/* Output routines for GCC for Hitachi Super-H. Copyright (C) 1993-1999, 2000 Free Software Foundation, Inc. Contributed by Steve Chamberlain (sac@cygnus.com). Improved by Jim Wilson (wilson@cygnus.com). This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "insn-config.h" #include "rtl.h" #include "tree.h" #include "flags.h" #include "insn-flags.h" #include "expr.h" #include "function.h" #include "regs.h" #include "hard-reg-set.h" #include "output.h" #include "insn-attr.h" #include "toplev.h" #include "recog.h" #include "tm_p.h" int code_for_indirect_jump_scratch = CODE_FOR_indirect_jump_scratch; #define MSW (TARGET_LITTLE_ENDIAN ? 1 : 0) #define LSW (TARGET_LITTLE_ENDIAN ? 0 : 1) /* ??? The pragma interrupt support will not work for SH3. */ /* This is set by #pragma interrupt and #pragma trapa, and causes gcc to output code for the next function appropriate for an interrupt handler. */ int pragma_interrupt; /* This is set by the trap_exit attribute for functions. It specifies a trap number to be used in a trapa instruction at function exit (instead of an rte instruction). */ int trap_exit; /* This is used by the sp_switch attribute for functions. It specifies a variable holding the address of the stack the interrupt function should switch to/from at entry/exit. */ rtx sp_switch; /* This is set by #pragma trapa, and is similar to the above, except that the compiler doesn't emit code to preserve all registers. */ static int pragma_trapa; /* This is set by #pragma nosave_low_regs. This is useful on the SH3, which has a separate set of low regs for User and Supervisor modes. This should only be used for the lowest level of interrupts. Higher levels of interrupts must save the registers in case they themselves are interrupted. */ int pragma_nosave_low_regs; /* This is used for communication between SETUP_INCOMING_VARARGS and sh_expand_prologue. */ int current_function_anonymous_args; /* Global variables from toplev.c and final.c that are used within, but not declared in any header file. */ extern int *insn_addresses; /* Global variables for machine-dependent things. */ /* Which cpu are we scheduling for. */ enum processor_type sh_cpu; /* Saved operands from the last compare to use when we generate an scc or bcc insn. */ rtx sh_compare_op0; rtx sh_compare_op1; /* Provides the class number of the smallest class containing reg number. */ int regno_reg_class[FIRST_PSEUDO_REGISTER] = { R0_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, PR_REGS, T_REGS, NO_REGS, MAC_REGS, MAC_REGS, FPUL_REGS, GENERAL_REGS, FP0_REGS,FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, FP_REGS, DF_REGS, DF_REGS, DF_REGS, DF_REGS, DF_REGS, DF_REGS, DF_REGS, DF_REGS, FPSCR_REGS, }; char fp_reg_names[][5] = { "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", "fpul", "xd0","xd2","xd4", "xd6", "xd8", "xd10", "xd12", "xd14", }; /* Provide reg_class from a letter such as appears in the machine description. */ enum reg_class reg_class_from_letter[] = { /* a */ ALL_REGS, /* b */ NO_REGS, /* c */ FPSCR_REGS, /* d */ DF_REGS, /* e */ NO_REGS, /* f */ FP_REGS, /* g */ NO_REGS, /* h */ NO_REGS, /* i */ NO_REGS, /* j */ NO_REGS, /* k */ NO_REGS, /* l */ PR_REGS, /* m */ NO_REGS, /* n */ NO_REGS, /* o */ NO_REGS, /* p */ NO_REGS, /* q */ NO_REGS, /* r */ NO_REGS, /* s */ NO_REGS, /* t */ T_REGS, /* u */ NO_REGS, /* v */ NO_REGS, /* w */ FP0_REGS, /* x */ MAC_REGS, /* y */ FPUL_REGS, /* z */ R0_REGS }; int assembler_dialect; static void split_branches PARAMS ((rtx)); static int branch_dest PARAMS ((rtx)); static void force_into PARAMS ((rtx, rtx)); static void print_slot PARAMS ((rtx)); static rtx add_constant PARAMS ((rtx, enum machine_mode, rtx)); static void dump_table PARAMS ((rtx)); static int hi_const PARAMS ((rtx)); static int broken_move PARAMS ((rtx)); static int mova_p PARAMS ((rtx)); static rtx find_barrier PARAMS ((int, rtx, rtx)); static int noncall_uses_reg PARAMS ((rtx, rtx, rtx *)); static rtx gen_block_redirect PARAMS ((rtx, int, int)); static void output_stack_adjust PARAMS ((int, rtx, int)); static void push PARAMS ((int)); static void pop PARAMS ((int)); static void push_regs PARAMS ((int, int)); static int calc_live_regs PARAMS ((int *, int *)); static void mark_use PARAMS ((rtx, rtx *)); /* Print the operand address in x to the stream. */ void print_operand_address (stream, x) FILE *stream; rtx x; { switch (GET_CODE (x)) { case REG: case SUBREG: fprintf (stream, "@%s", reg_names[true_regnum (x)]); break; case PLUS: { rtx base = XEXP (x, 0); rtx index = XEXP (x, 1); switch (GET_CODE (index)) { case CONST_INT: fprintf (stream, "@(%d,%s)", INTVAL (index), reg_names[true_regnum (base)]); break; case REG: case SUBREG: { int base_num = true_regnum (base); int index_num = true_regnum (index); fprintf (stream, "@(r0,%s)", reg_names[MAX (base_num, index_num)]); break; } default: debug_rtx (x); abort (); } } break; case PRE_DEC: fprintf (stream, "@-%s", reg_names[true_regnum (XEXP (x, 0))]); break; case POST_INC: fprintf (stream, "@%s+", reg_names[true_regnum (XEXP (x, 0))]); break; default: output_addr_const (stream, x); break; } } /* Print operand x (an rtx) in assembler syntax to file stream according to modifier code. '.' print a .s if insn needs delay slot ',' print LOCAL_LABEL_PREFIX '@' print trap, rte or rts depending upon pragma interruptness '#' output a nop if there is nothing to put in the delay slot 'O' print a constant without the # 'R' print the LSW of a dp value - changes if in little endian 'S' print the MSW of a dp value - changes if in little endian 'T' print the next word of a dp value - same as 'R' in big endian mode. 'o' output an operator. */ void print_operand (stream, x, code) FILE *stream; rtx x; int code; { switch (code) { case '.': if (final_sequence && ! INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))) fprintf (stream, ASSEMBLER_DIALECT ? "/s" : ".s"); break; case ',': fprintf (stream, "%s", LOCAL_LABEL_PREFIX); break; case '@': { int interrupt_handler; if ((lookup_attribute ("interrupt_handler", DECL_MACHINE_ATTRIBUTES (current_function_decl))) != NULL_TREE) interrupt_handler = 1; else interrupt_handler = 0; if (trap_exit) fprintf (stream, "trapa #%d", trap_exit); else if (interrupt_handler) fprintf (stream, "rte"); else fprintf (stream, "rts"); break; } case '#': /* Output a nop if there's nothing in the delay slot. */ if (dbr_sequence_length () == 0) fprintf (stream, "\n\tnop"); break; case 'O': output_addr_const (stream, x); break; case 'R': fputs (reg_names[REGNO (x) + LSW], (stream)); break; case 'S': fputs (reg_names[REGNO (x) + MSW], (stream)); break; case 'T': /* Next word of a double. */ switch (GET_CODE (x)) { case REG: fputs (reg_names[REGNO (x) + 1], (stream)); break; case MEM: if (GET_CODE (XEXP (x, 0)) != PRE_DEC && GET_CODE (XEXP (x, 0)) != POST_INC) x = adj_offsettable_operand (x, 4); print_operand_address (stream, XEXP (x, 0)); break; default: break; } break; case 'o': switch (GET_CODE (x)) { case PLUS: fputs ("add", stream); break; case MINUS: fputs ("sub", stream); break; case MULT: fputs ("mul", stream); break; case DIV: fputs ("div", stream); break; default: break; } break; default: switch (GET_CODE (x)) { case REG: if (REGNO (x) >= FIRST_FP_REG && REGNO (x) <= LAST_FP_REG && GET_MODE_SIZE (GET_MODE (x)) > 4) fprintf ((stream), "d%s", reg_names[REGNO (x)]+1); else fputs (reg_names[REGNO (x)], (stream)); break; case MEM: output_address (XEXP (x, 0)); break; default: fputc ('#', stream); output_addr_const (stream, x); break; } break; } } /* Like force_operand, but guarantees that VALUE ends up in TARGET. */ static void force_into (value, target) rtx value, target; { value = force_operand (value, target); if (! rtx_equal_p (value, target)) emit_insn (gen_move_insn (target, value)); } /* Emit code to perform a block move. Choose the best method. OPERANDS[0] is the destination. OPERANDS[1] is the source. OPERANDS[2] is the size. OPERANDS[3] is the alignment safe to use. */ int expand_block_move (operands) rtx *operands; { int align = INTVAL (operands[3]); int constp = (GET_CODE (operands[2]) == CONST_INT); int bytes = (constp ? INTVAL (operands[2]) : 0); /* If it isn't a constant number of bytes, or if it doesn't have 4 byte alignment, or if it isn't a multiple of 4 bytes, then fail. */ if (! constp || align < 4 || (bytes % 4 != 0)) return 0; if (TARGET_HARD_SH4) { if (bytes < 12) return 0; else if (bytes == 12) { tree entry_name; rtx func_addr_rtx; rtx r4 = gen_rtx (REG, SImode, 4); rtx r5 = gen_rtx (REG, SImode, 5); entry_name = get_identifier ("__movstrSI12_i4"); func_addr_rtx = copy_to_mode_reg (Pmode, gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (entry_name))); force_into (XEXP (operands[0], 0), r4); force_into (XEXP (operands[1], 0), r5); emit_insn (gen_block_move_real_i4 (func_addr_rtx)); return 1; } else if (! TARGET_SMALLCODE) { tree entry_name; rtx func_addr_rtx; int dwords; rtx r4 = gen_rtx (REG, SImode, 4); rtx r5 = gen_rtx (REG, SImode, 5); rtx r6 = gen_rtx (REG, SImode, 6); entry_name = get_identifier (bytes & 4 ? "__movstr_i4_odd" : "__movstr_i4_even"); func_addr_rtx = copy_to_mode_reg (Pmode, gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (entry_name))); force_into (XEXP (operands[0], 0), r4); force_into (XEXP (operands[1], 0), r5); dwords = bytes >> 3; emit_insn (gen_move_insn (r6, GEN_INT (dwords - 1))); emit_insn (gen_block_lump_real_i4 (func_addr_rtx)); return 1; } else return 0; } if (bytes < 64) { char entry[30]; tree entry_name; rtx func_addr_rtx; rtx r4 = gen_rtx_REG (SImode, 4); rtx r5 = gen_rtx_REG (SImode, 5); sprintf (entry, "__movstrSI%d", bytes); entry_name = get_identifier (entry); func_addr_rtx = copy_to_mode_reg (Pmode, gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (entry_name))); force_into (XEXP (operands[0], 0), r4); force_into (XEXP (operands[1], 0), r5); emit_insn (gen_block_move_real (func_addr_rtx)); return 1; } /* This is the same number of bytes as a memcpy call, but to a different less common function name, so this will occasionally use more space. */ if (! TARGET_SMALLCODE) { tree entry_name; rtx func_addr_rtx; int final_switch, while_loop; rtx r4 = gen_rtx_REG (SImode, 4); rtx r5 = gen_rtx_REG (SImode, 5); rtx r6 = gen_rtx_REG (SImode, 6); entry_name = get_identifier ("__movstr"); func_addr_rtx = copy_to_mode_reg (Pmode, gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (entry_name))); force_into (XEXP (operands[0], 0), r4); force_into (XEXP (operands[1], 0), r5); /* r6 controls the size of the move. 16 is decremented from it for each 64 bytes moved. Then the negative bit left over is used as an index into a list of move instructions. e.g., a 72 byte move would be set up with size(r6) = 14, for one iteration through the big while loop, and a switch of -2 for the last part. */ final_switch = 16 - ((bytes / 4) % 16); while_loop = ((bytes / 4) / 16 - 1) * 16; emit_insn (gen_move_insn (r6, GEN_INT (while_loop + final_switch))); emit_insn (gen_block_lump_real (func_addr_rtx)); return 1; } return 0; } /* Prepare operands for a move define_expand; specifically, one of the operands must be in a register. */ int prepare_move_operands (operands, mode) rtx operands[]; enum machine_mode mode; { if (! reload_in_progress && ! reload_completed) { /* Copy the source to a register if both operands aren't registers. */ if (! register_operand (operands[0], mode) && ! register_operand (operands[1], mode)) operands[1] = copy_to_mode_reg (mode, operands[1]); /* This case can happen while generating code to move the result of a library call to the target. Reject `st r0,@(rX,rY)' because reload will fail to find a spill register for rX, since r0 is already being used for the source. */ else if (GET_CODE (operands[1]) == REG && REGNO (operands[1]) == 0 && GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) == PLUS && GET_CODE (XEXP (XEXP (operands[0], 0), 1)) == REG) operands[1] = copy_to_mode_reg (mode, operands[1]); } return 0; } /* Prepare the operands for an scc instruction; make sure that the compare has been done. */ rtx prepare_scc_operands (code) enum rtx_code code; { rtx t_reg = gen_rtx_REG (SImode, T_REG); enum rtx_code oldcode = code; enum machine_mode mode; /* First need a compare insn. */ switch (code) { case NE: /* It isn't possible to handle this case. */ abort (); case LT: code = GT; break; case LE: code = GE; break; case LTU: code = GTU; break; case LEU: code = GEU; break; default: break; } if (code != oldcode) { rtx tmp = sh_compare_op0; sh_compare_op0 = sh_compare_op1; sh_compare_op1 = tmp; } mode = GET_MODE (sh_compare_op0); if (mode == VOIDmode) mode = GET_MODE (sh_compare_op1); sh_compare_op0 = force_reg (mode, sh_compare_op0); if ((code != EQ && code != NE && (sh_compare_op1 != const0_rtx || code == GTU || code == GEU || code == LTU || code == LEU)) || (TARGET_SH3E && GET_MODE_CLASS (mode) == MODE_FLOAT)) sh_compare_op1 = force_reg (mode, sh_compare_op1); if (TARGET_SH4 && GET_MODE_CLASS (mode) == MODE_FLOAT) (mode == SFmode ? emit_sf_insn : emit_df_insn) (gen_rtx (PARALLEL, VOIDmode, gen_rtvec (2, gen_rtx (SET, VOIDmode, t_reg, gen_rtx (code, SImode, sh_compare_op0, sh_compare_op1)), gen_rtx (USE, VOIDmode, get_fpscr_rtx ())))); else emit_insn (gen_rtx (SET, VOIDmode, t_reg, gen_rtx (code, SImode, sh_compare_op0, sh_compare_op1))); return t_reg; } /* Called from the md file, set up the operands of a compare instruction. */ void from_compare (operands, code) rtx *operands; int code; { enum machine_mode mode = GET_MODE (sh_compare_op0); rtx insn; if (mode == VOIDmode) mode = GET_MODE (sh_compare_op1); if (code != EQ || mode == DImode || (TARGET_SH3E && GET_MODE_CLASS (mode) == MODE_FLOAT)) { /* Force args into regs, since we can't use constants here. */ sh_compare_op0 = force_reg (mode, sh_compare_op0); if (sh_compare_op1 != const0_rtx || code == GTU || code == GEU || (TARGET_SH3E && GET_MODE_CLASS (mode) == MODE_FLOAT)) sh_compare_op1 = force_reg (mode, sh_compare_op1); } if (TARGET_SH3E && GET_MODE_CLASS (mode) == MODE_FLOAT && code == GE) { from_compare (operands, GT); insn = gen_ieee_ccmpeqsf_t (sh_compare_op0, sh_compare_op1); } else insn = gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, 18), gen_rtx (code, SImode, sh_compare_op0, sh_compare_op1)); if (TARGET_SH4 && GET_MODE_CLASS (mode) == MODE_FLOAT) { insn = gen_rtx (PARALLEL, VOIDmode, gen_rtvec (2, insn, gen_rtx (USE, VOIDmode, get_fpscr_rtx ()))); (mode == SFmode ? emit_sf_insn : emit_df_insn) (insn); } else emit_insn (insn); } /* Functions to output assembly code. */ /* Return a sequence of instructions to perform DI or DF move. Since the SH cannot move a DI or DF in one instruction, we have to take care when we see overlapping source and dest registers. */ const char * output_movedouble (insn, operands, mode) rtx insn ATTRIBUTE_UNUSED; rtx operands[]; enum machine_mode mode; { rtx dst = operands[0]; rtx src = operands[1]; if (GET_CODE (dst) == MEM && GET_CODE (XEXP (dst, 0)) == PRE_DEC) return "mov.l %T1,%0\n\tmov.l %1,%0"; if (register_operand (dst, mode) && register_operand (src, mode)) { if (REGNO (src) == MACH_REG) return "sts mach,%S0\n\tsts macl,%R0"; /* When mov.d r1,r2 do r2->r3 then r1->r2; when mov.d r1,r0 do r1->r0 then r2->r1. */ if (REGNO (src) + 1 == REGNO (dst)) return "mov %T1,%T0\n\tmov %1,%0"; else return "mov %1,%0\n\tmov %T1,%T0"; } else if (GET_CODE (src) == CONST_INT) { if (INTVAL (src) < 0) output_asm_insn ("mov #-1,%S0", operands); else output_asm_insn ("mov #0,%S0", operands); return "mov %1,%R0"; } else if (GET_CODE (src) == MEM) { int ptrreg = -1; int dreg = REGNO (dst); rtx inside = XEXP (src, 0); if (GET_CODE (inside) == REG) ptrreg = REGNO (inside); else if (GET_CODE (inside) == SUBREG) ptrreg = REGNO (SUBREG_REG (inside)) + SUBREG_WORD (inside); else if (GET_CODE (inside) == PLUS) { ptrreg = REGNO (XEXP (inside, 0)); /* ??? A r0+REG address shouldn't be possible here, because it isn't an offsettable address. Unfortunately, offsettable addresses use QImode to check the offset, and a QImode offsettable address requires r0 for the other operand, which is not currently supported, so we can't use the 'o' constraint. Thus we must check for and handle r0+REG addresses here. We punt for now, since this is likely very rare. */ if (GET_CODE (XEXP (inside, 1)) == REG) abort (); } else if (GET_CODE (inside) == LABEL_REF) return "mov.l %1,%0\n\tmov.l %1+4,%T0"; else if (GET_CODE (inside) == POST_INC) return "mov.l %1,%0\n\tmov.l %1,%T0"; else abort (); /* Work out the safe way to copy. Copy into the second half first. */ if (dreg == ptrreg) return "mov.l %T1,%T0\n\tmov.l %1,%0"; } return "mov.l %1,%0\n\tmov.l %T1,%T0"; } /* Print an instruction which would have gone into a delay slot after another instruction, but couldn't because the other instruction expanded into a sequence where putting the slot insn at the end wouldn't work. */ static void print_slot (insn) rtx insn; { final_scan_insn (XVECEXP (insn, 0, 1), asm_out_file, optimize, 0, 1); INSN_DELETED_P (XVECEXP (insn, 0, 1)) = 1; } const char * output_far_jump (insn, op) rtx insn; rtx op; { struct { rtx lab, reg, op; } this; const char *jump; int far; int offset = branch_dest (insn) - insn_addresses[INSN_UID (insn)]; this.lab = gen_label_rtx (); if (TARGET_SH2 && offset >= -32764 && offset - get_attr_length (insn) <= 32766) { far = 0; jump = "mov.w %O0,%1;braf %1"; } else { far = 1; jump = "mov.l %O0,%1;jmp @%1"; } /* If we have a scratch register available, use it. */ if (GET_CODE (PREV_INSN (insn)) == INSN && INSN_CODE (PREV_INSN (insn)) == CODE_FOR_indirect_jump_scratch) { this.reg = SET_DEST (PATTERN (PREV_INSN (insn))); output_asm_insn (jump, &this.lab); if (dbr_sequence_length ()) print_slot (final_sequence); else output_asm_insn ("nop", 0); } else { /* Output the delay slot insn first if any. */ if (dbr_sequence_length ()) print_slot (final_sequence); this.reg = gen_rtx_REG (SImode, 13); output_asm_insn ("mov.l r13,@-r15", 0); output_asm_insn (jump, &this.lab); output_asm_insn ("mov.l @r15+,r13", 0); } if (far) output_asm_insn (".align 2", 0); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (this.lab)); this.op = op; output_asm_insn (far ? ".long %O2" : ".word %O2-%O0", &this.lab); return ""; } /* Local label counter, used for constants in the pool and inside pattern branches. */ static int lf = 100; /* Output code for ordinary branches. */ const char * output_branch (logic, insn, operands) int logic; rtx insn; rtx *operands; { switch (get_attr_length (insn)) { case 6: /* This can happen if filling the delay slot has caused a forward branch to exceed its range (we could reverse it, but only when we know we won't overextend other branches; this should best be handled by relaxation). It can also happen when other condbranches hoist delay slot insn from their destination, thus leading to code size increase. But the branch will still be in the range -4092..+4098 bytes. */ if (! TARGET_RELAX) { int label = lf++; /* The call to print_slot will clobber the operands. */ rtx op0 = operands[0]; /* If the instruction in the delay slot is annulled (true), then there is no delay slot where we can put it now. The only safe place for it is after the label. final will do that by default. */ if (final_sequence && ! INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))) { asm_fprintf (asm_out_file, "\tb%s%ss\t%LLF%d\n", logic ? "f" : "t", ASSEMBLER_DIALECT ? "/" : ".", label); print_slot (final_sequence); } else asm_fprintf (asm_out_file, "\tb%s\t%LLF%d\n", logic ? "f" : "t", label); output_asm_insn ("bra\t%l0", &op0); fprintf (asm_out_file, "\tnop\n"); ASM_OUTPUT_INTERNAL_LABEL(asm_out_file, "LF", label); return ""; } /* When relaxing, handle this like a short branch. The linker will fix it up if it still doesn't fit after relaxation. */ case 2: return logic ? "bt%.\t%l0" : "bf%.\t%l0"; default: abort (); } } const char * output_branchy_insn (code, template, insn, operands) enum rtx_code code; const char *template; rtx insn; rtx *operands; { rtx next_insn = NEXT_INSN (insn); if (next_insn && GET_CODE (next_insn) == JUMP_INSN && condjump_p (next_insn)) { rtx src = SET_SRC (PATTERN (next_insn)); if (GET_CODE (src) == IF_THEN_ELSE && GET_CODE (XEXP (src, 0)) != code) { /* Following branch not taken */ operands[9] = gen_label_rtx (); emit_label_after (operands[9], next_insn); return template; } else { int offset = (branch_dest (next_insn) - insn_addresses[INSN_UID (next_insn)] + 4); if (offset >= -252 && offset <= 258) { if (GET_CODE (src) == IF_THEN_ELSE) /* branch_true */ src = XEXP (src, 1); operands[9] = src; return template; } } } operands[9] = gen_label_rtx (); emit_label_after (operands[9], insn); return template; } const char * output_ieee_ccmpeq (insn, operands) rtx insn, *operands; { return output_branchy_insn (NE, "bt\t%l9\\;fcmp/eq\t%1,%0", insn, operands); } /* Output to FILE the start of the assembler file. */ void output_file_start (file) FILE *file; { output_file_directive (file, main_input_filename); /* Switch to the data section so that the coffsem symbol and the gcc2_compiled. symbol aren't in the text section. */ data_section (); if (TARGET_LITTLE_ENDIAN) fprintf (file, "\t.little\n"); } /* Actual number of instructions used to make a shift by N. */ static char ashiftrt_insns[] = { 0,1,2,3,4,5,8,8,8,8,8,8,8,8,8,8,2,3,4,5,8,8,8,8,8,8,8,8,8,8,8,2}; /* Left shift and logical right shift are the same. */ static char shift_insns[] = { 0,1,1,2,2,3,3,4,1,2,2,3,3,4,3,3,1,2,2,3,3,4,3,3,2,3,3,4,4,4,3,3}; /* Individual shift amounts needed to get the above length sequences. One bit right shifts clobber the T bit, so when possible, put one bit shifts in the middle of the sequence, so the ends are eligible for branch delay slots. */ static short shift_amounts[32][5] = { {0}, {1}, {2}, {2, 1}, {2, 2}, {2, 1, 2}, {2, 2, 2}, {2, 2, 1, 2}, {8}, {8, 1}, {8, 2}, {8, 1, 2}, {8, 2, 2}, {8, 2, 1, 2}, {8, -2, 8}, {8, -1, 8}, {16}, {16, 1}, {16, 2}, {16, 1, 2}, {16, 2, 2}, {16, 2, 1, 2}, {16, -2, 8}, {16, -1, 8}, {16, 8}, {16, 1, 8}, {16, 8, 2}, {16, 8, 1, 2}, {16, 8, 2, 2}, {16, -1, -2, 16}, {16, -2, 16}, {16, -1, 16}}; /* Likewise, but for shift amounts < 16, up to three highmost bits might be clobbered. This is typically used when combined with some kind of sign or zero extension. */ static char ext_shift_insns[] = { 0,1,1,2,2,3,2,2,1,2,2,3,3,3,2,2,1,2,2,3,3,4,3,3,2,3,3,4,4,4,3,3}; static short ext_shift_amounts[32][4] = { {0}, {1}, {2}, {2, 1}, {2, 2}, {2, 1, 2}, {8, -2}, {8, -1}, {8}, {8, 1}, {8, 2}, {8, 1, 2}, {8, 2, 2}, {16, -2, -1}, {16, -2}, {16, -1}, {16}, {16, 1}, {16, 2}, {16, 1, 2}, {16, 2, 2}, {16, 2, 1, 2}, {16, -2, 8}, {16, -1, 8}, {16, 8}, {16, 1, 8}, {16, 8, 2}, {16, 8, 1, 2}, {16, 8, 2, 2}, {16, -1, -2, 16}, {16, -2, 16}, {16, -1, 16}}; /* Assuming we have a value that has been sign-extended by at least one bit, can we use the ext_shift_amounts with the last shift turned to an arithmetic shift to shift it by N without data loss, and quicker than by other means? */ #define EXT_SHIFT_SIGNED(n) (((n) | 8) == 15) /* This is used in length attributes in sh.md to help compute the length of arbitrary constant shift instructions. */ int shift_insns_rtx (insn) rtx insn; { rtx set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0)); int shift_count = INTVAL (XEXP (set_src, 1)); enum rtx_code shift_code = GET_CODE (set_src); switch (shift_code) { case ASHIFTRT: return ashiftrt_insns[shift_count]; case LSHIFTRT: case ASHIFT: return shift_insns[shift_count]; default: abort(); } } /* Return the cost of a shift. */ int shiftcosts (x) rtx x; { int value = INTVAL (XEXP (x, 1)); /* If shift by a non constant, then this will be expensive. */ if (GET_CODE (XEXP (x, 1)) != CONST_INT) return SH_DYNAMIC_SHIFT_COST; /* Otherwise, return the true cost in instructions. */ if (GET_CODE (x) == ASHIFTRT) { int cost = ashiftrt_insns[value]; /* If SH3, then we put the constant in a reg and use shad. */ if (cost > 1 + SH_DYNAMIC_SHIFT_COST) cost = 1 + SH_DYNAMIC_SHIFT_COST; return cost; } else return shift_insns[value]; } /* Return the cost of an AND operation. */ int andcosts (x) rtx x; { int i; /* Anding with a register is a single cycle and instruction. */ if (GET_CODE (XEXP (x, 1)) != CONST_INT) return 1; i = INTVAL (XEXP (x, 1)); /* These constants are single cycle extu.[bw] instructions. */ if (i == 0xff || i == 0xffff) return 1; /* Constants that can be used in an and immediate instruction is a single cycle, but this requires r0, so make it a little more expensive. */ if (CONST_OK_FOR_L (i)) return 2; /* Constants that can be loaded with a mov immediate and an and. This case is probably unnecessary. */ if (CONST_OK_FOR_I (i)) return 2; /* Any other constants requires a 2 cycle pc-relative load plus an and. This case is probably unnecessary. */ return 3; } /* Return the cost of a multiply. */ int multcosts (x) rtx x ATTRIBUTE_UNUSED; { if (TARGET_SH2) { /* We have a mul insn, so we can never take more than the mul and the read of the mac reg, but count more because of the latency and extra reg usage. */ if (TARGET_SMALLCODE) return 2; return 3; } /* If we're aiming at small code, then just count the number of insns in a multiply call sequence. */ if (TARGET_SMALLCODE) return 5; /* Otherwise count all the insns in the routine we'd be calling too. */ return 20; } /* Code to expand a shift. */ void gen_ashift (type, n, reg) int type; int n; rtx reg; { /* Negative values here come from the shift_amounts array. */ if (n < 0) { if (type == ASHIFT) type = LSHIFTRT; else type = ASHIFT; n = -n; } switch (type) { case ASHIFTRT: emit_insn (gen_ashrsi3_k (reg, reg, GEN_INT (n))); break; case LSHIFTRT: if (n == 1) emit_insn (gen_lshrsi3_m (reg, reg, GEN_INT (n))); else emit_insn (gen_lshrsi3_k (reg, reg, GEN_INT (n))); break; case ASHIFT: emit_insn (gen_ashlsi3_k (reg, reg, GEN_INT (n))); break; } } /* Same for HImode */ void gen_ashift_hi (type, n, reg) int type; int n; rtx reg; { /* Negative values here come from the shift_amounts array. */ if (n < 0) { if (type == ASHIFT) type = LSHIFTRT; else type = ASHIFT; n = -n; } switch (type) { case ASHIFTRT: case LSHIFTRT: /* We don't have HImode right shift operations because using the ordinary 32 bit shift instructions for that doesn't generate proper zero/sign extension. gen_ashift_hi is only called in contexts where we know that the sign extension works out correctly. */ { int word = 0; if (GET_CODE (reg) == SUBREG) { word = SUBREG_WORD (reg); reg = SUBREG_REG (reg); } gen_ashift (type, n, gen_rtx_SUBREG (SImode, reg, word)); break; } case ASHIFT: emit_insn (gen_ashlhi3_k (reg, reg, GEN_INT (n))); break; } } /* Output RTL to split a constant shift into its component SH constant shift instructions. */ void gen_shifty_op (code, operands) int code; rtx *operands; { int value = INTVAL (operands[2]); int max, i; /* Truncate the shift count in case it is out of bounds. */ value = value & 0x1f; if (value == 31) { if (code == LSHIFTRT) { emit_insn (gen_rotlsi3_1 (operands[0], operands[0])); emit_insn (gen_movt (operands[0])); return; } else if (code == ASHIFT) { /* There is a two instruction sequence for 31 bit left shifts, but it requires r0. */ if (GET_CODE (operands[0]) == REG && REGNO (operands[0]) == 0) { emit_insn (gen_andsi3 (operands[0], operands[0], const1_rtx)); emit_insn (gen_rotlsi3_31 (operands[0], operands[0])); return; } } } else if (value == 0) { /* This can happen when not optimizing. We must output something here to prevent the compiler from aborting in final.c after the try_split call. */ emit_insn (gen_nop ()); return; } max = shift_insns[value]; for (i = 0; i < max; i++) gen_ashift (code, shift_amounts[value][i], operands[0]); } /* Same as above, but optimized for values where the topmost bits don't matter. */ void gen_shifty_hi_op (code, operands) int code; rtx *operands; { int value = INTVAL (operands[2]); int max, i; void (*gen_fun) PARAMS ((int, int, rtx)); /* This operation is used by and_shl for SImode values with a few high bits known to be cleared. */ value &= 31; if (value == 0) { emit_insn (gen_nop ()); return; } gen_fun = GET_MODE (operands[0]) == HImode ? gen_ashift_hi : gen_ashift; if (code == ASHIFT) { max = ext_shift_insns[value]; for (i = 0; i < max; i++) gen_fun (code, ext_shift_amounts[value][i], operands[0]); } else /* When shifting right, emit the shifts in reverse order, so that solitary negative values come first. */ for (i = ext_shift_insns[value] - 1; i >= 0; i--) gen_fun (code, ext_shift_amounts[value][i], operands[0]); } /* Output RTL for an arithmetic right shift. */ /* ??? Rewrite to use super-optimizer sequences. */ int expand_ashiftrt (operands) rtx *operands; { rtx wrk; char func[18]; tree func_name; int value; if (TARGET_SH3) { if (GET_CODE (operands[2]) != CONST_INT) { rtx count = copy_to_mode_reg (SImode, operands[2]); emit_insn (gen_negsi2 (count, count)); emit_insn (gen_ashrsi3_d (operands[0], operands[1], count)); return 1; } else if (ashiftrt_insns[INTVAL (operands[2]) & 31] > 1 + SH_DYNAMIC_SHIFT_COST) { rtx count = force_reg (SImode, GEN_INT (- (INTVAL (operands[2]) & 31))); emit_insn (gen_ashrsi3_d (operands[0], operands[1], count)); return 1; } } if (GET_CODE (operands[2]) != CONST_INT) return 0; value = INTVAL (operands[2]) & 31; if (value == 31) { emit_insn (gen_ashrsi2_31 (operands[0], operands[1])); return 1; } else if (value >= 16 && value <= 19) { wrk = gen_reg_rtx (SImode); emit_insn (gen_ashrsi2_16 (wrk, operands[1])); value -= 16; while (value--) gen_ashift (ASHIFTRT, 1, wrk); emit_move_insn (operands[0], wrk); return 1; } /* Expand a short sequence inline, longer call a magic routine. */ else if (value <= 5) { wrk = gen_reg_rtx (SImode); emit_move_insn (wrk, operands[1]); while (value--) gen_ashift (ASHIFTRT, 1, wrk); emit_move_insn (operands[0], wrk); return 1; } wrk = gen_reg_rtx (Pmode); /* Load the value into an arg reg and call a helper. */ emit_move_insn (gen_rtx_REG (SImode, 4), operands[1]); sprintf (func, "__ashiftrt_r4_%d", value); func_name = get_identifier (func); emit_move_insn (wrk, gen_rtx_SYMBOL_REF (Pmode, IDENTIFIER_POINTER (func_name))); emit_insn (gen_ashrsi3_n (GEN_INT (value), wrk)); emit_move_insn (operands[0], gen_rtx_REG (SImode, 4)); return 1; } int sh_dynamicalize_shift_p (count) rtx count; { return shift_insns[INTVAL (count)] > 1 + SH_DYNAMIC_SHIFT_COST; } /* Try to find a good way to implement the combiner pattern [(set (match_operand:SI 0 "register_operand" "r") (and:SI (ashift:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "const_int_operand" "n")) (match_operand:SI 3 "const_int_operand" "n"))) . LEFT_RTX is operand 2 in the above pattern, and MASK_RTX is operand 3. return 0 for simple right / left or left/right shift combination. return 1 for a combination of shifts with zero_extend. return 2 for a combination of shifts with an AND that needs r0. return 3 for a combination of shifts with an AND that needs an extra scratch register, when the three highmost bits of the AND mask are clear. return 4 for a combination of shifts with an AND that needs an extra scratch register, when any of the three highmost bits of the AND mask is set. If ATTRP is set, store an initial right shift width in ATTRP[0], and the instruction length in ATTRP[1] . These values are not valid when returning 0. When ATTRP is set and returning 1, ATTRP[2] gets set to the index into shift_amounts for the last shift value that is to be used before the sign extend. */ int shl_and_kind (left_rtx, mask_rtx, attrp) rtx left_rtx, mask_rtx; int *attrp; { unsigned HOST_WIDE_INT mask, lsb, mask2, lsb2; int left = INTVAL (left_rtx), right; int best = 0; int cost, best_cost = 10000; int best_right = 0, best_len = 0; int i; int can_ext; if (left < 0 || left > 31) return 0; if (GET_CODE (mask_rtx) == CONST_INT) mask = (unsigned HOST_WIDE_INT) INTVAL (mask_rtx) >> left; else mask = (unsigned HOST_WIDE_INT) GET_MODE_MASK (SImode) >> left; /* Can this be expressed as a right shift / left shift pair ? */ lsb = ((mask ^ (mask - 1)) >> 1) + 1; right = exact_log2 (lsb); mask2 = ~(mask + lsb - 1); lsb2 = ((mask2 ^ (mask2 - 1)) >> 1) + 1; /* mask has no zeroes but trailing zeroes <==> ! mask2 */ if (! mask2) best_cost = shift_insns[right] + shift_insns[right + left]; /* mask has no trailing zeroes <==> ! right */ else if (! right && mask2 == ~(lsb2 - 1)) { int late_right = exact_log2 (lsb2); best_cost = shift_insns[left + late_right] + shift_insns[late_right]; } /* Try to use zero extend */ if (mask2 == ~(lsb2 - 1)) { int width, first; for (width = 8; width <= 16; width += 8) { /* Can we zero-extend right away? */ if (lsb2 == (unsigned HOST_WIDE_INT)1 << width) { cost = 1 + ext_shift_insns[right] + ext_shift_insns[left + right]; if (cost < best_cost) { best = 1; best_cost = cost; best_right = right; best_len = cost; if (attrp) attrp[2] = -1; } continue; } /* ??? Could try to put zero extend into initial right shift, or even shift a bit left before the right shift. */ /* Determine value of first part of left shift, to get to the zero extend cut-off point. */ first = width - exact_log2 (lsb2) + right; if (first >= 0 && right + left - first >= 0) { cost = ext_shift_insns[right] + ext_shift_insns[first] + 1 + ext_shift_insns[right + left - first]; if (cost < best_cost) { best = 1; best_cost = cost; best_right = right; best_len = cost; if (attrp) attrp[2] = first; } } } } /* Try to use r0 AND pattern */ for (i = 0; i <= 2; i++) { if (i > right) break; if (! CONST_OK_FOR_L (mask >> i)) continue; cost = (i != 0) + 2 + ext_shift_insns[left + i]; if (cost < best_cost) { best = 2; best_cost = cost; best_right = i; best_len = cost - 1; } } /* Try to use a scratch register to hold the AND operand. */ can_ext = ((mask << left) & 0xe0000000) == 0; for (i = 0; i <= 2; i++) { if (i > right) break; cost = (i != 0) + (CONST_OK_FOR_I (mask >> i) ? 2 : 3) + (can_ext ? ext_shift_insns : shift_insns)[left + i]; if (cost < best_cost) { best = 4 - can_ext; best_cost = cost; best_right = i; best_len = cost - 1 - ! CONST_OK_FOR_I (mask >> i); } } if (attrp) { attrp[0] = best_right; attrp[1] = best_len; } return best; } /* This is used in length attributes of the unnamed instructions corresponding to shl_and_kind return values of 1 and 2. */ int shl_and_length (insn) rtx insn; { rtx set_src, left_rtx, mask_rtx; int attributes[3]; set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0)); left_rtx = XEXP (XEXP (set_src, 0), 1); mask_rtx = XEXP (set_src, 1); shl_and_kind (left_rtx, mask_rtx, attributes); return attributes[1]; } /* This is used in length attribute of the and_shl_scratch instruction. */ int shl_and_scr_length (insn) rtx insn; { rtx set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0)); int len = shift_insns[INTVAL (XEXP (set_src, 1))]; rtx op = XEXP (set_src, 0); len += shift_insns[INTVAL (XEXP (op, 1))] + 1; op = XEXP (XEXP (op, 0), 0); return len + shift_insns[INTVAL (XEXP (op, 1))]; } /* Generating rtl? */ extern int rtx_equal_function_value_matters; /* Generate rtl for instructions for which shl_and_kind advised a particular method of generating them, i.e. returned zero. */ int gen_shl_and (dest, left_rtx, mask_rtx, source) rtx dest, left_rtx, mask_rtx, source; { int attributes[3]; unsigned HOST_WIDE_INT mask; int kind = shl_and_kind (left_rtx, mask_rtx, attributes); int right, total_shift; void (*shift_gen_fun) PARAMS ((int, rtx*)) = gen_shifty_hi_op; right = attributes[0]; total_shift = INTVAL (left_rtx) + right; mask = (unsigned HOST_WIDE_INT) INTVAL (mask_rtx) >> total_shift; switch (kind) { default: return -1; case 1: { int first = attributes[2]; rtx operands[3]; if (first < 0) { emit_insn ((mask << right) <= 0xff ? gen_zero_extendqisi2(dest, gen_lowpart (QImode, source)) : gen_zero_extendhisi2(dest, gen_lowpart (HImode, source))); source = dest; } if (source != dest) emit_insn (gen_movsi (dest, source)); operands[0] = dest; if (right) { operands[2] = GEN_INT (right); gen_shifty_hi_op (LSHIFTRT, operands); } if (first > 0) { operands[2] = GEN_INT (first); gen_shifty_hi_op (ASHIFT, operands); total_shift -= first; mask <<= first; } if (first >= 0) emit_insn (mask <= 0xff ? gen_zero_extendqisi2(dest, gen_lowpart (QImode, dest)) : gen_zero_extendhisi2(dest, gen_lowpart (HImode, dest))); if (total_shift > 0) { operands[2] = GEN_INT (total_shift); gen_shifty_hi_op (ASHIFT, operands); } break; } case 4: shift_gen_fun = gen_shifty_op; case 3: /* If the topmost bit that matters is set, set the topmost bits that don't matter. This way, we might be able to get a shorter signed constant. */ if (mask & ((HOST_WIDE_INT)1 << (31 - total_shift))) mask |= (HOST_WIDE_INT)~0 << (31 - total_shift); case 2: /* Don't expand fine-grained when combining, because that will make the pattern fail. */ if (rtx_equal_function_value_matters || reload_in_progress || reload_completed) { rtx operands[3]; /* Cases 3 and 4 should be handled by this split only while combining */ if (kind > 2) abort (); if (right) { emit_insn (gen_lshrsi3 (dest, source, GEN_INT (right))); source = dest; } emit_insn (gen_andsi3 (dest, source, GEN_INT (mask))); if (total_shift) { operands[0] = dest; operands[1] = dest; operands[2] = GEN_INT (total_shift); shift_gen_fun (ASHIFT, operands); } break; } else { int neg = 0; if (kind != 4 && total_shift < 16) { neg = -ext_shift_amounts[total_shift][1]; if (neg > 0) neg -= ext_shift_amounts[total_shift][2]; else neg = 0; } emit_insn (gen_and_shl_scratch (dest, source, GEN_INT (right), GEN_INT (mask), GEN_INT (total_shift + neg), GEN_INT (neg))); emit_insn (gen_movsi (dest, dest)); break; } } return 0; } /* Try to find a good way to implement the combiner pattern [(set (match_operand:SI 0 "register_operand" "=r") (sign_extract:SI (ashift:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "const_int_operand" "n") (match_operand:SI 3 "const_int_operand" "n") (const_int 0))) (clobber (reg:SI 18))] LEFT_RTX is operand 2 in the above pattern, and SIZE_RTX is operand 3. return 0 for simple left / right shift combination. return 1 for left shift / 8 bit sign extend / left shift. return 2 for left shift / 16 bit sign extend / left shift. return 3 for left shift / 8 bit sign extend / shift / sign extend. return 4 for left shift / 16 bit sign extend / shift / sign extend. return 5 for left shift / 16 bit sign extend / right shift return 6 for < 8 bit sign extend / left shift. return 7 for < 8 bit sign extend / left shift / single right shift. If COSTP is nonzero, assign the calculated cost to *COSTP. */ int shl_sext_kind (left_rtx, size_rtx, costp) rtx left_rtx, size_rtx; int *costp; { int left, size, insize, ext; int cost, best_cost; int kind; left = INTVAL (left_rtx); size = INTVAL (size_rtx); insize = size - left; if (insize <= 0) abort (); /* Default to left / right shift. */ kind = 0; best_cost = shift_insns[32 - insize] + ashiftrt_insns[32 - size]; if (size <= 16) { /* 16 bit shift / sign extend / 16 bit shift */ cost = shift_insns[16 - insize] + 1 + ashiftrt_insns[16 - size]; /* If ashiftrt_insns[16 - size] is 8, this choice will be overridden below, by alternative 3 or something even better. */ if (cost < best_cost) { kind = 5; best_cost = cost; } } /* Try a plain sign extend between two shifts. */ for (ext = 16; ext >= insize; ext -= 8) { if (ext <= size) { cost = ext_shift_insns[ext - insize] + 1 + shift_insns[size - ext]; if (cost < best_cost) { kind = ext / 8U; best_cost = cost; } } /* Check if we can do a sloppy shift with a final signed shift restoring the sign. */ if (EXT_SHIFT_SIGNED (size - ext)) cost = ext_shift_insns[ext - insize] + ext_shift_insns[size - ext] + 1; /* If not, maybe it's still cheaper to do the second shift sloppy, and do a final sign extend? */ else if (size <= 16) cost = ext_shift_insns[ext - insize] + 1 + ext_shift_insns[size > ext ? size - ext : ext - size] + 1; else continue; if (cost < best_cost) { kind = ext / 8U + 2; best_cost = cost; } } /* Check if we can sign extend in r0 */ if (insize < 8) { cost = 3 + shift_insns[left]; if (cost < best_cost) { kind = 6; best_cost = cost; } /* Try the same with a final signed shift. */ if (left < 31) { cost = 3 + ext_shift_insns[left + 1] + 1; if (cost < best_cost) { kind = 7; best_cost = cost; } } } if (TARGET_SH3) { /* Try to use a dynamic shift. */ cost = shift_insns[32 - insize] + 1 + SH_DYNAMIC_SHIFT_COST; if (cost < best_cost) { kind = 0; best_cost = cost; } } if (costp) *costp = cost; return kind; } /* Function to be used in the length attribute of the instructions implementing this pattern. */ int shl_sext_length (insn) rtx insn; { rtx set_src, left_rtx, size_rtx; int cost; set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0)); left_rtx = XEXP (XEXP (set_src, 0), 1); size_rtx = XEXP (set_src, 1); shl_sext_kind (left_rtx, size_rtx, &cost); return cost; } /* Generate rtl for this pattern */ int gen_shl_sext (dest, left_rtx, size_rtx, source) rtx dest, left_rtx, size_rtx, source; { int kind; int left, size, insize, cost; rtx operands[3]; kind = shl_sext_kind (left_rtx, size_rtx, &cost); left = INTVAL (left_rtx); size = INTVAL (size_rtx); insize = size - left; switch (kind) { case 1: case 2: case 3: case 4: { int ext = kind & 1 ? 8 : 16; int shift2 = size - ext; /* Don't expand fine-grained when combining, because that will make the pattern fail. */ if (! rtx_equal_function_value_matters && ! reload_in_progress && ! reload_completed) { emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx)); emit_insn (gen_movsi (dest, source)); break; } if (dest != source) emit_insn (gen_movsi (dest, source)); operands[0] = dest; if (ext - insize) { operands[2] = GEN_INT (ext - insize); gen_shifty_hi_op (ASHIFT, operands); } emit_insn (kind & 1 ? gen_extendqisi2(dest, gen_lowpart (QImode, dest)) : gen_extendhisi2(dest, gen_lowpart (HImode, dest))); if (kind <= 2) { if (shift2) { operands[2] = GEN_INT (shift2); gen_shifty_op (ASHIFT, operands); } } else { if (shift2 > 0) { if (EXT_SHIFT_SIGNED (shift2)) { operands[2] = GEN_INT (shift2 + 1); gen_shifty_op (ASHIFT, operands); operands[2] = GEN_INT (1); gen_shifty_op (ASHIFTRT, operands); break; } operands[2] = GEN_INT (shift2); gen_shifty_hi_op (ASHIFT, operands); } else if (shift2) { operands[2] = GEN_INT (-shift2); gen_shifty_hi_op (LSHIFTRT, operands); } emit_insn (size <= 8 ? gen_extendqisi2 (dest, gen_lowpart (QImode, dest)) : gen_extendhisi2 (dest, gen_lowpart (HImode, dest))); } break; } case 5: { int i = 16 - size; if (! rtx_equal_function_value_matters && ! reload_in_progress && ! reload_completed) emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx)); else { operands[0] = dest; operands[2] = GEN_INT (16 - insize); gen_shifty_hi_op (ASHIFT, operands); emit_insn (gen_extendhisi2 (dest, gen_lowpart (HImode, dest))); } /* Don't use gen_ashrsi3 because it generates new pseudos. */ while (--i >= 0) gen_ashift (ASHIFTRT, 1, dest); break; } case 6: case 7: /* Don't expand fine-grained when combining, because that will make the pattern fail. */ if (! rtx_equal_function_value_matters && ! reload_in_progress && ! reload_completed) { emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx)); emit_insn (gen_movsi (dest, source)); break; } emit_insn (gen_andsi3 (dest, source, GEN_INT ((1 << insize) - 1))); emit_insn (gen_xorsi3 (dest, dest, GEN_INT (1 << (insize - 1)))); emit_insn (gen_addsi3 (dest, dest, GEN_INT (-1 << (insize - 1)))); operands[0] = dest; operands[2] = kind == 7 ? GEN_INT (left + 1) : left_rtx; gen_shifty_op (ASHIFT, operands); if (kind == 7) emit_insn (gen_ashrsi3_k (dest, dest, GEN_INT (1))); break; default: return -1; } return 0; } /* The SH cannot load a large constant into a register, constants have to come from a pc relative load. The reference of a pc relative load instruction must be less than 1k infront of the instruction. This means that we often have to dump a constant inside a function, and generate code to branch around it. It is important to minimize this, since the branches will slow things down and make things bigger. Worst case code looks like: mov.l L1,rn bra L2 nop align L1: .long value L2: .. mov.l L3,rn bra L4 nop align L3: .long value L4: .. We fix this by performing a scan before scheduling, which notices which instructions need to have their operands fetched from the constant table and builds the table. The algorithm is: scan, find an instruction which needs a pcrel move. Look forward, find the last barrier which is within MAX_COUNT bytes of the requirement. If there isn't one, make one. Process all the instructions between the find and the barrier. In the above example, we can tell that L3 is within 1k of L1, so the first move can be shrunk from the 3 insn+constant sequence into just 1 insn, and the constant moved to L3 to make: mov.l L1,rn .. mov.l L3,rn bra L4 nop align L3:.long value L4:.long value Then the second move becomes the target for the shortening process. */ typedef struct { rtx value; /* Value in table. */ rtx label; /* Label of value. */ enum machine_mode mode; /* Mode of value. */ } pool_node; /* The maximum number of constants that can fit into one pool, since the pc relative range is 0...1020 bytes and constants are at least 4 bytes long. */ #define MAX_POOL_SIZE (1020/4) static pool_node pool_vector[MAX_POOL_SIZE]; static int pool_size; /* ??? If we need a constant in HImode which is the truncated value of a constant we need in SImode, we could combine the two entries thus saving two bytes. Is this common enough to be worth the effort of implementing it? */ /* ??? This stuff should be done at the same time that we shorten branches. As it is now, we must assume that all branches are the maximum size, and this causes us to almost always output constant pools sooner than necessary. */ /* Add a constant to the pool and return its label. */ static rtx add_constant (x, mode, last_value) rtx x; enum machine_mode mode; rtx last_value; { int i; rtx lab; /* First see if we've already got it. */ for (i = 0; i < pool_size; i++) { if (x->code == pool_vector[i].value->code && mode == pool_vector[i].mode) { if (x->code == CODE_LABEL) { if (XINT (x, 3) != XINT (pool_vector[i].value, 3)) continue; } if (rtx_equal_p (x, pool_vector[i].value)) { lab = 0; if (! last_value || ! i || ! rtx_equal_p (last_value, pool_vector[i-1].value)) { lab = pool_vector[i].label; if (! lab) pool_vector[i].label = lab = gen_label_rtx (); } return lab; } } } /* Need a new one. */ pool_vector[pool_size].value = x; if (last_value && rtx_equal_p (last_value, pool_vector[pool_size - 1].value)) lab = 0; else lab = gen_label_rtx (); pool_vector[pool_size].mode = mode; pool_vector[pool_size].label = lab; pool_size++; return lab; } /* Output the literal table. */ static void dump_table (scan) rtx scan; { int i; int need_align = 1; /* Do two passes, first time dump out the HI sized constants. */ for (i = 0; i < pool_size; i++) { pool_node *p = &pool_vector[i]; if (p->mode == HImode) { if (need_align) { scan = emit_insn_after (gen_align_2 (), scan); need_align = 0; } scan = emit_label_after (p->label, scan); scan = emit_insn_after (gen_consttable_2 (p->value), scan); } } need_align = 1; for (i = 0; i < pool_size; i++) { pool_node *p = &pool_vector[i]; switch (p->mode) { case HImode: break; case SImode: case SFmode: if (need_align) { need_align = 0; scan = emit_label_after (gen_label_rtx (), scan); scan = emit_insn_after (gen_align_4 (), scan); } if (p->label) scan = emit_label_after (p->label, scan); scan = emit_insn_after (gen_consttable_4 (p->value), scan); break; case DFmode: case DImode: if (need_align) { need_align = 0; scan = emit_label_after (gen_label_rtx (), scan); scan = emit_insn_after (gen_align_4 (), scan); } if (p->label) scan = emit_label_after (p->label, scan); scan = emit_insn_after (gen_consttable_8 (p->value), scan); break; default: abort (); break; } } scan = emit_insn_after (gen_consttable_end (), scan); scan = emit_barrier_after (scan); pool_size = 0; } /* Return non-zero if constant would be an ok source for a mov.w instead of a mov.l. */ static int hi_const (src) rtx src; { return (GET_CODE (src) == CONST_INT && INTVAL (src) >= -32768 && INTVAL (src) <= 32767); } /* Non-zero if the insn is a move instruction which needs to be fixed. */ /* ??? For a DImode/DFmode moves, we don't need to fix it if each half of the CONST_DOUBLE input value is CONST_OK_FOR_I. For a SFmode move, we don't need to fix it if the input value is CONST_OK_FOR_I. */ static int broken_move (insn) rtx insn; { if (GET_CODE (insn) == INSN) { rtx pat = PATTERN (insn); if (GET_CODE (pat) == PARALLEL) pat = XVECEXP (pat, 0, 0); if (GET_CODE (pat) == SET /* We can load any 8 bit value if we don't care what the high order bits end up as. */ && GET_MODE (SET_DEST (pat)) != QImode && CONSTANT_P (SET_SRC (pat)) && ! (TARGET_SH3E && GET_CODE (SET_SRC (pat)) == CONST_DOUBLE && (fp_zero_operand (SET_SRC (pat)) || fp_one_operand (SET_SRC (pat))) /* ??? If this is a -m4 or -m4-single compilation, we don't know the current setting of fpscr, so disable fldi. */ && (! TARGET_SH4 || TARGET_FMOVD) && GET_CODE (SET_DEST (pat)) == REG && REGNO (SET_DEST (pat)) >= FIRST_FP_REG && REGNO (SET_DEST (pat)) <= LAST_FP_REG) && (GET_CODE (SET_SRC (pat)) != CONST_INT || ! CONST_OK_FOR_I (INTVAL (SET_SRC (pat))))) return 1; } return 0; } static int mova_p (insn) rtx insn; { return (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET && GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC && XINT (SET_SRC (PATTERN (insn)), 1) == 1); } /* Find the last barrier from insn FROM which is close enough to hold the constant pool. If we can't find one, then create one near the end of the range. */ static rtx find_barrier (num_mova, mova, from) int num_mova; rtx mova, from; { int count_si = 0; int count_hi = 0; int found_hi = 0; int found_si = 0; int hi_align = 2; int si_align = 2; int leading_mova = num_mova; rtx barrier_before_mova, found_barrier = 0, good_barrier = 0; int si_limit; int hi_limit; /* For HImode: range is 510, add 4 because pc counts from address of second instruction after this one, subtract 2 for the jump instruction that we may need to emit before the table, subtract 2 for the instruction that fills the jump delay slot (in very rare cases, reorg will take an instruction from after the constant pool or will leave the delay slot empty). This gives 510. For SImode: range is 1020, add 4 because pc counts from address of second instruction after this one, subtract 2 in case pc is 2 byte aligned, subtract 2 for the jump instruction that we may need to emit before the table, subtract 2 for the instruction that fills the jump delay slot. This gives 1018. */ /* The branch will always be shortened now that the reference address for forward branches is the successor address, thus we need no longer make adjustments to the [sh]i_limit for -O0. */ si_limit = 1018; hi_limit = 510; while (from && count_si < si_limit && count_hi < hi_limit) { int inc = get_attr_length (from); int new_align = 1; if (GET_CODE (from) == CODE_LABEL) { if (optimize) new_align = 1 << label_to_alignment (from); else if (GET_CODE (prev_nonnote_insn (from)) == BARRIER) new_align = 1 << barrier_align (from); else new_align = 1; inc = 0; } if (GET_CODE (from) == BARRIER) { found_barrier = from; /* If we are at the end of the function, or in front of an alignment instruction, we need not insert an extra alignment. We prefer this kind of barrier. */ if (barrier_align (from) > 2) good_barrier = from; } if (broken_move (from)) { rtx pat, src, dst; enum machine_mode mode; pat = PATTERN (from); if (GET_CODE (pat) == PARALLEL) pat = XVECEXP (pat, 0, 0); src = SET_SRC (pat); dst = SET_DEST (pat); mode = GET_MODE (dst); /* We must explicitly check the mode, because sometimes the front end will generate code to load unsigned constants into HImode targets without properly sign extending them. */ if (mode == HImode || (mode == SImode && hi_const (src) && REGNO (dst) != FPUL_REG)) { found_hi += 2; /* We put the short constants before the long constants, so we must count the length of short constants in the range for the long constants. */ /* ??? This isn't optimal, but is easy to do. */ si_limit -= 2; } else { while (si_align > 2 && found_si + si_align - 2 > count_si) si_align >>= 1; if (found_si > count_si) count_si = found_si; found_si += GET_MODE_SIZE (mode); if (num_mova) si_limit -= GET_MODE_SIZE (mode); } } if (mova_p (from)) { if (! num_mova++) { leading_mova = 0; mova = from; barrier_before_mova = good_barrier ? good_barrier : found_barrier; } if (found_si > count_si) count_si = found_si; } else if (GET_CODE (from) == JUMP_INSN && (GET_CODE (PATTERN (from)) == ADDR_VEC || GET_CODE (PATTERN (from)) == ADDR_DIFF_VEC)) { if (num_mova) num_mova--; if (barrier_align (next_real_insn (from)) == CACHE_LOG) { /* We have just passed the barrier in front of the ADDR_DIFF_VEC, which is stored in found_barrier. Since the ADDR_DIFF_VEC is accessed as data, just like our pool constants, this is a good opportunity to accommodate what we have gathered so far. If we waited any longer, we could end up at a barrier in front of code, which gives worse cache usage for separated instruction / data caches. */ good_barrier = found_barrier; break; } else { rtx body = PATTERN (from); inc = XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)); } } if (found_si) { if (new_align > si_align) { si_limit -= (count_si - 1) & (new_align - si_align); si_align = new_align; } count_si = (count_si + new_align - 1) & -new_align; count_si += inc; } if (found_hi) { if (new_align > hi_align) { hi_limit -= (count_hi - 1) & (new_align - hi_align); hi_align = new_align; } count_hi = (count_hi + new_align - 1) & -new_align; count_hi += inc; } from = NEXT_INSN (from); } if (num_mova) { if (leading_mova) { /* Try as we might, the leading mova is out of range. Change it into a load (which will become a pcload) and retry. */ SET_SRC (PATTERN (mova)) = XVECEXP (SET_SRC (PATTERN (mova)), 0, 0); INSN_CODE (mova) = -1; return find_barrier (0, 0, mova); } else { /* Insert the constant pool table before the mova instruction, to prevent the mova label reference from going out of range. */ from = mova; good_barrier = found_barrier = barrier_before_mova; } } if (found_barrier) { if (good_barrier && next_real_insn (found_barrier)) found_barrier = good_barrier; } else { /* We didn't find a barrier in time to dump our stuff, so we'll make one. */ rtx label = gen_label_rtx (); /* If we exceeded the range, then we must back up over the last instruction we looked at. Otherwise, we just need to undo the NEXT_INSN at the end of the loop. */ if (count_hi > hi_limit || count_si > si_limit) from = PREV_INSN (PREV_INSN (from)); else from = PREV_INSN (from); /* Walk back to be just before any jump or label. Putting it before a label reduces the number of times the branch around the constant pool table will be hit. Putting it before a jump makes it more likely that the bra delay slot will be filled. */ while (GET_CODE (from) == JUMP_INSN || GET_CODE (from) == NOTE || GET_CODE (from) == CODE_LABEL) from = PREV_INSN (from); from = emit_jump_insn_after (gen_jump (label), from); JUMP_LABEL (from) = label; LABEL_NUSES (label) = 1; found_barrier = emit_barrier_after (from); emit_label_after (label, found_barrier); } return found_barrier; } /* If the instruction INSN is implemented by a special function, and we can positively find the register that is used to call the sfunc, and this register is not used anywhere else in this instruction - except as the destination of a set, return this register; else, return 0. */ rtx sfunc_uses_reg (insn) rtx insn; { int i; rtx pattern, part, reg_part, reg; if (GET_CODE (insn) != INSN) return 0; pattern = PATTERN (insn); if (GET_CODE (pattern) != PARALLEL || get_attr_type (insn) != TYPE_SFUNC) return 0; for (reg_part = 0, i = XVECLEN (pattern, 0) - 1; i >= 1; i--) { part = XVECEXP (pattern, 0, i); if (GET_CODE (part) == USE && GET_MODE (XEXP (part, 0)) == SImode) reg_part = part; } if (! reg_part) return 0; reg = XEXP (reg_part, 0); for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--) { part = XVECEXP (pattern, 0, i); if (part == reg_part || GET_CODE (part) == CLOBBER) continue; if (reg_mentioned_p (reg, ((GET_CODE (part) == SET && GET_CODE (SET_DEST (part)) == REG) ? SET_SRC (part) : part))) return 0; } return reg; } /* See if the only way in which INSN uses REG is by calling it, or by setting it while calling it. Set *SET to a SET rtx if the register is set by INSN. */ static int noncall_uses_reg (reg, insn, set) rtx reg; rtx insn; rtx *set; { rtx pattern, reg2; *set = NULL_RTX; reg2 = sfunc_uses_reg (insn); if (reg2 && REGNO (reg2) == REGNO (reg)) { pattern = single_set (insn); if (pattern && GET_CODE (SET_DEST (pattern)) == REG && REGNO (reg) == REGNO (SET_DEST (pattern))) *set = pattern; return 0; } if (GET_CODE (insn) != CALL_INSN) { /* We don't use rtx_equal_p because we don't care if the mode is different. */ pattern = single_set (insn); if (pattern && GET_CODE (SET_DEST (pattern)) == REG && REGNO (reg) == REGNO (SET_DEST (pattern))) { rtx par, part; int i; *set = pattern; par = PATTERN (insn); if (GET_CODE (par) == PARALLEL) for (i = XVECLEN (par, 0) - 1; i >= 0; i--) { part = XVECEXP (par, 0, i); if (GET_CODE (part) != SET && reg_mentioned_p (reg, part)) return 1; } return reg_mentioned_p (reg, SET_SRC (pattern)); } return 1; } pattern = PATTERN (insn); if (GET_CODE (pattern) == PARALLEL) { int i; for (i = XVECLEN (pattern, 0) - 1; i >= 1; i--) if (reg_mentioned_p (reg, XVECEXP (pattern, 0, i))) return 1; pattern = XVECEXP (pattern, 0, 0); } if (GET_CODE (pattern) == SET) { if (reg_mentioned_p (reg, SET_DEST (pattern))) { /* We don't use rtx_equal_p, because we don't care if the mode is different. */ if (GET_CODE (SET_DEST (pattern)) != REG || REGNO (reg) != REGNO (SET_DEST (pattern))) return 1; *set = pattern; } pattern = SET_SRC (pattern); } if (GET_CODE (pattern) != CALL || GET_CODE (XEXP (pattern, 0)) != MEM || ! rtx_equal_p (reg, XEXP (XEXP (pattern, 0), 0))) return 1; return 0; } /* Given a X, a pattern of an insn or a part of it, return a mask of used general registers. Bits 0..15 mean that the respective registers are used as inputs in the instruction. Bits 16..31 mean that the registers 0..15, respectively, are used as outputs, or are clobbered. IS_DEST should be set to 16 if X is the destination of a SET, else to 0. */ int regs_used (x, is_dest) rtx x; int is_dest; { enum rtx_code code; const char *fmt; int i, used = 0; if (! x) return used; code = GET_CODE (x); switch (code) { case REG: if (REGNO (x) < 16) return (((1 << HARD_REGNO_NREGS (0, GET_MODE (x))) - 1) << (REGNO (x) + is_dest)); return 0; case SUBREG: { rtx y = SUBREG_REG (x); if (GET_CODE (y) != REG) break; if (REGNO (y) < 16) return (((1 << HARD_REGNO_NREGS (0, GET_MODE (x))) - 1) << (REGNO (y) + SUBREG_WORD (x) + is_dest)); return 0; } case SET: return regs_used (SET_SRC (x), 0) | regs_used (SET_DEST (x), 16); case RETURN: /* If there was a return value, it must have been indicated with USE. */ return 0x00ffff00; case CLOBBER: is_dest = 1; break; case MEM: is_dest = 0; break; case CALL: used |= 0x00ff00f0; break; default: break; } fmt = GET_RTX_FORMAT (code); for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'E') { register int j; for (j = XVECLEN (x, i) - 1; j >= 0; j--) used |= regs_used (XVECEXP (x, i, j), is_dest); } else if (fmt[i] == 'e') used |= regs_used (XEXP (x, i), is_dest); } return used; } /* Create an instruction that prevents redirection of a conditional branch to the destination of the JUMP with address ADDR. If the branch needs to be implemented as an indirect jump, try to find a scratch register for it. If NEED_BLOCK is 0, don't do anything unless we need a scratch register. If any preceding insn that doesn't fit into a delay slot is good enough, pass 1. Pass 2 if a definite blocking insn is needed. -1 is used internally to avoid deep recursion. If a blocking instruction is made or recognized, return it. */ static rtx gen_block_redirect (jump, addr, need_block) rtx jump; int addr, need_block; { int dead = 0; rtx prev = prev_nonnote_insn (jump); rtx dest; /* First, check if we already have an instruction that satisfies our need. */ if (prev && GET_CODE (prev) == INSN && ! INSN_DELETED_P (prev)) { if (INSN_CODE (prev) == CODE_FOR_indirect_jump_scratch) return prev; if (GET_CODE (PATTERN (prev)) == USE || GET_CODE (PATTERN (prev)) == CLOBBER || get_attr_in_delay_slot (prev) == IN_DELAY_SLOT_YES) prev = jump; else if ((need_block &= ~1) < 0) return prev; else if (recog_memoized (prev) == CODE_FOR_block_branch_redirect) need_block = 0; } /* We can't use JUMP_LABEL here because it might be undefined when not optimizing. */ dest = XEXP (SET_SRC (PATTERN (jump)), 0); /* If the branch is out of range, try to find a scratch register for it. */ if (optimize && (insn_addresses[INSN_UID (dest)] - addr + 4092U > 4092 + 4098)) { rtx scan; /* Don't look for the stack pointer as a scratch register, it would cause trouble if an interrupt occurred. */ unsigned try = 0x7fff, used; int jump_left = flag_expensive_optimizations + 1; /* It is likely that the most recent eligible instruction is wanted for the delay slot. Therefore, find out which registers it uses, and try to avoid using them. */ for (scan = jump; (scan = PREV_INSN (scan)); ) { enum rtx_code code; if (INSN_DELETED_P (scan)) continue; code = GET_CODE (scan); if (code == CODE_LABEL || code == JUMP_INSN) break; if (code == INSN && GET_CODE (PATTERN (scan)) != USE && GET_CODE (PATTERN (scan)) != CLOBBER && get_attr_in_delay_slot (scan) == IN_DELAY_SLOT_YES) { try &= ~regs_used (PATTERN (scan), 0); break; } } for (used = dead = 0, scan = JUMP_LABEL (jump); (scan = NEXT_INSN (scan)); ) { enum rtx_code code; if (INSN_DELETED_P (scan)) continue; code = GET_CODE (scan); if (GET_RTX_CLASS (code) == 'i') { used |= regs_used (PATTERN (scan), 0); if (code == CALL_INSN) used |= regs_used (CALL_INSN_FUNCTION_USAGE (scan), 0); dead |= (used >> 16) & ~used; if (dead & try) { dead &= try; break; } if (code == JUMP_INSN) { if (jump_left-- && simplejump_p (scan)) scan = JUMP_LABEL (scan); else break; } } } /* Mask out the stack pointer again, in case it was the only 'free' register we have found. */ dead &= 0x7fff; } /* If the immediate destination is still in range, check for possible threading with a jump beyond the delay slot insn. Don't check if we are called recursively; the jump has been or will be checked in a different invocation then. */ else if (optimize && need_block >= 0) { rtx next = next_active_insn (next_active_insn (dest)); if (next && GET_CODE (next) == JUMP_INSN && GET_CODE (PATTERN (next)) == SET && recog_memoized (next) == CODE_FOR_jump) { dest = JUMP_LABEL (next); if (dest && insn_addresses[INSN_UID (dest)] - addr + 4092U > 4092 + 4098) gen_block_redirect (next, insn_addresses[INSN_UID (next)], -1); } } if (dead) { rtx reg = gen_rtx_REG (SImode, exact_log2 (dead & -dead)); /* It would be nice if we could convert the jump into an indirect jump / far branch right now, and thus exposing all constituent instructions to further optimization. However, reorg uses simplejump_p to determine if there is an unconditional jump where it should try to schedule instructions from the target of the branch; simplejump_p fails for indirect jumps even if they have a JUMP_LABEL. */ rtx insn = emit_insn_before (gen_indirect_jump_scratch (reg, GEN_INT (INSN_UID (JUMP_LABEL (jump)))) , jump); INSN_CODE (insn) = CODE_FOR_indirect_jump_scratch; return insn; } else if (need_block) /* We can't use JUMP_LABEL here because it might be undefined when not optimizing. */ return emit_insn_before (gen_block_branch_redirect (GEN_INT (INSN_UID (XEXP (SET_SRC (PATTERN (jump)), 0)))) , jump); return prev; } #define CONDJUMP_MIN -252 #define CONDJUMP_MAX 262 struct far_branch { /* A label (to be placed) in front of the jump that jumps to our ultimate destination. */ rtx near_label; /* Where we are going to insert it if we cannot move the jump any farther, or the jump itself if we have picked up an existing jump. */ rtx insert_place; /* The ultimate destination. */ rtx far_label; struct far_branch *prev; /* If the branch has already been created, its address; else the address of its first prospective user. */ int address; }; static void gen_far_branch PARAMS ((struct far_branch *)); enum mdep_reorg_phase_e mdep_reorg_phase; void gen_far_branch (bp) struct far_branch *bp; { rtx insn = bp->insert_place; rtx jump; rtx label = gen_label_rtx (); emit_label_after (label, insn); if (bp->far_label) { jump = emit_jump_insn_after (gen_jump (bp->far_label), insn); LABEL_NUSES (bp->far_label)++; } else jump = emit_jump_insn_after (gen_return (), insn); /* Emit a barrier so that reorg knows that any following instructions are not reachable via a fall-through path. But don't do this when not optimizing, since we wouldn't supress the alignment for the barrier then, and could end up with out-of-range pc-relative loads. */ if (optimize) emit_barrier_after (jump); emit_label_after (bp->near_label, insn); JUMP_LABEL (jump) = bp->far_label; if (! invert_jump (insn, label)) abort (); /* Prevent reorg from undoing our splits. */ gen_block_redirect (jump, bp->address += 2, 2); } /* Fix up ADDR_DIFF_VECs. */ void fixup_addr_diff_vecs (first) rtx first; { rtx insn; for (insn = first; insn; insn = NEXT_INSN (insn)) { rtx vec_lab, pat, prev, prevpat, x, braf_label; if (GET_CODE (insn) != JUMP_INSN || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC) continue; pat = PATTERN (insn); vec_lab = XEXP (XEXP (pat, 0), 0); /* Search the matching casesi_jump_2. */ for (prev = vec_lab; ; prev = PREV_INSN (prev)) { if (GET_CODE (prev) != JUMP_INSN) continue; prevpat = PATTERN (prev); if (GET_CODE (prevpat) != PARALLEL || XVECLEN (prevpat, 0) != 2) continue; x = XVECEXP (prevpat, 0, 1); if (GET_CODE (x) != USE) continue; x = XEXP (x, 0); if (GET_CODE (x) == LABEL_REF && XEXP (x, 0) == vec_lab) break; } /* Emit the reference label of the braf where it belongs, right after the casesi_jump_2 (i.e. braf). */ braf_label = XEXP (XEXP (SET_SRC (XVECEXP (prevpat, 0, 0)), 1), 0); emit_label_after (braf_label, prev); /* Fix up the ADDR_DIF_VEC to be relative to the reference address of the braf. */ XEXP (XEXP (pat, 0), 0) = braf_label; } } /* BARRIER_OR_LABEL is either a BARRIER or a CODE_LABEL immediately following a barrier. Return the base 2 logarithm of the desired alignment. */ int barrier_align (barrier_or_label) rtx barrier_or_label; { rtx next = next_real_insn (barrier_or_label), pat, prev; int slot, credit; if (! next) return 0; pat = PATTERN (next); if (GET_CODE (pat) == ADDR_DIFF_VEC) return 2; if (GET_CODE (pat) == UNSPEC_VOLATILE && XINT (pat, 1) == 1) /* This is a barrier in front of a constant table. */ return 0; prev = prev_real_insn (barrier_or_label); if (GET_CODE (PATTERN (prev)) == ADDR_DIFF_VEC) { pat = PATTERN (prev); /* If this is a very small table, we want to keep the alignment after the table to the minimum for proper code alignment. */ return ((TARGET_SMALLCODE || (XVECLEN (pat, 1) * GET_MODE_SIZE (GET_MODE (pat)) <= 1 << (CACHE_LOG - 2))) ? 1 : CACHE_LOG); } if (TARGET_SMALLCODE) return 0; if (! TARGET_SH2 || ! optimize) return CACHE_LOG; /* When fixing up pcloads, a constant table might be inserted just before the basic block that ends with the barrier. Thus, we can't trust the instruction lengths before that. */ if (mdep_reorg_phase > SH_FIXUP_PCLOAD) { /* Check if there is an immediately preceding branch to the insn beyond the barrier. We must weight the cost of discarding useful information from the current cache line when executing this branch and there is an alignment, against that of fetching unneeded insn in front of the branch target when there is no alignment. */ /* PREV is presumed to be the JUMP_INSN for the barrier under investigation. Skip to the insn before it. */ prev = prev_real_insn (prev); for (slot = 2, credit = 1 << (CACHE_LOG - 2) + 2; credit >= 0 && prev && GET_CODE (prev) == INSN; prev = prev_real_insn (prev)) { if (GET_CODE (PATTERN (prev)) == USE || GET_CODE (PATTERN (prev)) == CLOBBER) continue; if (GET_CODE (PATTERN (prev)) == SEQUENCE) prev = XVECEXP (PATTERN (prev), 0, 1); if (slot && get_attr_in_delay_slot (prev) == IN_DELAY_SLOT_YES) slot = 0; credit -= get_attr_length (prev); } if (prev && GET_CODE (prev) == JUMP_INSN && JUMP_LABEL (prev) && next_real_insn (JUMP_LABEL (prev)) == next_real_insn (barrier_or_label)) { rtx pat = PATTERN (prev); if (GET_CODE (pat) == PARALLEL) pat = XVECEXP (pat, 0, 0); if (credit - slot >= (GET_CODE (SET_SRC (pat)) == PC ? 2 : 0)) return 0; } } return CACHE_LOG; } /* If we are inside a phony loop, almost any kind of label can turn up as the first one in the loop. Aligning a braf label causes incorrect switch destination addresses; we can detect braf labels because they are followed by a BARRIER. Applying loop alignment to small constant or switch tables is a waste of space, so we suppress this too. */ int sh_loop_align (label) rtx label; { rtx next = label; do next = next_nonnote_insn (next); while (next && GET_CODE (next) == CODE_LABEL); if (! next || GET_RTX_CLASS (GET_CODE (next)) != 'i' || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC || recog_memoized (next) == CODE_FOR_consttable_2) return 0; return 2; } /* Exported to toplev.c. Do a final pass over the function, just before delayed branch scheduling. */ void machine_dependent_reorg (first) rtx first; { rtx insn, mova; int num_mova; rtx r0_rtx = gen_rtx_REG (Pmode, 0); rtx r0_inc_rtx = gen_rtx_POST_INC (Pmode, r0_rtx); /* If relaxing, generate pseudo-ops to associate function calls with the symbols they call. It does no harm to not generate these pseudo-ops. However, when we can generate them, it enables to linker to potentially relax the jsr to a bsr, and eliminate the register load and, possibly, the constant pool entry. */ mdep_reorg_phase = SH_INSERT_USES_LABELS; if (TARGET_RELAX) { /* Remove all REG_LABEL notes. We want to use them for our own purposes. This works because none of the remaining passes need to look at them. ??? But it may break in the future. We should use a machine dependent REG_NOTE, or some other approach entirely. */ for (insn = first; insn; insn = NEXT_INSN (insn)) { if (GET_RTX_CLASS (GET_CODE (insn)) == 'i') { rtx note; while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != 0) remove_note (insn, note); } } for (insn = first; insn; insn = NEXT_INSN (insn)) { rtx pattern, reg, link, set, scan, dies, label; int rescan = 0, foundinsn = 0; if (GET_CODE (insn) == CALL_INSN) { pattern = PATTERN (insn); if (GET_CODE (pattern) == PARALLEL) pattern = XVECEXP (pattern, 0, 0); if (GET_CODE (pattern) == SET) pattern = SET_SRC (pattern); if (GET_CODE (pattern) != CALL || GET_CODE (XEXP (pattern, 0)) != MEM) continue; reg = XEXP (XEXP (pattern, 0), 0); } else { reg = sfunc_uses_reg (insn); if (! reg) continue; } if (GET_CODE (reg) != REG) continue; /* This is a function call via REG. If the only uses of REG between the time that it is set and the time that it dies are in function calls, then we can associate all the function calls with the setting of REG. */ for (link = LOG_LINKS (insn); link; link = XEXP (link, 1)) { if (REG_NOTE_KIND (link) != 0) continue; set = single_set (XEXP (link, 0)); if (set && rtx_equal_p (reg, SET_DEST (set))) { link = XEXP (link, 0); break; } } if (! link) { /* ??? Sometimes global register allocation will have deleted the insn pointed to by LOG_LINKS. Try scanning backward to find where the register is set. */ for (scan = PREV_INSN (insn); scan && GET_CODE (scan) != CODE_LABEL; scan = PREV_INSN (scan)) { if (GET_RTX_CLASS (GET_CODE (scan)) != 'i') continue; if (! reg_mentioned_p (reg, scan)) continue; if (noncall_uses_reg (reg, scan, &set)) break; if (set) { link = scan; break; } } } if (! link) continue; /* The register is set at LINK. */ /* We can only optimize the function call if the register is being set to a symbol. In theory, we could sometimes optimize calls to a constant location, but the assembler and linker do not support that at present. */ if (GET_CODE (SET_SRC (set)) != SYMBOL_REF && GET_CODE (SET_SRC (set)) != LABEL_REF) continue; /* Scan forward from LINK to the place where REG dies, and make sure that the only insns which use REG are themselves function calls. */ /* ??? This doesn't work for call targets that were allocated by reload, since there may not be a REG_DEAD note for the register. */ dies = NULL_RTX; for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan)) { rtx scanset; /* Don't try to trace forward past a CODE_LABEL if we haven't seen INSN yet. Ordinarily, we will only find the setting insn in LOG_LINKS if it is in the same basic block. However, cross-jumping can insert code labels in between the load and the call, and can result in situations where a single call insn may have two targets depending on where we came from. */ if (GET_CODE (scan) == CODE_LABEL && ! foundinsn) break; if (GET_RTX_CLASS (GET_CODE (scan)) != 'i') continue; /* Don't try to trace forward past a JUMP. To optimize safely, we would have to check that all the instructions at the jump destination did not use REG. */ if (GET_CODE (scan) == JUMP_INSN) break; if (! reg_mentioned_p (reg, scan)) continue; if (noncall_uses_reg (reg, scan, &scanset)) break; if (scan == insn) foundinsn = 1; if (scan != insn && (GET_CODE (scan) == CALL_INSN || sfunc_uses_reg (scan))) { /* There is a function call to this register other than the one we are checking. If we optimize this call, we need to rescan again below. */ rescan = 1; } /* ??? We shouldn't have to worry about SCANSET here. We should just be able to check for a REG_DEAD note on a function call. However, the REG_DEAD notes are apparently not dependable around libcalls; c-torture execute/920501-2 is a test case. If SCANSET is set, then this insn sets the register, so it must have died earlier. Unfortunately, this will only handle the cases in which the register is, in fact, set in a later insn. */ /* ??? We shouldn't have to use FOUNDINSN here. However, the LOG_LINKS fields are apparently not entirely reliable around libcalls; newlib/libm/math/e_pow.c is a test case. Sometimes an insn will appear in LOG_LINKS even though it is not the most recent insn which sets the register. */ if (foundinsn && (scanset || find_reg_note (scan, REG_DEAD, reg))) { dies = scan; break; } } if (! dies) { /* Either there was a branch, or some insn used REG other than as a function call address. */ continue; } /* Create a code label, and put it in a REG_LABEL note on the insn which sets the register, and on each call insn which uses the register. In final_prescan_insn we look for the REG_LABEL notes, and output the appropriate label or pseudo-op. */ label = gen_label_rtx (); REG_NOTES (link) = gen_rtx_EXPR_LIST (REG_LABEL, label, REG_NOTES (link)); REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, label, REG_NOTES (insn)); if (rescan) { scan = link; do { rtx reg2; scan = NEXT_INSN (scan); if (scan != insn && ((GET_CODE (scan) == CALL_INSN && reg_mentioned_p (reg, scan)) || ((reg2 = sfunc_uses_reg (scan)) && REGNO (reg2) == REGNO (reg)))) REG_NOTES (scan) = gen_rtx_EXPR_LIST (REG_LABEL, label, REG_NOTES (scan)); } while (scan != dies); } } } if (TARGET_SH2) fixup_addr_diff_vecs (first); if (optimize) { mdep_reorg_phase = SH_SHORTEN_BRANCHES0; shorten_branches (first); } /* Scan the function looking for move instructions which have to be changed to pc-relative loads and insert the literal tables. */ mdep_reorg_phase = SH_FIXUP_PCLOAD; for (insn = first, num_mova = 0; insn; insn = NEXT_INSN (insn)) { if (mova_p (insn)) { if (! num_mova++) mova = insn; } else if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC && num_mova) { rtx scan; int total; num_mova--; /* Some code might have been inserted between the mova and its ADDR_DIFF_VEC. Check if the mova is still in range. */ for (scan = mova, total = 0; scan != insn; scan = NEXT_INSN (scan)) total += get_attr_length (scan); /* range of mova is 1020, add 4 because pc counts from address of second instruction after this one, subtract 2 in case pc is 2 byte aligned. Possible alignment needed for the ADDR_DIFF_VEC cancels out with alignment effects of the mova itself. */ if (total > 1022) { /* Change the mova into a load, and restart scanning there. broken_move will then return true for mova. */ SET_SRC (PATTERN (mova)) = XVECEXP (SET_SRC (PATTERN (mova)), 0, 0); INSN_CODE (mova) = -1; insn = mova; } } if (broken_move (insn)) { rtx scan; /* Scan ahead looking for a barrier to stick the constant table behind. */ rtx barrier = find_barrier (num_mova, mova, insn); rtx last_float_move, last_float = 0, *last_float_addr; if (num_mova && ! mova_p (mova)) { /* find_barrier had to change the first mova into a pcload; thus, we have to start with this new pcload. */ insn = mova; num_mova = 0; } /* Now find all the moves between the points and modify them. */ for (scan = insn; scan != barrier; scan = NEXT_INSN (scan)) { if (GET_CODE (scan) == CODE_LABEL) last_float = 0; if (broken_move (scan)) { rtx *patp = &PATTERN (scan), pat = *patp; rtx src, dst; rtx lab; rtx newsrc; enum machine_mode mode; if (GET_CODE (pat) == PARALLEL) patp = &XVECEXP (pat, 0, 0), pat = *patp; src = SET_SRC (pat); dst = SET_DEST (pat); mode = GET_MODE (dst); if (mode == SImode && hi_const (src) && REGNO (dst) != FPUL_REG) { int offset = 0; mode = HImode; while (GET_CODE (dst) == SUBREG) { offset += SUBREG_WORD (dst); dst = SUBREG_REG (dst); } dst = gen_rtx_REG (HImode, REGNO (dst) + offset); } if (GET_CODE (dst) == REG && ((REGNO (dst) >= FIRST_FP_REG && REGNO (dst) <= LAST_XD_REG) || REGNO (dst) == FPUL_REG)) { /* This must be an insn that clobbers r0. */ rtx clobber = XVECEXP (PATTERN (scan), 0, XVECLEN (PATTERN (scan), 0) - 1); if (GET_CODE (clobber) != CLOBBER || ! rtx_equal_p (XEXP (clobber, 0), r0_rtx)) abort (); if (last_float && reg_set_between_p (r0_rtx, last_float_move, scan)) last_float = 0; lab = add_constant (src, mode, last_float); if (lab) emit_insn_before (gen_mova (lab), scan); else { /* There will be a REG_UNUSED note for r0 on LAST_FLOAT_MOVE; we have to change it to REG_INC, lest reorg:mark_target_live_regs will not consider r0 to be used, and we end up with delay slot insn in front of SCAN that clobber r0. */ rtx note = find_regno_note (last_float_move, REG_UNUSED, 0); /* If we are not optimizing, then there may not be a note. */ if (note) PUT_MODE (note, REG_INC); *last_float_addr = r0_inc_rtx; } last_float_move = scan; last_float = src; newsrc = gen_rtx (MEM, mode, (((TARGET_SH4 && ! TARGET_FMOVD) || REGNO (dst) == FPUL_REG) ? r0_inc_rtx : r0_rtx)); last_float_addr = &XEXP (newsrc, 0); /* Remove the clobber of r0. */ XEXP (clobber, 0) = gen_rtx_SCRATCH (Pmode); } else { lab = add_constant (src, mode, 0); newsrc = gen_rtx_MEM (mode, gen_rtx_LABEL_REF (VOIDmode, lab)); } RTX_UNCHANGING_P (newsrc) = 1; *patp = gen_rtx_SET (VOIDmode, dst, newsrc); INSN_CODE (scan) = -1; } } dump_table (barrier); insn = barrier; } } mdep_reorg_phase = SH_SHORTEN_BRANCHES1; insn_addresses = 0; split_branches (first); /* The INSN_REFERENCES_ARE_DELAYED in sh.h is problematic because it also has an effect on the register that holds the addres of the sfunc. Insert an extra dummy insn in front of each sfunc that pretends to use this register. */ if (flag_delayed_branch) { for (insn = first; insn; insn = NEXT_INSN (insn)) { rtx reg = sfunc_uses_reg (insn); if (! reg) continue; emit_insn_before (gen_use_sfunc_addr (reg), insn); } } #if 0 /* fpscr is not actually a user variable, but we pretend it is for the sake of the previous optimization passes, since we want it handled like one. However, we don't have any debugging information for it, so turn it into a non-user variable now. */ if (TARGET_SH4) REG_USERVAR_P (get_fpscr_rtx ()) = 0; #endif mdep_reorg_phase = SH_AFTER_MDEP_REORG; } int get_dest_uid (label, max_uid) rtx label; int max_uid; { rtx dest = next_real_insn (label); int dest_uid; if (! dest) /* This can happen for an undefined label. */ return 0; dest_uid = INSN_UID (dest); /* If this is a newly created branch redirection blocking instruction, we cannot index the branch_uid or insn_addresses arrays with its uid. But then, we won't need to, because the actual destination is the following branch. */ while (dest_uid >= max_uid) { dest = NEXT_INSN (dest); dest_uid = INSN_UID (dest); } if (GET_CODE (dest) == JUMP_INSN && GET_CODE (PATTERN (dest)) == RETURN) return 0; return dest_uid; } /* Split condbranches that are out of range. Also add clobbers for scratch registers that are needed in far jumps. We do this before delay slot scheduling, so that it can take our newly created instructions into account. It also allows us to find branches with common targets more easily. */ static void split_branches (first) rtx first; { rtx insn; struct far_branch **uid_branch, *far_branch_list = 0; int max_uid = get_max_uid (); /* Find out which branches are out of range. */ shorten_branches (first); uid_branch = (struct far_branch **) alloca (max_uid * sizeof *uid_branch); bzero ((char *) uid_branch, max_uid * sizeof *uid_branch); for (insn = first; insn; insn = NEXT_INSN (insn)) if (GET_RTX_CLASS (GET_CODE (insn)) != 'i') continue; else if (INSN_DELETED_P (insn)) { /* Shorten_branches would split this instruction again, so transform it into a note. */ PUT_CODE (insn, NOTE); NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED; NOTE_SOURCE_FILE (insn) = 0; } else if (GET_CODE (insn) == JUMP_INSN /* Don't mess with ADDR_DIFF_VEC */ && (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == RETURN)) { enum attr_type type = get_attr_type (insn); if (type == TYPE_CBRANCH) { rtx next, beyond; if (get_attr_length (insn) > 4) { rtx src = SET_SRC (PATTERN (insn)); rtx olabel = XEXP (XEXP (src, 1), 0); int addr = insn_addresses[INSN_UID (insn)]; rtx label = 0; int dest_uid = get_dest_uid (olabel, max_uid); struct far_branch *bp = uid_branch[dest_uid]; /* redirect_jump needs a valid JUMP_LABEL, and it might delete the label if the LABEL_NUSES count drops to zero. There is always a jump_optimize pass that sets these values, but it proceeds to delete unreferenced code, and then if not optimizing, to un-delete the deleted instructions, thus leaving labels with too low uses counts. */ if (! optimize) { JUMP_LABEL (insn) = olabel; LABEL_NUSES (olabel)++; } if (! bp) { bp = (struct far_branch *) alloca (sizeof *bp); uid_branch[dest_uid] = bp; bp->prev = far_branch_list; far_branch_list = bp; bp->far_label = XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0); LABEL_NUSES (bp->far_label)++; } else { label = bp->near_label; if (! label && bp->address - addr >= CONDJUMP_MIN) { rtx block = bp->insert_place; if (GET_CODE (PATTERN (block)) == RETURN) block = PREV_INSN (block); else block = gen_block_redirect (block, bp->address, 2); label = emit_label_after (gen_label_rtx (), PREV_INSN (block)); bp->near_label = label; } else if (label && ! NEXT_INSN (label)) { if (addr + 2 - bp->address <= CONDJUMP_MAX) bp->insert_place = insn; else gen_far_branch (bp); } } if (! label || (NEXT_INSN (label) && bp->address - addr < CONDJUMP_MIN)) { bp->near_label = label = gen_label_rtx (); bp->insert_place = insn; bp->address = addr; } if (! redirect_jump (insn, label)) abort (); } else { /* get_attr_length (insn) == 2 */ /* Check if we have a pattern where reorg wants to redirect the branch to a label from an unconditional branch that is too far away. */ /* We can't use JUMP_LABEL here because it might be undefined when not optimizing. */ /* A syntax error might cause beyond to be NULL_RTX. */ beyond = next_active_insn (XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0)); if (beyond && (GET_CODE (beyond) == JUMP_INSN || (GET_CODE (beyond = next_active_insn (beyond)) == JUMP_INSN)) && GET_CODE (PATTERN (beyond)) == SET && recog_memoized (beyond) == CODE_FOR_jump && ((insn_addresses[INSN_UID (XEXP (SET_SRC (PATTERN (beyond)), 0))] - insn_addresses[INSN_UID (insn)] + 252U) > 252 + 258 + 2)) gen_block_redirect (beyond, insn_addresses[INSN_UID (beyond)], 1); } next = next_active_insn (insn); if ((GET_CODE (next) == JUMP_INSN || GET_CODE (next = next_active_insn (next)) == JUMP_INSN) && GET_CODE (PATTERN (next)) == SET && recog_memoized (next) == CODE_FOR_jump && ((insn_addresses[INSN_UID (XEXP (SET_SRC (PATTERN (next)), 0))] - insn_addresses[INSN_UID (insn)] + 252U) > 252 + 258 + 2)) gen_block_redirect (next, insn_addresses[INSN_UID (next)], 1); } else if (type == TYPE_JUMP || type == TYPE_RETURN) { int addr = insn_addresses[INSN_UID (insn)]; rtx far_label = 0; int dest_uid = 0; struct far_branch *bp; if (type == TYPE_JUMP) { far_label = XEXP (SET_SRC (PATTERN (insn)), 0); dest_uid = get_dest_uid (far_label, max_uid); if (! dest_uid) { /* Parse errors can lead to labels outside the insn stream. */ if (! NEXT_INSN (far_label)) continue; if (! optimize) { JUMP_LABEL (insn) = far_label; LABEL_NUSES (far_label)++; } redirect_jump (insn, NULL_RTX); far_label = 0; } } bp = uid_branch[dest_uid]; if (! bp) { bp = (struct far_branch *) alloca (sizeof *bp); uid_branch[dest_uid] = bp; bp->prev = far_branch_list; far_branch_list = bp; bp->near_label = 0; bp->far_label = far_label; if (far_label) LABEL_NUSES (far_label)++; } else if (bp->near_label && ! NEXT_INSN (bp->near_label)) if (addr - bp->address <= CONDJUMP_MAX) emit_label_after (bp->near_label, PREV_INSN (insn)); else { gen_far_branch (bp); bp->near_label = 0; } else bp->near_label = 0; bp->address = addr; bp->insert_place = insn; if (! far_label) emit_insn_before (gen_block_branch_redirect (const0_rtx), insn); else gen_block_redirect (insn, addr, bp->near_label ? 2 : 0); } } /* Generate all pending far branches, and free our references to the far labels. */ while (far_branch_list) { if (far_branch_list->near_label && ! NEXT_INSN (far_branch_list->near_label)) gen_far_branch (far_branch_list); if (optimize && far_branch_list->far_label && ! --LABEL_NUSES (far_branch_list->far_label)) delete_insn (far_branch_list->far_label); far_branch_list = far_branch_list->prev; } /* Instruction length information is no longer valid due to the new instructions that have been generated. */ init_insn_lengths (); } /* Dump out instruction addresses, which is useful for debugging the constant pool table stuff. If relaxing, output the label and pseudo-ops used to link together calls and the instruction which set the registers. */ /* ??? This is unnecessary, and probably should be deleted. This makes the insn_addresses declaration above unnecessary. */ /* ??? The addresses printed by this routine for insns are nonsense for insns which are inside of a sequence where none of the inner insns have variable length. This is because the second pass of shorten_branches does not bother to update them. */ void final_prescan_insn (insn, opvec, noperands) rtx insn; rtx *opvec ATTRIBUTE_UNUSED; int noperands ATTRIBUTE_UNUSED; { if (TARGET_DUMPISIZE) fprintf (asm_out_file, "\n! at %04x\n", insn_addresses[INSN_UID (insn)]); if (TARGET_RELAX) { rtx note; note = find_reg_note (insn, REG_LABEL, NULL_RTX); if (note) { rtx pattern; pattern = PATTERN (insn); if (GET_CODE (pattern) == PARALLEL) pattern = XVECEXP (pattern, 0, 0); if (GET_CODE (pattern) == CALL || (GET_CODE (pattern) == SET && (GET_CODE (SET_SRC (pattern)) == CALL || get_attr_type (insn) == TYPE_SFUNC))) asm_fprintf (asm_out_file, "\t.uses %LL%d\n", CODE_LABEL_NUMBER (XEXP (note, 0))); else if (GET_CODE (pattern) == SET) ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (XEXP (note, 0))); else abort (); } } } /* Dump out any constants accumulated in the final pass. These will only be labels. */ const char * output_jump_label_table () { int i; if (pool_size) { fprintf (asm_out_file, "\t.align 2\n"); for (i = 0; i < pool_size; i++) { pool_node *p = &pool_vector[i]; ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (p->label)); output_asm_insn (".long %O0", &p->value); } pool_size = 0; } return ""; } /* A full frame looks like: arg-5 arg-4 [ if current_function_anonymous_args arg-3 arg-2 arg-1 arg-0 ] saved-fp saved-r10 saved-r11 saved-r12 saved-pr local-n .. local-1 local-0 <- fp points here. */ /* Number of bytes pushed for anonymous args, used to pass information between expand_prologue and expand_epilogue. */ static int extra_push; /* Adjust the stack by SIZE bytes. REG holds the rtl of the register to be adjusted, and TEMP, if nonnegative, holds the register number of a general register that we may clobber. */ static void output_stack_adjust (size, reg, temp) int size; rtx reg; int temp; { if (size) { if (CONST_OK_FOR_I (size)) emit_insn (gen_addsi3 (reg, reg, GEN_INT (size))); /* Try to do it with two partial adjustments; however, we must make sure that the stack is properly aligned at all times, in case an interrupt occurs between the two partial adjustments. */ else if (CONST_OK_FOR_I (size / 2 & -4) && CONST_OK_FOR_I (size - (size / 2 & -4))) { emit_insn (gen_addsi3 (reg, reg, GEN_INT (size / 2 & -4))); emit_insn (gen_addsi3 (reg, reg, GEN_INT (size - (size / 2 & -4)))); } else { rtx const_reg; /* If TEMP is invalid, we could temporarily save a general register to MACL. However, there is currently no need to handle this case, so just abort when we see it. */ if (temp < 0) abort (); const_reg = gen_rtx_REG (SImode, temp); /* If SIZE is negative, subtract the positive value. This sometimes allows a constant pool entry to be shared between prologue and epilogue code. */ if (size < 0) { emit_insn (gen_movsi (const_reg, GEN_INT (-size))); emit_insn (gen_subsi3 (reg, reg, const_reg)); } else { emit_insn (gen_movsi (const_reg, GEN_INT (size))); emit_insn (gen_addsi3 (reg, reg, const_reg)); } } } } /* Output RTL to push register RN onto the stack. */ static void push (rn) int rn; { rtx x; if (rn == FPUL_REG) x = gen_push_fpul (); else if (TARGET_SH4 && TARGET_FMOVD && ! TARGET_FPU_SINGLE && rn >= FIRST_FP_REG && rn <= LAST_XD_REG) { if ((rn - FIRST_FP_REG) & 1 && rn <= LAST_FP_REG) return; x = gen_push_4 (gen_rtx_REG (DFmode, rn)); } else if (TARGET_SH3E && rn >= FIRST_FP_REG && rn <= LAST_FP_REG) x = gen_push_e (gen_rtx_REG (SFmode, rn)); else x = gen_push (gen_rtx_REG (SImode, rn)); x = emit_insn (x); REG_NOTES (x) = gen_rtx_EXPR_LIST (REG_INC, gen_rtx_REG (SImode, STACK_POINTER_REGNUM), 0); } /* Output RTL to pop register RN from the stack. */ static void pop (rn) int rn; { rtx x; if (rn == FPUL_REG) x = gen_pop_fpul (); else if (TARGET_SH4 && TARGET_FMOVD && ! TARGET_FPU_SINGLE && rn >= FIRST_FP_REG && rn <= LAST_XD_REG) { if ((rn - FIRST_FP_REG) & 1 && rn <= LAST_FP_REG) return; x = gen_pop_4 (gen_rtx_REG (DFmode, rn)); } else if (TARGET_SH3E && rn >= FIRST_FP_REG && rn <= LAST_FP_REG) x = gen_pop_e (gen_rtx_REG (SFmode, rn)); else x = gen_pop (gen_rtx_REG (SImode, rn)); x = emit_insn (x); REG_NOTES (x) = gen_rtx_EXPR_LIST (REG_INC, gen_rtx_REG (SImode, STACK_POINTER_REGNUM), 0); } /* Generate code to push the regs specified in the mask. */ static void push_regs (mask, mask2) int mask, mask2; { int i; /* Push PR last; this gives better latencies after the prologue, and candidates for the return delay slot when there are no general registers pushed. */ for (i = 0; i < 32; i++) if (mask & (1 << i) && i != PR_REG) push (i); for (i = 32; i < FIRST_PSEUDO_REGISTER; i++) if (mask2 & (1 << (i - 32))) push (i); if (mask & (1 << PR_REG)) push (PR_REG); } /* Work out the registers which need to be saved, both as a mask and a count of saved words. If doing a pragma interrupt function, then push all regs used by the function, and if we call another function (we can tell by looking at PR), make sure that all the regs it clobbers are safe too. */ static int calc_live_regs (count_ptr, live_regs_mask2) int *count_ptr; int *live_regs_mask2; { int reg; int live_regs_mask = 0; int count; int interrupt_handler; if ((lookup_attribute ("interrupt_handler", DECL_MACHINE_ATTRIBUTES (current_function_decl))) != NULL_TREE) interrupt_handler = 1; else interrupt_handler = 0; *live_regs_mask2 = 0; /* If we can save a lot of saves by switching to double mode, do that. */ if (TARGET_SH4 && TARGET_FMOVD && TARGET_FPU_SINGLE) for (count = 0, reg = FIRST_FP_REG; reg <= LAST_FP_REG; reg += 2) if (regs_ever_live[reg] && regs_ever_live[reg+1] && (! call_used_regs[reg] || (interrupt_handler && ! pragma_trapa)) && ++count > 2) { target_flags &= ~FPU_SINGLE_BIT; break; } for (count = 0, reg = FIRST_PSEUDO_REGISTER - 1; reg >= 0; reg--) { if ((interrupt_handler && ! pragma_trapa) ? (/* Need to save all the regs ever live. */ (regs_ever_live[reg] || (call_used_regs[reg] && (! fixed_regs[reg] || reg == MACH_REG || reg == MACL_REG) && regs_ever_live[PR_REG])) && reg != STACK_POINTER_REGNUM && reg != ARG_POINTER_REGNUM && reg != RETURN_ADDRESS_POINTER_REGNUM && reg != T_REG && reg != GBR_REG && reg != FPSCR_REG) : (/* Only push those regs which are used and need to be saved. */ regs_ever_live[reg] && ! call_used_regs[reg])) { if (reg >= 32) *live_regs_mask2 |= 1 << (reg - 32); else live_regs_mask |= 1 << reg; count++; if (TARGET_SH4 && TARGET_FMOVD && reg >= FIRST_FP_REG) { if (reg <= LAST_FP_REG) { if (! TARGET_FPU_SINGLE && ! regs_ever_live[reg ^ 1]) { if (reg >= 32) *live_regs_mask2 |= 1 << ((reg ^ 1) - 32); else live_regs_mask |= 1 << (reg ^ 1); count++; } } else if (reg <= LAST_XD_REG) { /* Must switch to double mode to access these registers. */ target_flags &= ~FPU_SINGLE_BIT; count++; } } } } *count_ptr = count; return live_regs_mask; } /* Code to generate prologue and epilogue sequences */ void sh_expand_prologue () { int live_regs_mask; int d, i; int live_regs_mask2; int save_flags = target_flags; int double_align = 0; /* We have pretend args if we had an object sent partially in registers and partially on the stack, e.g. a large structure. */ output_stack_adjust (-current_function_pretend_args_size, stack_pointer_rtx, 3); extra_push = 0; /* This is set by SETUP_VARARGS to indicate that this is a varargs routine. Clear it here so that the next function isn't affected. */ if (current_function_anonymous_args) { current_function_anonymous_args = 0; /* This is not used by the SH3E calling convention */ if (! TARGET_SH3E && ! TARGET_HITACHI) { /* Push arg regs as if they'd been provided by caller in stack. */ for (i = 0; i < NPARM_REGS(SImode); i++) { int rn = NPARM_REGS(SImode) + FIRST_PARM_REG - i - 1; if (i >= (NPARM_REGS(SImode) - current_function_args_info.arg_count[(int) SH_ARG_INT] )) break; push (rn); extra_push += 4; } } } /* If we're supposed to switch stacks at function entry, do so now. */ if (sp_switch) emit_insn (gen_sp_switch_1 ()); live_regs_mask = calc_live_regs (&d, &live_regs_mask2); /* ??? Maybe we could save some switching if we can move a mode switch that already happens to be at the function start into the prologue. */ if (target_flags != save_flags) emit_insn (gen_toggle_sz ()); push_regs (live_regs_mask, live_regs_mask2); if (target_flags != save_flags) emit_insn (gen_toggle_sz ()); if (TARGET_ALIGN_DOUBLE && d & 1) double_align = 4; target_flags = save_flags; output_stack_adjust (-get_frame_size () - double_align, stack_pointer_rtx, 3); if (frame_pointer_needed) emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx)); } void sh_expand_epilogue () { int live_regs_mask; int d, i; int live_regs_mask2; int save_flags = target_flags; int frame_size = get_frame_size (); live_regs_mask = calc_live_regs (&d, &live_regs_mask2); if (TARGET_ALIGN_DOUBLE && d & 1) frame_size += 4; if (frame_pointer_needed) { output_stack_adjust (frame_size, frame_pointer_rtx, 7); /* We must avoid moving the stack pointer adjustment past code which reads from the local frame, else an interrupt could occur after the SP adjustment and clobber data in the local frame. */ emit_insn (gen_blockage ()); emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx)); } else if (frame_size) { /* We must avoid moving the stack pointer adjustment past code which reads from the local frame, else an interrupt could occur after the SP adjustment and clobber data in the local frame. */ emit_insn (gen_blockage ()); output_stack_adjust (frame_size, stack_pointer_rtx, 7); } /* Pop all the registers. */ if (target_flags != save_flags) emit_insn (gen_toggle_sz ()); if (live_regs_mask & (1 << PR_REG)) pop (PR_REG); for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { int j = (FIRST_PSEUDO_REGISTER - 1) - i; if (j < 32 && (live_regs_mask & (1 << j)) && j != PR_REG) pop (j); else if (j >= 32 && (live_regs_mask2 & (1 << (j - 32)))) pop (j); } if (target_flags != save_flags) emit_insn (gen_toggle_sz ()); target_flags = save_flags; output_stack_adjust (extra_push + current_function_pretend_args_size, stack_pointer_rtx, 7); /* Switch back to the normal stack if necessary. */ if (sp_switch) emit_insn (gen_sp_switch_2 ()); } /* Clear variables at function end. */ void function_epilogue (stream, size) FILE *stream ATTRIBUTE_UNUSED; int size ATTRIBUTE_UNUSED; { trap_exit = pragma_interrupt = pragma_trapa = pragma_nosave_low_regs = 0; sp_switch = NULL_RTX; } rtx sh_builtin_saveregs () { /* First unnamed integer register. */ int first_intreg = current_function_args_info.arg_count[(int) SH_ARG_INT]; /* Number of integer registers we need to save. */ int n_intregs = MAX (0, NPARM_REGS (SImode) - first_intreg); /* First unnamed SFmode float reg */ int first_floatreg = current_function_args_info.arg_count[(int) SH_ARG_FLOAT]; /* Number of SFmode float regs to save. */ int n_floatregs = MAX (0, NPARM_REGS (SFmode) - first_floatreg); rtx regbuf, fpregs; int bufsize, regno, alias_set; /* Allocate block of memory for the regs. */ /* ??? If n_intregs + n_floatregs == 0, should we allocate at least 1 byte? Or can assign_stack_local accept a 0 SIZE argument? */ bufsize = (n_intregs * UNITS_PER_WORD) + (n_floatregs * UNITS_PER_WORD); regbuf = assign_stack_local (BLKmode, bufsize, 0); alias_set = get_varargs_alias_set (); MEM_ALIAS_SET (regbuf) = alias_set; /* Save int args. This is optimized to only save the regs that are necessary. Explicitly named args need not be saved. */ if (n_intregs > 0) move_block_from_reg (BASE_ARG_REG (SImode) + first_intreg, change_address (regbuf, BLKmode, plus_constant (XEXP (regbuf, 0), (n_floatregs * UNITS_PER_WORD))), n_intregs, n_intregs * UNITS_PER_WORD); /* Save float args. This is optimized to only save the regs that are necessary. Explicitly named args need not be saved. We explicitly build a pointer to the buffer because it halves the insn count when not optimizing (otherwise the pointer is built for each reg saved). We emit the moves in reverse order so that we can use predecrement. */ fpregs = gen_reg_rtx (Pmode); emit_move_insn (fpregs, XEXP (regbuf, 0)); emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (n_floatregs * UNITS_PER_WORD))); if (TARGET_SH4) { rtx mem; for (regno = NPARM_REGS (DFmode) - 2; regno >= first_floatreg; regno -= 2) { emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (-2 * UNITS_PER_WORD))); mem = gen_rtx_MEM (DFmode, fpregs); MEM_ALIAS_SET (mem) = alias_set; emit_move_insn (mem, gen_rtx (REG, DFmode, BASE_ARG_REG (DFmode) + regno)); } regno = first_floatreg; if (regno & 1) { emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (- UNITS_PER_WORD))); mem = gen_rtx_MEM (SFmode, fpregs); MEM_ALIAS_SET (mem) = alias_set; emit_move_insn (mem, gen_rtx (REG, SFmode, BASE_ARG_REG (SFmode) + regno - (TARGET_LITTLE_ENDIAN != 0))); } } else for (regno = NPARM_REGS (SFmode) - 1; regno >= first_floatreg; regno--) { rtx mem; emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (- UNITS_PER_WORD))); mem = gen_rtx_MEM (SFmode, fpregs); MEM_ALIAS_SET (mem) = alias_set; emit_move_insn (mem, gen_rtx_REG (SFmode, BASE_ARG_REG (SFmode) + regno)); } /* Return the address of the regbuf. */ return XEXP (regbuf, 0); } /* Define the `__builtin_va_list' type for the ABI. */ tree sh_build_va_list () { tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack; tree record; if ((! TARGET_SH3E && ! TARGET_SH4) || TARGET_HITACHI) return ptr_type_node; record = make_node (RECORD_TYPE); f_next_o = build_decl (FIELD_DECL, get_identifier ("__va_next_o"), ptr_type_node); f_next_o_limit = build_decl (FIELD_DECL, get_identifier ("__va_next_o_limit"), ptr_type_node); f_next_fp = build_decl (FIELD_DECL, get_identifier ("__va_next_fp"), ptr_type_node); f_next_fp_limit = build_decl (FIELD_DECL, get_identifier ("__va_next_fp_limit"), ptr_type_node); f_next_stack = build_decl (FIELD_DECL, get_identifier ("__va_next_stack"), ptr_type_node); DECL_FIELD_CONTEXT (f_next_o) = record; DECL_FIELD_CONTEXT (f_next_o_limit) = record; DECL_FIELD_CONTEXT (f_next_fp) = record; DECL_FIELD_CONTEXT (f_next_fp_limit) = record; DECL_FIELD_CONTEXT (f_next_stack) = record; TYPE_FIELDS (record) = f_next_o; TREE_CHAIN (f_next_o) = f_next_o_limit; TREE_CHAIN (f_next_o_limit) = f_next_fp; TREE_CHAIN (f_next_fp) = f_next_fp_limit; TREE_CHAIN (f_next_fp_limit) = f_next_stack; layout_type (record); return record; } /* Implement `va_start' for varargs and stdarg. */ void sh_va_start (stdarg_p, valist, nextarg) int stdarg_p; tree valist; rtx nextarg; { tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack; tree next_o, next_o_limit, next_fp, next_fp_limit, next_stack; tree t, u; int nfp, nint; if ((! TARGET_SH3E && ! TARGET_SH4) || TARGET_HITACHI) { std_expand_builtin_va_start (stdarg_p, valist, nextarg); return; } f_next_o = TYPE_FIELDS (va_list_type_node); f_next_o_limit = TREE_CHAIN (f_next_o); f_next_fp = TREE_CHAIN (f_next_o_limit); f_next_fp_limit = TREE_CHAIN (f_next_fp); f_next_stack = TREE_CHAIN (f_next_fp_limit); next_o = build (COMPONENT_REF, TREE_TYPE (f_next_o), valist, f_next_o); next_o_limit = build (COMPONENT_REF, TREE_TYPE (f_next_o_limit), valist, f_next_o_limit); next_fp = build (COMPONENT_REF, TREE_TYPE (f_next_fp), valist, f_next_fp); next_fp_limit = build (COMPONENT_REF, TREE_TYPE (f_next_fp_limit), valist, f_next_fp_limit); next_stack = build (COMPONENT_REF, TREE_TYPE (f_next_stack), valist, f_next_stack); /* Call __builtin_saveregs. */ u = make_tree (ptr_type_node, expand_builtin_saveregs ()); t = build (MODIFY_EXPR, ptr_type_node, next_fp, u); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); nfp = current_function_args_info.arg_count[SH_ARG_FLOAT]; if (nfp < 8) nfp = 8 - nfp; else nfp = 0; u = fold (build (PLUS_EXPR, ptr_type_node, u, build_int_2 (UNITS_PER_WORD * nfp, 0))); t = build (MODIFY_EXPR, ptr_type_node, next_fp_limit, u); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); t = build (MODIFY_EXPR, ptr_type_node, next_o, u); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); nint = current_function_args_info.arg_count[SH_ARG_INT]; if (nint < 4) nint = 4 - nint; else nint = 0; u = fold (build (PLUS_EXPR, ptr_type_node, u, build_int_2 (UNITS_PER_WORD * nint, 0))); t = build (MODIFY_EXPR, ptr_type_node, next_o_limit, u); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); u = make_tree (ptr_type_node, nextarg); if (! stdarg_p && (nint == 0 || nfp == 0)) { u = fold (build (PLUS_EXPR, ptr_type_node, u, build_int_2 (-UNITS_PER_WORD, -1))); } t = build (MODIFY_EXPR, ptr_type_node, next_stack, u); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Implement `va_arg'. */ rtx sh_va_arg (valist, type) tree valist, type; { HOST_WIDE_INT size, rsize; tree tmp, pptr_type_node; rtx addr_rtx, r; size = int_size_in_bytes (type); rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD; pptr_type_node = build_pointer_type (ptr_type_node); if ((TARGET_SH3E || TARGET_SH4) && ! TARGET_HITACHI) { tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack; tree next_o, next_o_limit, next_fp, next_fp_limit, next_stack; int pass_as_float; rtx lab_false, lab_over; f_next_o = TYPE_FIELDS (va_list_type_node); f_next_o_limit = TREE_CHAIN (f_next_o); f_next_fp = TREE_CHAIN (f_next_o_limit); f_next_fp_limit = TREE_CHAIN (f_next_fp); f_next_stack = TREE_CHAIN (f_next_fp_limit); next_o = build (COMPONENT_REF, TREE_TYPE (f_next_o), valist, f_next_o); next_o_limit = build (COMPONENT_REF, TREE_TYPE (f_next_o_limit), valist, f_next_o_limit); next_fp = build (COMPONENT_REF, TREE_TYPE (f_next_fp), valist, f_next_fp); next_fp_limit = build (COMPONENT_REF, TREE_TYPE (f_next_fp_limit), valist, f_next_fp_limit); next_stack = build (COMPONENT_REF, TREE_TYPE (f_next_stack), valist, f_next_stack); if (TARGET_SH4) { pass_as_float = ((TREE_CODE (type) == REAL_TYPE && size <= 8) || (TREE_CODE (type) == COMPLEX_TYPE && TREE_CODE (TREE_TYPE (type)) == REAL_TYPE && size <= 16)); } else { pass_as_float = (TREE_CODE (type) == REAL_TYPE && size == 4); } addr_rtx = gen_reg_rtx (Pmode); lab_false = gen_label_rtx (); lab_over = gen_label_rtx (); if (pass_as_float) { emit_cmp_and_jump_insns (expand_expr (next_fp, NULL_RTX, Pmode, EXPAND_NORMAL), expand_expr (next_fp_limit, NULL_RTX, Pmode, EXPAND_NORMAL), GE, const1_rtx, Pmode, 1, 1, lab_false); if (TYPE_ALIGN (type) > BITS_PER_WORD) { tmp = build (BIT_AND_EXPR, ptr_type_node, next_fp, build_int_2 (UNITS_PER_WORD, 0)); tmp = build (PLUS_EXPR, ptr_type_node, next_fp, tmp); tmp = build (MODIFY_EXPR, ptr_type_node, next_fp, tmp); TREE_SIDE_EFFECTS (tmp) = 1; expand_expr (tmp, const0_rtx, VOIDmode, EXPAND_NORMAL); } tmp = build1 (ADDR_EXPR, pptr_type_node, next_fp); r = expand_expr (tmp, addr_rtx, Pmode, EXPAND_NORMAL); if (r != addr_rtx) emit_move_insn (addr_rtx, r); emit_jump_insn (gen_jump (lab_over)); emit_barrier (); emit_label (lab_false); tmp = build1 (ADDR_EXPR, pptr_type_node, next_stack); r = expand_expr (tmp, addr_rtx, Pmode, EXPAND_NORMAL); if (r != addr_rtx) emit_move_insn (addr_rtx, r); } else { tmp = build (PLUS_EXPR, ptr_type_node, next_o, build_int_2 (rsize, 0)); emit_cmp_and_jump_insns (expand_expr (tmp, NULL_RTX, Pmode, EXPAND_NORMAL), expand_expr (next_o_limit, NULL_RTX, Pmode, EXPAND_NORMAL), GT, const1_rtx, Pmode, 1, 1, lab_false); tmp = build1 (ADDR_EXPR, pptr_type_node, next_o); r = expand_expr (tmp, addr_rtx, Pmode, EXPAND_NORMAL); if (r != addr_rtx) emit_move_insn (addr_rtx, r); emit_jump_insn (gen_jump (lab_over)); emit_barrier (); emit_label (lab_false); if (size > 4 && ! TARGET_SH4) { tmp = build (MODIFY_EXPR, ptr_type_node, next_o, next_o_limit); TREE_SIDE_EFFECTS (tmp) = 1; expand_expr (tmp, const0_rtx, VOIDmode, EXPAND_NORMAL); } tmp = build1 (ADDR_EXPR, pptr_type_node, next_stack); r = expand_expr (tmp, addr_rtx, Pmode, EXPAND_NORMAL); if (r != addr_rtx) emit_move_insn (addr_rtx, r); } emit_label (lab_over); tmp = make_tree (pptr_type_node, addr_rtx); valist = build1 (INDIRECT_REF, ptr_type_node, tmp); } /* ??? In va-sh.h, there had been code to make values larger than size 8 indirect. This does not match the FUNCTION_ARG macros. */ return std_expand_builtin_va_arg (valist, type); } /* Define the offset between two registers, one to be eliminated, and the other its replacement, at the start of a routine. */ int initial_elimination_offset (from, to) int from; int to; { int regs_saved; int total_saved_regs_space; int total_auto_space = get_frame_size (); int save_flags = target_flags; int live_regs_mask, live_regs_mask2; live_regs_mask = calc_live_regs (®s_saved, &live_regs_mask2); if (TARGET_ALIGN_DOUBLE && regs_saved & 1) total_auto_space += 4; target_flags = save_flags; total_saved_regs_space = (regs_saved) * 4; if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM) return total_saved_regs_space + total_auto_space; if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM) return total_saved_regs_space + total_auto_space; /* Initial gap between fp and sp is 0. */ if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM) return 0; if (from == RETURN_ADDRESS_POINTER_REGNUM && (to == FRAME_POINTER_REGNUM || to == STACK_POINTER_REGNUM)) { int i, n = total_saved_regs_space; for (i = PR_REG-1; i >= 0; i--) if (live_regs_mask & (1 << i)) n -= 4; return n + total_auto_space; } abort (); } /* Handle machine specific pragmas to be semi-compatible with Hitachi compiler. */ int sh_handle_pragma (p_getc, p_ungetc, pname) int (* p_getc) PARAMS ((void)) ATTRIBUTE_UNUSED; void (* p_ungetc) PARAMS ((int)) ATTRIBUTE_UNUSED; const char * pname; { int retval = 0; if (strcmp (pname, "interrupt") == 0) pragma_interrupt = retval = 1; else if (strcmp (pname, "trapa") == 0) pragma_interrupt = pragma_trapa = retval = 1; else if (strcmp (pname, "nosave_low_regs") == 0) pragma_nosave_low_regs = retval = 1; return retval; } /* Generate 'handle_interrupt' attribute for decls */ void sh_pragma_insert_attributes (node, attributes, prefix) tree node; tree * attributes; tree * prefix ATTRIBUTE_UNUSED; { if (! pragma_interrupt || TREE_CODE (node) != FUNCTION_DECL) return; /* We are only interested in fields. */ if (TREE_CODE_CLASS (TREE_CODE (node)) != 'd') return; /* Add a 'handle_interrupt' attribute. */ * attributes = tree_cons (get_identifier ("interrupt_handler"), NULL, * attributes); return; } /* Return nonzero if ATTR is a valid attribute for DECL. ATTRIBUTES are any existing attributes and ARGS are the arguments supplied with ATTR. Supported attributes: interrupt_handler -- specifies this function is an interrupt handler. sp_switch -- specifies an alternate stack for an interrupt handler to run on. trap_exit -- use a trapa to exit an interrupt function instead of an rte instruction. */ int sh_valid_machine_decl_attribute (decl, attributes, attr, args) tree decl; tree attributes ATTRIBUTE_UNUSED; tree attr; tree args; { if (TREE_CODE (decl) != FUNCTION_DECL) return 0; if (is_attribute_p ("interrupt_handler", attr)) { return 1; } if (is_attribute_p ("sp_switch", attr)) { /* The sp_switch attribute only has meaning for interrupt functions. */ if (!pragma_interrupt) return 0; /* sp_switch must have an argument. */ if (!args || TREE_CODE (args) != TREE_LIST) return 0; /* The argument must be a constant string. */ if (TREE_CODE (TREE_VALUE (args)) != STRING_CST) return 0; sp_switch = gen_rtx_SYMBOL_REF (VOIDmode, TREE_STRING_POINTER (TREE_VALUE (args))); return 1; } if (is_attribute_p ("trap_exit", attr)) { /* The trap_exit attribute only has meaning for interrupt functions. */ if (!pragma_interrupt) return 0; /* trap_exit must have an argument. */ if (!args || TREE_CODE (args) != TREE_LIST) return 0; /* The argument must be a constant integer. */ if (TREE_CODE (TREE_VALUE (args)) != INTEGER_CST) return 0; trap_exit = TREE_INT_CST_LOW (TREE_VALUE (args)); return 1; } return 0; } /* Predicates used by the templates. */ /* Returns 1 if OP is MACL, MACH or PR. The input must be a REG rtx. Used only in general_movsrc_operand. */ int system_reg_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { switch (REGNO (op)) { case PR_REG: case MACL_REG: case MACH_REG: return 1; } return 0; } /* Returns 1 if OP can be source of a simple move operation. Same as general_operand, but a LABEL_REF is valid, PRE_DEC is invalid as are subregs of system registers. */ int general_movsrc_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == MEM) { rtx inside = XEXP (op, 0); if (GET_CODE (inside) == CONST) inside = XEXP (inside, 0); if (GET_CODE (inside) == LABEL_REF) return 1; if (GET_CODE (inside) == PLUS && GET_CODE (XEXP (inside, 0)) == LABEL_REF && GET_CODE (XEXP (inside, 1)) == CONST_INT) return 1; /* Only post inc allowed. */ if (GET_CODE (inside) == PRE_DEC) return 0; } if ((mode == QImode || mode == HImode) && (GET_CODE (op) == SUBREG && GET_CODE (XEXP (op, 0)) == REG && system_reg_operand (XEXP (op, 0), mode))) return 0; return general_operand (op, mode); } /* Returns 1 if OP can be a destination of a move. Same as general_operand, but no preinc allowed. */ int general_movdst_operand (op, mode) rtx op; enum machine_mode mode; { /* Only pre dec allowed. */ if (GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == POST_INC) return 0; return general_operand (op, mode); } /* Returns 1 if OP is a normal arithmetic register. */ int arith_reg_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) { int regno; if (GET_CODE (op) == REG) regno = REGNO (op); else if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == REG) regno = REGNO (SUBREG_REG (op)); else return 1; return (regno != T_REG && regno != PR_REG && (regno != FPUL_REG || TARGET_SH4) && regno != MACH_REG && regno != MACL_REG); } return 0; } int fp_arith_reg_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) { int regno; if (GET_CODE (op) == REG) regno = REGNO (op); else if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == REG) regno = REGNO (SUBREG_REG (op)); else return 1; return (regno >= FIRST_PSEUDO_REGISTER || (regno >= FIRST_FP_REG && regno <= LAST_FP_REG)); } return 0; } int fp_extended_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == FLOAT_EXTEND && GET_MODE (op) == mode) { op = XEXP (op, 0); mode = GET_MODE (op); } if (register_operand (op, mode)) { int regno; if (GET_CODE (op) == REG) regno = REGNO (op); else if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == REG) regno = REGNO (SUBREG_REG (op)); else return 1; return (regno != T_REG && regno != PR_REG && regno > 15 && regno != MACH_REG && regno != MACL_REG); } return 0; } /* Returns 1 if OP is a valid source operand for an arithmetic insn. */ int arith_operand (op, mode) rtx op; enum machine_mode mode; { if (arith_reg_operand (op, mode)) return 1; if (GET_CODE (op) == CONST_INT && CONST_OK_FOR_I (INTVAL (op))) return 1; return 0; } /* Returns 1 if OP is a valid source operand for a compare insn. */ int arith_reg_or_0_operand (op, mode) rtx op; enum machine_mode mode; { if (arith_reg_operand (op, mode)) return 1; if (GET_CODE (op) == CONST_INT && CONST_OK_FOR_N (INTVAL (op))) return 1; return 0; } /* Returns 1 if OP is a valid source operand for a logical operation. */ int logical_operand (op, mode) rtx op; enum machine_mode mode; { if (arith_reg_operand (op, mode)) return 1; if (GET_CODE (op) == CONST_INT && CONST_OK_FOR_L (INTVAL (op))) return 1; return 0; } /* Nonzero if OP is a floating point value with value 0.0. */ int fp_zero_operand (op) rtx op; { REAL_VALUE_TYPE r; if (GET_MODE (op) != SFmode) return 0; REAL_VALUE_FROM_CONST_DOUBLE (r, op); return REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r); } /* Nonzero if OP is a floating point value with value 1.0. */ int fp_one_operand (op) rtx op; { REAL_VALUE_TYPE r; if (GET_MODE (op) != SFmode) return 0; REAL_VALUE_FROM_CONST_DOUBLE (r, op); return REAL_VALUES_EQUAL (r, dconst1); } /* For -m4 and -m4-single-only, mode switching is used. If we are compiling without -mfmovd, movsf_ie isn't taken into account for mode switching. We could check in machine_dependent_reorg for cases where we know we are in single precision mode, but there is interface to find that out during reload, so we must avoid choosing an fldi alternative during reload and thus failing to allocate a scratch register for the constant loading. */ int fldi_ok () { return ! TARGET_SH4 || TARGET_FMOVD || reload_completed; } int tertiary_reload_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { enum rtx_code code = GET_CODE (op); return code == MEM || (TARGET_SH4 && code == CONST_DOUBLE); } int fpscr_operand (op, mode) rtx op; enum machine_mode mode ATTRIBUTE_UNUSED; { return (GET_CODE (op) == REG && REGNO (op) == FPSCR_REG && GET_MODE (op) == PSImode); } int commutative_float_operator (op, mode) rtx op; enum machine_mode mode; { if (GET_MODE (op) != mode) return 0; switch (GET_CODE (op)) { case PLUS: case MULT: return 1; default: break; } return 0; } int noncommutative_float_operator (op, mode) rtx op; enum machine_mode mode; { if (GET_MODE (op) != mode) return 0; switch (GET_CODE (op)) { case MINUS: case DIV: return 1; default: break; } return 0; } int binary_float_operator (op, mode) rtx op; enum machine_mode mode; { if (GET_MODE (op) != mode) return 0; switch (GET_CODE (op)) { case PLUS: case MINUS: case MULT: case DIV: return 1; default: break; } return 0; } /* Return the destination address of a branch. */ static int branch_dest (branch) rtx branch; { rtx dest = SET_SRC (PATTERN (branch)); int dest_uid; if (GET_CODE (dest) == IF_THEN_ELSE) dest = XEXP (dest, 1); dest = XEXP (dest, 0); dest_uid = INSN_UID (dest); return insn_addresses[dest_uid]; } /* Return non-zero if REG is not used after INSN. We assume REG is a reload reg, and therefore does not live past labels. It may live past calls or jumps though. */ int reg_unused_after (reg, insn) rtx reg; rtx insn; { enum rtx_code code; rtx set; /* If the reg is set by this instruction, then it is safe for our case. Disregard the case where this is a store to memory, since we are checking a register used in the store address. */ set = single_set (insn); if (set && GET_CODE (SET_DEST (set)) != MEM && reg_overlap_mentioned_p (reg, SET_DEST (set))) return 1; while ((insn = NEXT_INSN (insn))) { code = GET_CODE (insn); #if 0 /* If this is a label that existed before reload, then the register if dead here. However, if this is a label added by reorg, then the register may still be live here. We can't tell the difference, so we just ignore labels completely. */ if (code == CODE_LABEL) return 1; /* else */ #endif if (code == JUMP_INSN) return 0; /* If this is a sequence, we must handle them all at once. We could have for instance a call that sets the target register, and a insn in a delay slot that uses the register. In this case, we must return 0. */ else if (code == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE) { int i; int retval = 0; for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++) { rtx this_insn = XVECEXP (PATTERN (insn), 0, i); rtx set = single_set (this_insn); if (GET_CODE (this_insn) == CALL_INSN) code = CALL_INSN; else if (GET_CODE (this_insn) == JUMP_INSN) { if (INSN_ANNULLED_BRANCH_P (this_insn)) return 0; code = JUMP_INSN; } if (set && reg_overlap_mentioned_p (reg, SET_SRC (set))) return 0; if (set && reg_overlap_mentioned_p (reg, SET_DEST (set))) { if (GET_CODE (SET_DEST (set)) != MEM) retval = 1; else return 0; } if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (this_insn))) return 0; } if (retval == 1) return 1; else if (code == JUMP_INSN) return 0; } else if (GET_RTX_CLASS (code) == 'i') { rtx set = single_set (insn); if (set && reg_overlap_mentioned_p (reg, SET_SRC (set))) return 0; if (set && reg_overlap_mentioned_p (reg, SET_DEST (set))) return GET_CODE (SET_DEST (set)) != MEM; if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn))) return 0; } if (code == CALL_INSN && call_used_regs[REGNO (reg)]) return 1; } return 1; } extern struct obstack permanent_obstack; rtx get_fpscr_rtx () { static rtx fpscr_rtx; if (! fpscr_rtx) { push_obstacks (&permanent_obstack, &permanent_obstack); fpscr_rtx = gen_rtx (REG, PSImode, 48); REG_USERVAR_P (fpscr_rtx) = 1; pop_obstacks (); ggc_add_rtx_root (&fpscr_rtx, 1); mark_user_reg (fpscr_rtx); } if (! reload_completed || mdep_reorg_phase != SH_AFTER_MDEP_REORG) mark_user_reg (fpscr_rtx); return fpscr_rtx; } void emit_sf_insn (pat) rtx pat; { rtx addr; /* When generating reload insns, we must not create new registers. FPSCR should already have the correct value, so do nothing to change it. */ if (! TARGET_FPU_SINGLE && ! reload_in_progress && optimize < 1) { addr = gen_reg_rtx (SImode); emit_insn (gen_fpu_switch0 (addr)); } emit_insn (pat); if (! TARGET_FPU_SINGLE && ! reload_in_progress && optimize < 1) { addr = gen_reg_rtx (SImode); emit_insn (gen_fpu_switch1 (addr)); } } void emit_df_insn (pat) rtx pat; { rtx addr; if (TARGET_FPU_SINGLE && ! reload_in_progress && optimize < 1) { addr = gen_reg_rtx (SImode); emit_insn (gen_fpu_switch0 (addr)); } emit_insn (pat); if (TARGET_FPU_SINGLE && ! reload_in_progress && optimize < 1) { addr = gen_reg_rtx (SImode); emit_insn (gen_fpu_switch1 (addr)); } } void expand_sf_unop (fun, operands) rtx (*fun) PARAMS ((rtx, rtx, rtx)); rtx *operands; { emit_sf_insn ((*fun) (operands[0], operands[1], get_fpscr_rtx ())); } void expand_sf_binop (fun, operands) rtx (*fun) PARAMS ((rtx, rtx, rtx, rtx)); rtx *operands; { emit_sf_insn ((*fun) (operands[0], operands[1], operands[2], get_fpscr_rtx ())); } void expand_df_unop (fun, operands) rtx (*fun) PARAMS ((rtx, rtx, rtx)); rtx *operands; { emit_df_insn ((*fun) (operands[0], operands[1], get_fpscr_rtx ())); } void expand_df_binop (fun, operands) rtx (*fun) PARAMS ((rtx, rtx, rtx, rtx)); rtx *operands; { emit_df_insn ((*fun) (operands[0], operands[1], operands[2], get_fpscr_rtx ())); } /* ??? gcc does flow analysis strictly after common subexpression elimination. As a result, common subespression elimination fails when there are some intervening statements setting the same register. If we did nothing about this, this would hurt the precision switching for SH4 badly. There is some cse after reload, but it is unable to undo the extra register pressure from the unused instructions, and it cannot remove auto-increment loads. A C code example that shows this flow/cse weakness for (at least) SH and sparc (as of gcc ss-970706) is this: double f(double a) { double d; d = 0.1; a += d; d = 1.1; d = 0.1; a *= d; return a; } So we add another pass before common subexpression elimination, to remove assignments that are dead due to a following assignment in the same basic block. */ static void mark_use (x, reg_set_block) rtx x, *reg_set_block; { enum rtx_code code; if (! x) return; code = GET_CODE (x); switch (code) { case REG: { int regno = REGNO (x); int nregs = (regno < FIRST_PSEUDO_REGISTER ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1); do { reg_set_block[regno + nregs - 1] = 0; } while (--nregs); break; } case SET: { rtx dest = SET_DEST (x); if (GET_CODE (dest) == SUBREG) dest = SUBREG_REG (dest); if (GET_CODE (dest) != REG) mark_use (dest, reg_set_block); mark_use (SET_SRC (x), reg_set_block); break; } case CLOBBER: break; default: { const char *fmt = GET_RTX_FORMAT (code); int i, j; for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) { if (fmt[i] == 'e') mark_use (XEXP (x, i), reg_set_block); else if (fmt[i] == 'E') for (j = XVECLEN (x, i) - 1; j >= 0; j--) mark_use (XVECEXP (x, i, j), reg_set_block); } break; } } } static rtx get_free_reg PARAMS ((HARD_REG_SET)); /* This function returns a register to use to load the address to load the fpscr from. Currently it always returns r1 or r7, but when we are able to use pseudo registers after combine, or have a better mechanism for choosing a register, it should be done here. */ /* REGS_LIVE is the liveness information for the point for which we need this allocation. In some bare-bones exit blocks, r1 is live at the start. We can even have all of r0..r3 being live: __complex__ long long f (double d) { if (d == 0) return 2; else return 3; } INSN before which new insns are placed with will clobber the register we return. If a basic block consists only of setting the return value register to a pseudo and using that register, the return value is not live before or after this block, yet we we'll insert our insns right in the middle. */ static rtx get_free_reg (regs_live) HARD_REG_SET regs_live; { rtx reg; if (! TEST_HARD_REG_BIT (regs_live, 1)) return gen_rtx_REG (Pmode, 1); /* Hard reg 1 is live; since this is a SMALL_REGISTER_CLASSES target, there shouldn't be anything but a jump before the function end. */ if (! TEST_HARD_REG_BIT (regs_live, 7)) return gen_rtx_REG (Pmode, 7); abort (); } /* This function will set the fpscr from memory. MODE is the mode we are setting it to. */ void fpscr_set_from_mem (mode, regs_live) int mode; HARD_REG_SET regs_live; { enum attr_fp_mode fp_mode = mode; rtx i; rtx addr_reg = get_free_reg (regs_live); i = gen_rtx_SET (VOIDmode, addr_reg, gen_rtx_SYMBOL_REF (SImode, "__fpscr_values")); emit_insn (i); if (fp_mode == (TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)) { rtx r = addr_reg; addr_reg = get_free_reg (regs_live); i = gen_rtx_SET (VOIDmode, addr_reg, gen_rtx_PLUS (Pmode, r, GEN_INT (4))); emit_insn (i); } i = gen_rtx_SET (VOIDmode, get_fpscr_rtx (), gen_rtx_MEM (PSImode, gen_rtx_POST_INC (Pmode, addr_reg))); i = emit_insn (i); REG_NOTES (i) = gen_rtx_EXPR_LIST (REG_DEAD, addr_reg, REG_NOTES (i)); REG_NOTES (i) = gen_rtx_EXPR_LIST (REG_INC, addr_reg, REG_NOTES (i)); }