/* Copyright (C) 2002-2017 Free Software Foundation, Inc. Contributed by Andy Vaught F2003 I/O support contributed by Jerry DeLisle This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "io.h" #include "fbuf.h" #include "format.h" #include "unix.h" #include #include /* IO locking rules: UNIT_LOCK is a master lock, protecting UNIT_ROOT tree and UNIT_CACHE. Concurrent use of different units should be supported, so each unit has its own lock, LOCK. Open should be atomic with its reopening of units and list_read.c in several places needs find_unit another unit while holding stdin unit's lock, so it must be possible to acquire UNIT_LOCK while holding some unit's lock. Therefore to avoid deadlocks, it is forbidden to acquire unit's private locks while holding UNIT_LOCK, except for freshly created units (where no other thread can get at their address yet) or when using just trylock rather than lock operation. In addition to unit's private lock each unit has a WAITERS counter and CLOSED flag. WAITERS counter must be either only atomically incremented/decremented in all places (if atomic builtins are supported), or protected by UNIT_LOCK in all places (otherwise). CLOSED flag must be always protected by unit's LOCK. After finding a unit in UNIT_CACHE or UNIT_ROOT with UNIT_LOCK held, WAITERS must be incremented to avoid concurrent close from freeing the unit between unlocking UNIT_LOCK and acquiring unit's LOCK. Unit freeing is always done under UNIT_LOCK. If close_unit sees any WAITERS, it doesn't free the unit but instead sets the CLOSED flag and the thread that decrements WAITERS to zero while CLOSED flag is set is responsible for freeing it (while holding UNIT_LOCK). flush_all_units operation is iterating over the unit tree with increasing UNIT_NUMBER while holding UNIT_LOCK and attempting to flush each unit (and therefore needs the unit's LOCK held as well). To avoid deadlocks, it just trylocks the LOCK and if unsuccessful, remembers the current unit's UNIT_NUMBER, unlocks UNIT_LOCK, acquires unit's LOCK and after flushing reacquires UNIT_LOCK and restarts with the smallest UNIT_NUMBER above the last one flushed. If find_unit/find_or_create_unit/find_file/get_unit routines return non-NULL, the returned unit has its private lock locked and when the caller is done with it, it must call either unlock_unit or close_unit on it. unlock_unit or close_unit must be always called only with the private lock held. */ /* Table of allocated newunit values. A simple solution would be to map OS file descriptors (fd's) to unit numbers, e.g. with newunit = -fd - 2, however that doesn't work since Fortran allows an existing unit number to be reassociated with a new file. Thus the simple approach may lead to a situation where we'd try to assign a (negative) unit number which already exists. Hence we must keep track of allocated newunit values ourselves. This is the purpose of the newunits array. The indices map to newunit values as newunit = -index + NEWUNIT_FIRST. E.g. newunits[0] having the value true means that a unit with number NEWUNIT_FIRST exists. Similar to POSIX file descriptors, we always allocate the lowest (in absolute value) available unit number. */ static bool *newunits; static int newunit_size; /* Total number of elements in the newunits array. */ /* Low water indicator for the newunits array. Below the LWI all the units are allocated, above and equal to the LWI there may be both allocated and free units. */ static int newunit_lwi; static void newunit_free (int); /* Unit numbers assigned with NEWUNIT start from here. */ #define NEWUNIT_START -10 #define NEWUNIT_STACK_SIZE 16 /* A stack to save previously used newunit-assigned unit numbers to allow them to be reused without reallocating the gfc_unit structure which is still in the treap. */ static gfc_saved_unit newunit_stack[NEWUNIT_STACK_SIZE]; static int newunit_tos = 0; /* Index to Top of Stack. */ #define CACHE_SIZE 3 static gfc_unit *unit_cache[CACHE_SIZE]; gfc_offset max_offset; gfc_unit *unit_root; #ifdef __GTHREAD_MUTEX_INIT __gthread_mutex_t unit_lock = __GTHREAD_MUTEX_INIT; #else __gthread_mutex_t unit_lock; #endif /* We use these filenames for error reporting. */ static char stdin_name[] = "stdin"; static char stdout_name[] = "stdout"; static char stderr_name[] = "stderr"; #ifdef HAVE_NEWLOCALE locale_t c_locale; #else /* If we don't have POSIX 2008 per-thread locales, we need to use the traditional setlocale(). To prevent multiple concurrent threads doing formatted I/O from messing up the locale, we need to store a global old_locale, and a counter keeping track of how many threads are currently doing formatted I/O. The first thread saves the old locale, and the last one restores it. */ char *old_locale; int old_locale_ctr; #ifdef __GTHREAD_MUTEX_INIT __gthread_mutex_t old_locale_lock = __GTHREAD_MUTEX_INIT; #else __gthread_mutex_t old_locale_lock; #endif #endif /* This implementation is based on Stefan Nilsson's article in the July 1997 Doctor Dobb's Journal, "Treaps in Java". */ /* pseudo_random()-- Simple linear congruential pseudorandom number generator. The period of this generator is 44071, which is plenty for our purposes. */ static int pseudo_random (void) { static int x0 = 5341; x0 = (22611 * x0 + 10) % 44071; return x0; } /* rotate_left()-- Rotate the treap left */ static gfc_unit * rotate_left (gfc_unit *t) { gfc_unit *temp; temp = t->right; t->right = t->right->left; temp->left = t; return temp; } /* rotate_right()-- Rotate the treap right */ static gfc_unit * rotate_right (gfc_unit *t) { gfc_unit *temp; temp = t->left; t->left = t->left->right; temp->right = t; return temp; } static int compare (int a, int b) { if (a < b) return -1; if (a > b) return 1; return 0; } /* insert()-- Recursive insertion function. Returns the updated treap. */ static gfc_unit * insert (gfc_unit *new, gfc_unit *t) { int c; if (t == NULL) return new; c = compare (new->unit_number, t->unit_number); if (c < 0) { t->left = insert (new, t->left); if (t->priority < t->left->priority) t = rotate_right (t); } if (c > 0) { t->right = insert (new, t->right); if (t->priority < t->right->priority) t = rotate_left (t); } if (c == 0) internal_error (NULL, "insert(): Duplicate key found!"); return t; } /* insert_unit()-- Create a new node, insert it into the treap. */ static gfc_unit * insert_unit (int n) { gfc_unit *u = xcalloc (1, sizeof (gfc_unit)); u->unit_number = n; #ifdef __GTHREAD_MUTEX_INIT { __gthread_mutex_t tmp = __GTHREAD_MUTEX_INIT; u->lock = tmp; } #else __GTHREAD_MUTEX_INIT_FUNCTION (&u->lock); #endif __gthread_mutex_lock (&u->lock); u->priority = pseudo_random (); unit_root = insert (u, unit_root); return u; } /* destroy_unit_mutex()-- Destroy the mutex and free memory of unit. */ static void destroy_unit_mutex (gfc_unit *u) { __gthread_mutex_destroy (&u->lock); free (u); } static gfc_unit * delete_root (gfc_unit *t) { gfc_unit *temp; if (t->left == NULL) return t->right; if (t->right == NULL) return t->left; if (t->left->priority > t->right->priority) { temp = rotate_right (t); temp->right = delete_root (t); } else { temp = rotate_left (t); temp->left = delete_root (t); } return temp; } /* delete_treap()-- Delete an element from a tree. The 'old' value does not necessarily have to point to the element to be deleted, it must just point to a treap structure with the key to be deleted. Returns the new root node of the tree. */ static gfc_unit * delete_treap (gfc_unit *old, gfc_unit *t) { int c; if (t == NULL) return NULL; c = compare (old->unit_number, t->unit_number); if (c < 0) t->left = delete_treap (old, t->left); if (c > 0) t->right = delete_treap (old, t->right); if (c == 0) t = delete_root (t); return t; } /* delete_unit()-- Delete a unit from a tree */ static void delete_unit (gfc_unit *old) { unit_root = delete_treap (old, unit_root); } /* get_gfc_unit()-- Given an integer, return a pointer to the unit structure. Returns NULL if the unit does not exist, otherwise returns a locked unit. */ static gfc_unit * get_gfc_unit (int n, int do_create) { gfc_unit *p; int c, created = 0; __gthread_mutex_lock (&unit_lock); retry: for (c = 0; c < CACHE_SIZE; c++) if (unit_cache[c] != NULL && unit_cache[c]->unit_number == n) { p = unit_cache[c]; goto found; } p = unit_root; while (p != NULL) { c = compare (n, p->unit_number); if (c < 0) p = p->left; if (c > 0) p = p->right; if (c == 0) break; } if (p == NULL && do_create) { p = insert_unit (n); created = 1; } if (p != NULL) { for (c = 0; c < CACHE_SIZE - 1; c++) unit_cache[c] = unit_cache[c + 1]; unit_cache[CACHE_SIZE - 1] = p; } if (created) { /* Newly created units have their lock held already from insert_unit. Just unlock UNIT_LOCK and return. */ __gthread_mutex_unlock (&unit_lock); return p; } found: if (p != NULL && (p->child_dtio == 0)) { /* Fast path. */ if (! __gthread_mutex_trylock (&p->lock)) { /* assert (p->closed == 0); */ __gthread_mutex_unlock (&unit_lock); return p; } inc_waiting_locked (p); } __gthread_mutex_unlock (&unit_lock); if (p != NULL && (p->child_dtio == 0)) { __gthread_mutex_lock (&p->lock); if (p->closed) { __gthread_mutex_lock (&unit_lock); __gthread_mutex_unlock (&p->lock); if (predec_waiting_locked (p) == 0) destroy_unit_mutex (p); goto retry; } dec_waiting_unlocked (p); } return p; } gfc_unit * find_unit (int n) { return get_gfc_unit (n, 0); } gfc_unit * find_or_create_unit (int n) { return get_gfc_unit (n, 1); } /* Helper function to check rank, stride, format string, and namelist. This is used for optimization. You can't trim out blanks or shorten the string if trailing spaces are significant. */ static bool is_trim_ok (st_parameter_dt *dtp) { /* Check rank and stride. */ if (dtp->internal_unit_desc) return false; /* Format strings can not have 'BZ' or '/'. */ if (dtp->common.flags & IOPARM_DT_HAS_FORMAT) { char *p = dtp->format; off_t i; if (dtp->common.flags & IOPARM_DT_HAS_BLANK) return false; for (i = 0; i < dtp->format_len; i++) { if (p[i] == '/') return false; if (p[i] == 'b' || p[i] == 'B') if (p[i+1] == 'z' || p[i+1] == 'Z') return false; } } if (dtp->u.p.ionml) /* A namelist. */ return false; return true; } gfc_unit * set_internal_unit (st_parameter_dt *dtp, gfc_unit *iunit, int kind) { gfc_offset start_record = 0; iunit->unit_number = dtp->common.unit; iunit->recl = dtp->internal_unit_len; iunit->internal_unit = dtp->internal_unit; iunit->internal_unit_len = dtp->internal_unit_len; iunit->internal_unit_kind = kind; /* As an optimization, adjust the unit record length to not include trailing blanks. This will not work under certain conditions where trailing blanks have significance. */ if (dtp->u.p.mode == READING && is_trim_ok (dtp)) { int len; if (kind == 1) len = string_len_trim (iunit->internal_unit_len, iunit->internal_unit); else len = string_len_trim_char4 (iunit->internal_unit_len, (const gfc_char4_t*) iunit->internal_unit); iunit->internal_unit_len = len; iunit->recl = iunit->internal_unit_len; } /* Set up the looping specification from the array descriptor, if any. */ if (is_array_io (dtp)) { iunit->rank = GFC_DESCRIPTOR_RANK (dtp->internal_unit_desc); iunit->ls = (array_loop_spec *) xmallocarray (iunit->rank, sizeof (array_loop_spec)); iunit->internal_unit_len *= init_loop_spec (dtp->internal_unit_desc, iunit->ls, &start_record); start_record *= iunit->recl; } /* Set initial values for unit parameters. */ if (kind == 4) iunit->s = open_internal4 (iunit->internal_unit - start_record, iunit->internal_unit_len, -start_record); else iunit->s = open_internal (iunit->internal_unit - start_record, iunit->internal_unit_len, -start_record); iunit->bytes_left = iunit->recl; iunit->last_record=0; iunit->maxrec=0; iunit->current_record=0; iunit->read_bad = 0; iunit->endfile = NO_ENDFILE; /* Set flags for the internal unit. */ iunit->flags.access = ACCESS_SEQUENTIAL; iunit->flags.action = ACTION_READWRITE; iunit->flags.blank = BLANK_NULL; iunit->flags.form = FORM_FORMATTED; iunit->flags.pad = PAD_YES; iunit->flags.status = STATUS_UNSPECIFIED; iunit->flags.sign = SIGN_UNSPECIFIED; iunit->flags.decimal = DECIMAL_POINT; iunit->flags.delim = DELIM_UNSPECIFIED; iunit->flags.encoding = ENCODING_DEFAULT; iunit->flags.async = ASYNC_NO; iunit->flags.round = ROUND_UNSPECIFIED; /* Initialize the data transfer parameters. */ dtp->u.p.advance_status = ADVANCE_YES; dtp->u.p.seen_dollar = 0; dtp->u.p.skips = 0; dtp->u.p.pending_spaces = 0; dtp->u.p.max_pos = 0; dtp->u.p.at_eof = 0; return iunit; } /* stash_internal_unit()-- Push the internal unit number onto the avaialble stack. */ void stash_internal_unit (st_parameter_dt *dtp) { __gthread_mutex_lock (&unit_lock); newunit_tos++; if (newunit_tos >= NEWUNIT_STACK_SIZE) internal_error (&dtp->common, "stash_internal_unit(): Stack Size Exceeded"); newunit_stack[newunit_tos].unit_number = dtp->common.unit; newunit_stack[newunit_tos].unit = dtp->u.p.current_unit; __gthread_mutex_unlock (&unit_lock); } /* get_unit()-- Returns the unit structure associated with the integer unit or the internal file. */ gfc_unit * get_unit (st_parameter_dt *dtp, int do_create) { gfc_unit *unit; if ((dtp->common.flags & IOPARM_DT_HAS_INTERNAL_UNIT) != 0) { int kind; if (dtp->common.unit == GFC_INTERNAL_UNIT) kind = 1; else if (dtp->common.unit == GFC_INTERNAL_UNIT4) kind = 4; else internal_error (&dtp->common, "get_unit(): Bad internal unit KIND"); if ((dtp->common.flags & IOPARM_DT_HAS_UDTIO) != 0) { dtp->u.p.unit_is_internal = 1; dtp->common.unit = newunit_alloc (); unit = get_gfc_unit (dtp->common.unit, do_create); set_internal_unit (dtp, unit, kind); fbuf_init (unit, 128); return unit; } else { if (newunit_tos) { dtp->common.unit = newunit_stack[newunit_tos].unit_number; unit = newunit_stack[newunit_tos--].unit; unit->fbuf->act = unit->fbuf->pos = 0; } else { dtp->common.unit = newunit_alloc (); unit = xcalloc (1, sizeof (gfc_unit)); fbuf_init (unit, 128); } set_internal_unit (dtp, unit, kind); return unit; } } /* If an internal unit number is passed from the parent to the child it should have been stashed on the newunit_stack ready to be used. Check for it now and return the internal unit if found. */ if (newunit_tos && (dtp->common.unit <= NEWUNIT_START) && (dtp->common.unit == newunit_stack[newunit_tos].unit_number)) { unit = newunit_stack[newunit_tos--].unit; return unit; } /* Has to be an external unit. */ dtp->u.p.unit_is_internal = 0; dtp->internal_unit = NULL; dtp->internal_unit_desc = NULL; /* For an external unit with unit number < 0 creating it on the fly is not allowed, such units must be created with OPEN(NEWUNIT=...). */ if (dtp->common.unit < 0) return get_gfc_unit (dtp->common.unit, 0); return get_gfc_unit (dtp->common.unit, do_create); } /*************************/ /* Initialize everything. */ void init_units (void) { gfc_unit *u; unsigned int i; #ifdef HAVE_NEWLOCALE c_locale = newlocale (0, "C", 0); #else #ifndef __GTHREAD_MUTEX_INIT __GTHREAD_MUTEX_INIT_FUNCTION (&old_locale_lock); #endif #endif #ifndef __GTHREAD_MUTEX_INIT __GTHREAD_MUTEX_INIT_FUNCTION (&unit_lock); #endif if (options.stdin_unit >= 0) { /* STDIN */ u = insert_unit (options.stdin_unit); u->s = input_stream (); u->flags.action = ACTION_READ; u->flags.access = ACCESS_SEQUENTIAL; u->flags.form = FORM_FORMATTED; u->flags.status = STATUS_OLD; u->flags.blank = BLANK_NULL; u->flags.pad = PAD_YES; u->flags.position = POSITION_ASIS; u->flags.sign = SIGN_UNSPECIFIED; u->flags.decimal = DECIMAL_POINT; u->flags.delim = DELIM_UNSPECIFIED; u->flags.encoding = ENCODING_DEFAULT; u->flags.async = ASYNC_NO; u->flags.round = ROUND_UNSPECIFIED; u->flags.share = SHARE_UNSPECIFIED; u->flags.cc = CC_LIST; u->recl = options.default_recl; u->endfile = NO_ENDFILE; u->filename = strdup (stdin_name); fbuf_init (u, 0); __gthread_mutex_unlock (&u->lock); } if (options.stdout_unit >= 0) { /* STDOUT */ u = insert_unit (options.stdout_unit); u->s = output_stream (); u->flags.action = ACTION_WRITE; u->flags.access = ACCESS_SEQUENTIAL; u->flags.form = FORM_FORMATTED; u->flags.status = STATUS_OLD; u->flags.blank = BLANK_NULL; u->flags.position = POSITION_ASIS; u->flags.sign = SIGN_UNSPECIFIED; u->flags.decimal = DECIMAL_POINT; u->flags.delim = DELIM_UNSPECIFIED; u->flags.encoding = ENCODING_DEFAULT; u->flags.async = ASYNC_NO; u->flags.round = ROUND_UNSPECIFIED; u->flags.share = SHARE_UNSPECIFIED; u->flags.cc = CC_LIST; u->recl = options.default_recl; u->endfile = AT_ENDFILE; u->filename = strdup (stdout_name); fbuf_init (u, 0); __gthread_mutex_unlock (&u->lock); } if (options.stderr_unit >= 0) { /* STDERR */ u = insert_unit (options.stderr_unit); u->s = error_stream (); u->flags.action = ACTION_WRITE; u->flags.access = ACCESS_SEQUENTIAL; u->flags.form = FORM_FORMATTED; u->flags.status = STATUS_OLD; u->flags.blank = BLANK_NULL; u->flags.position = POSITION_ASIS; u->flags.sign = SIGN_UNSPECIFIED; u->flags.decimal = DECIMAL_POINT; u->flags.encoding = ENCODING_DEFAULT; u->flags.async = ASYNC_NO; u->flags.round = ROUND_UNSPECIFIED; u->flags.share = SHARE_UNSPECIFIED; u->flags.cc = CC_LIST; u->recl = options.default_recl; u->endfile = AT_ENDFILE; u->filename = strdup (stderr_name); fbuf_init (u, 256); /* 256 bytes should be enough, probably not doing any kind of exotic formatting to stderr. */ __gthread_mutex_unlock (&u->lock); } /* Calculate the maximum file offset in a portable manner. max will be the largest signed number for the type gfc_offset. set a 1 in the LSB and keep a running sum, stopping at MSB-1 bit. */ max_offset = 0; for (i = 0; i < sizeof (max_offset) * 8 - 1; i++) max_offset = max_offset + ((gfc_offset) 1 << i); /* Initialize the newunit stack. */ memset (newunit_stack, 0, NEWUNIT_STACK_SIZE * sizeof(gfc_saved_unit)); newunit_tos = 0; } static int close_unit_1 (gfc_unit *u, int locked) { int i, rc; /* If there are previously written bytes from a write with ADVANCE="no" Reposition the buffer before closing. */ if (u->previous_nonadvancing_write) finish_last_advance_record (u); rc = (u->s == NULL) ? 0 : sclose (u->s) == -1; u->closed = 1; if (!locked) __gthread_mutex_lock (&unit_lock); for (i = 0; i < CACHE_SIZE; i++) if (unit_cache[i] == u) unit_cache[i] = NULL; delete_unit (u); free (u->filename); u->filename = NULL; free_format_hash_table (u); fbuf_destroy (u); if (u->unit_number <= NEWUNIT_START) newunit_free (u->unit_number); if (!locked) __gthread_mutex_unlock (&u->lock); /* If there are any threads waiting in find_unit for this unit, avoid freeing the memory, the last such thread will free it instead. */ if (u->waiting == 0) destroy_unit_mutex (u); if (!locked) __gthread_mutex_unlock (&unit_lock); return rc; } void unlock_unit (gfc_unit *u) { __gthread_mutex_unlock (&u->lock); } /* close_unit()-- Close a unit. The stream is closed, and any memory associated with the stream is freed. Returns nonzero on I/O error. Should be called with the u->lock locked. */ int close_unit (gfc_unit *u) { return close_unit_1 (u, 0); } /* close_units()-- Delete units on completion. We just keep deleting the root of the treap until there is nothing left. Not sure what to do with locking here. Some other thread might be holding some unit's lock and perhaps hold it indefinitely (e.g. waiting for input from some pipe) and close_units shouldn't delay the program too much. */ void close_units (void) { __gthread_mutex_lock (&unit_lock); while (unit_root != NULL) close_unit_1 (unit_root, 1); __gthread_mutex_unlock (&unit_lock); while (newunit_tos != 0) if (newunit_stack[newunit_tos].unit) { fbuf_destroy (newunit_stack[newunit_tos].unit); free (newunit_stack[newunit_tos].unit->s); free (newunit_stack[newunit_tos--].unit); } free (newunits); #ifdef HAVE_FREELOCALE freelocale (c_locale); #endif } /* High level interface to truncate a file, i.e. flush format buffers, and generate an error or set some flags. Just like POSIX ftruncate, returns 0 on success, -1 on failure. */ int unit_truncate (gfc_unit *u, gfc_offset pos, st_parameter_common *common) { int ret; /* Make sure format buffer is flushed. */ if (u->flags.form == FORM_FORMATTED) { if (u->mode == READING) pos += fbuf_reset (u); else fbuf_flush (u, u->mode); } /* struncate() should flush the stream buffer if necessary, so don't bother calling sflush() here. */ ret = struncate (u->s, pos); if (ret != 0) generate_error (common, LIBERROR_OS, NULL); else { u->endfile = AT_ENDFILE; u->flags.position = POSITION_APPEND; } return ret; } /* filename_from_unit()-- If the unit_number exists, return a pointer to the name of the associated file, otherwise return the empty string. The caller must free memory allocated for the filename string. */ char * filename_from_unit (int n) { gfc_unit *u; int c; /* Find the unit. */ u = unit_root; while (u != NULL) { c = compare (n, u->unit_number); if (c < 0) u = u->left; if (c > 0) u = u->right; if (c == 0) break; } /* Get the filename. */ if (u != NULL && u->filename != NULL) return strdup (u->filename); else return (char *) NULL; } void finish_last_advance_record (gfc_unit *u) { if (u->saved_pos > 0) fbuf_seek (u, u->saved_pos, SEEK_CUR); if (!(u->unit_number == options.stdout_unit || u->unit_number == options.stderr_unit)) { #ifdef HAVE_CRLF const int len = 2; #else const int len = 1; #endif char *p = fbuf_alloc (u, len); if (!p) os_error ("Completing record after ADVANCE_NO failed"); #ifdef HAVE_CRLF *(p++) = '\r'; #endif *p = '\n'; } fbuf_flush (u, u->mode); } /* Assign a negative number for NEWUNIT in OPEN statements or for internal units. */ int newunit_alloc (void) { __gthread_mutex_lock (&unit_lock); if (!newunits) { newunits = xcalloc (16, 1); newunit_size = 16; } /* Search for the next available newunit. */ for (int ii = newunit_lwi; ii < newunit_size; ii++) { if (!newunits[ii]) { newunits[ii] = true; newunit_lwi = ii + 1; __gthread_mutex_unlock (&unit_lock); return -ii + NEWUNIT_START; } } /* Search failed, bump size of array and allocate the first available unit. */ int old_size = newunit_size; newunit_size *= 2; newunits = xrealloc (newunits, newunit_size); memset (newunits + old_size, 0, old_size); newunits[old_size] = true; newunit_lwi = old_size + 1; __gthread_mutex_unlock (&unit_lock); return -old_size + NEWUNIT_START; } /* Free a previously allocated newunit= unit number. unit_lock must be held when calling. */ static void newunit_free (int unit) { int ind = -unit + NEWUNIT_START; assert(ind >= 0 && ind < newunit_size); newunits[ind] = false; if (ind < newunit_lwi) newunit_lwi = ind; }