/* Implementation of the MINLOC intrinsic Copyright (C) 2002-2014 Free Software Foundation, Inc. Contributed by Paul Brook <paul@nowt.org> This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see <http://www.gnu.org/licenses/>. */ #include "libgfortran.h" #include <stdlib.h> #include <assert.h> #include <limits.h> #if defined (HAVE_GFC_INTEGER_2) && defined (HAVE_GFC_INTEGER_4) extern void minloc1_4_i2 (gfc_array_i4 * const restrict, gfc_array_i2 * const restrict, const index_type * const restrict); export_proto(minloc1_4_i2); void minloc1_4_i2 (gfc_array_i4 * const restrict retarray, gfc_array_i2 * const restrict array, const index_type * const restrict pdim) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride[GFC_MAX_DIMENSIONS]; const GFC_INTEGER_2 * restrict base; GFC_INTEGER_4 * restrict dest; index_type rank; index_type n; index_type len; index_type delta; index_type dim; int continue_loop; /* Make dim zero based to avoid confusion. */ dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; len = GFC_DESCRIPTOR_EXTENT(array,dim); if (len < 0) len = 0; delta = GFC_DESCRIPTOR_STRIDE(array,dim); for (n = 0; n < dim; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); if (extent[n] < 0) extent[n] = 0; } for (n = dim; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1); extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); if (extent[n] < 0) extent[n] = 0; } if (retarray->base_addr == NULL) { size_t alloc_size, str; for (n = 0; n < rank; n++) { if (n == 0) str = 1; else str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); } retarray->offset = 0; retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); if (alloc_size == 0) { /* Make sure we have a zero-sized array. */ GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); return; } } else { if (rank != GFC_DESCRIPTOR_RANK (retarray)) runtime_error ("rank of return array incorrect in" " MINLOC intrinsic: is %ld, should be %ld", (long int) (GFC_DESCRIPTOR_RANK (retarray)), (long int) rank); if (unlikely (compile_options.bounds_check)) bounds_ifunction_return ((array_t *) retarray, extent, "return value", "MINLOC"); } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); if (extent[n] <= 0) return; } base = array->base_addr; dest = retarray->base_addr; continue_loop = 1; while (continue_loop) { const GFC_INTEGER_2 * restrict src; GFC_INTEGER_4 result; src = base; { GFC_INTEGER_2 minval; #if defined (GFC_INTEGER_2_INFINITY) minval = GFC_INTEGER_2_INFINITY; #else minval = GFC_INTEGER_2_HUGE; #endif result = 1; if (len <= 0) *dest = 0; else { for (n = 0; n < len; n++, src += delta) { #if defined (GFC_INTEGER_2_QUIET_NAN) if (*src <= minval) { minval = *src; result = (GFC_INTEGER_4)n + 1; break; } } for (; n < len; n++, src += delta) { #endif if (*src < minval) { minval = *src; result = (GFC_INTEGER_4)n + 1; } } *dest = result; } } /* Advance to the next element. */ count[0]++; base += sstride[0]; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; dest -= dstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the look. */ continue_loop = 0; break; } else { count[n]++; base += sstride[n]; dest += dstride[n]; } } } } extern void mminloc1_4_i2 (gfc_array_i4 * const restrict, gfc_array_i2 * const restrict, const index_type * const restrict, gfc_array_l1 * const restrict); export_proto(mminloc1_4_i2); void mminloc1_4_i2 (gfc_array_i4 * const restrict retarray, gfc_array_i2 * const restrict array, const index_type * const restrict pdim, gfc_array_l1 * const restrict mask) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride[GFC_MAX_DIMENSIONS]; index_type mstride[GFC_MAX_DIMENSIONS]; GFC_INTEGER_4 * restrict dest; const GFC_INTEGER_2 * restrict base; const GFC_LOGICAL_1 * restrict mbase; int rank; int dim; index_type n; index_type len; index_type delta; index_type mdelta; int mask_kind; dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; len = GFC_DESCRIPTOR_EXTENT(array,dim); if (len <= 0) return; mbase = mask->base_addr; mask_kind = GFC_DESCRIPTOR_SIZE (mask); if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); else runtime_error ("Funny sized logical array"); delta = GFC_DESCRIPTOR_STRIDE(array,dim); mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim); for (n = 0; n < dim; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); if (extent[n] < 0) extent[n] = 0; } for (n = dim; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1); extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); if (extent[n] < 0) extent[n] = 0; } if (retarray->base_addr == NULL) { size_t alloc_size, str; for (n = 0; n < rank; n++) { if (n == 0) str = 1; else str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); } alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; retarray->offset = 0; retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; if (alloc_size == 0) { /* Make sure we have a zero-sized array. */ GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); return; } else retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); } else { if (rank != GFC_DESCRIPTOR_RANK (retarray)) runtime_error ("rank of return array incorrect in MINLOC intrinsic"); if (unlikely (compile_options.bounds_check)) { bounds_ifunction_return ((array_t *) retarray, extent, "return value", "MINLOC"); bounds_equal_extents ((array_t *) mask, (array_t *) array, "MASK argument", "MINLOC"); } } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); if (extent[n] <= 0) return; } dest = retarray->base_addr; base = array->base_addr; while (base) { const GFC_INTEGER_2 * restrict src; const GFC_LOGICAL_1 * restrict msrc; GFC_INTEGER_4 result; src = base; msrc = mbase; { GFC_INTEGER_2 minval; #if defined (GFC_INTEGER_2_INFINITY) minval = GFC_INTEGER_2_INFINITY; #else minval = GFC_INTEGER_2_HUGE; #endif #if defined (GFC_INTEGER_2_QUIET_NAN) GFC_INTEGER_4 result2 = 0; #endif result = 0; for (n = 0; n < len; n++, src += delta, msrc += mdelta) { if (*msrc) { #if defined (GFC_INTEGER_2_QUIET_NAN) if (!result2) result2 = (GFC_INTEGER_4)n + 1; if (*src <= minval) #endif { minval = *src; result = (GFC_INTEGER_4)n + 1; break; } } } #if defined (GFC_INTEGER_2_QUIET_NAN) if (unlikely (n >= len)) result = result2; else #endif for (; n < len; n++, src += delta, msrc += mdelta) { if (*msrc && *src < minval) { minval = *src; result = (GFC_INTEGER_4)n + 1; } } *dest = result; } /* Advance to the next element. */ count[0]++; base += sstride[0]; mbase += mstride[0]; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; mbase -= mstride[n] * extent[n]; dest -= dstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the look. */ base = NULL; break; } else { count[n]++; base += sstride[n]; mbase += mstride[n]; dest += dstride[n]; } } } } extern void sminloc1_4_i2 (gfc_array_i4 * const restrict, gfc_array_i2 * const restrict, const index_type * const restrict, GFC_LOGICAL_4 *); export_proto(sminloc1_4_i2); void sminloc1_4_i2 (gfc_array_i4 * const restrict retarray, gfc_array_i2 * const restrict array, const index_type * const restrict pdim, GFC_LOGICAL_4 * mask) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type dstride[GFC_MAX_DIMENSIONS]; GFC_INTEGER_4 * restrict dest; index_type rank; index_type n; index_type dim; if (*mask) { minloc1_4_i2 (retarray, array, pdim); return; } /* Make dim zero based to avoid confusion. */ dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; for (n = 0; n < dim; n++) { extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); if (extent[n] <= 0) extent[n] = 0; } for (n = dim; n < rank; n++) { extent[n] = GFC_DESCRIPTOR_EXTENT(array,n + 1); if (extent[n] <= 0) extent[n] = 0; } if (retarray->base_addr == NULL) { size_t alloc_size, str; for (n = 0; n < rank; n++) { if (n == 0) str = 1; else str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); } retarray->offset = 0; retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; if (alloc_size == 0) { /* Make sure we have a zero-sized array. */ GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); return; } else retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4)); } else { if (rank != GFC_DESCRIPTOR_RANK (retarray)) runtime_error ("rank of return array incorrect in" " MINLOC intrinsic: is %ld, should be %ld", (long int) (GFC_DESCRIPTOR_RANK (retarray)), (long int) rank); if (unlikely (compile_options.bounds_check)) { for (n=0; n < rank; n++) { index_type ret_extent; ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n); if (extent[n] != ret_extent) runtime_error ("Incorrect extent in return value of" " MINLOC intrinsic in dimension %ld:" " is %ld, should be %ld", (long int) n + 1, (long int) ret_extent, (long int) extent[n]); } } } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); } dest = retarray->base_addr; while(1) { *dest = 0; count[0]++; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ dest -= dstride[n] * extent[n]; n++; if (n == rank) return; else { count[n]++; dest += dstride[n]; } } } } #endif