: Assertion '%s' failed.\n", __file, __line, __function, __condition); __builtin_abort(); } #define _GLIBCXX_PARALLEL_ASSERT(_Condition) \ do \ { \ if (!(_Condition)) \ __gnu_parallel::__replacement_assert(__FILE__, __LINE__, \ __PRETTY_FUNCTION__, #_Condition); \ } while (false) } //namespace __gnu_parallel #endif /* _GLIBCXX_PARALLEL_BASE_H */