// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime // This file contains the implementation of Go select statements. import ( "runtime/internal/sys" "unsafe" ) // For gccgo, use go:linkname to rename compiler-called functions to // themselves, so that the compiler will export them. // //go:linkname newselect runtime.newselect //go:linkname selectdefault runtime.selectdefault //go:linkname selectsend runtime.selectsend //go:linkname selectrecv runtime.selectrecv //go:linkname selectrecv2 runtime.selectrecv2 //go:linkname selectgo runtime.selectgo const ( debugSelect = false // scase.kind caseRecv = iota caseSend caseDefault ) // Select statement header. // Known to compiler. // Changes here must also be made in src/cmd/internal/gc/select.go's selecttype. type hselect struct { tcase uint16 // total count of scase[] ncase uint16 // currently filled scase[] pollorder *uint16 // case poll order lockorder *uint16 // channel lock order scase [1]scase // one per case (in order of appearance) } // Select case descriptor. // Known to compiler. // Changes here must also be made in src/cmd/internal/gc/select.go's selecttype. type scase struct { elem unsafe.Pointer // data element c *hchan // chan pc uintptr // return pc kind uint16 index uint16 // case index receivedp *bool // pointer to received bool (recv2) releasetime int64 } var ( chansendpc = funcPC(chansend) chanrecvpc = funcPC(chanrecv) ) func selectsize(size uintptr) uintptr { selsize := unsafe.Sizeof(hselect{}) + (size-1)*unsafe.Sizeof(hselect{}.scase[0]) + size*unsafe.Sizeof(*hselect{}.lockorder) + size*unsafe.Sizeof(*hselect{}.pollorder) return round(selsize, sys.Int64Align) } func newselect(sel *hselect, selsize int64, size int32) { if selsize != int64(selectsize(uintptr(size))) { print("runtime: bad select size ", selsize, ", want ", selectsize(uintptr(size)), "\n") throw("bad select size") } if size != int32(uint16(size)) { throw("select size too large") } sel.tcase = uint16(size) sel.ncase = 0 sel.lockorder = (*uint16)(add(unsafe.Pointer(&sel.scase), uintptr(size)*unsafe.Sizeof(hselect{}.scase[0]))) sel.pollorder = (*uint16)(add(unsafe.Pointer(sel.lockorder), uintptr(size)*unsafe.Sizeof(*hselect{}.lockorder))) // For gccgo the temporary variable will not have been zeroed. memclrNoHeapPointers(unsafe.Pointer(&sel.scase), uintptr(size)*unsafe.Sizeof(hselect{}.scase[0])+uintptr(size)*unsafe.Sizeof(*hselect{}.lockorder)+uintptr(size)*unsafe.Sizeof(*hselect{}.pollorder)) if debugSelect { print("newselect s=", sel, " size=", size, "\n") } } func selectsend(sel *hselect, c *hchan, elem unsafe.Pointer, index int32) { // nil cases do not compete if c != nil { selectsendImpl(sel, c, getcallerpc(unsafe.Pointer(&sel)), elem, index) } return } // cut in half to give stack a chance to split func selectsendImpl(sel *hselect, c *hchan, pc uintptr, elem unsafe.Pointer, index int32) { i := sel.ncase if i >= sel.tcase { throw("selectsend: too many cases") } sel.ncase = i + 1 cas := (*scase)(add(unsafe.Pointer(&sel.scase), uintptr(i)*unsafe.Sizeof(sel.scase[0]))) cas.pc = pc cas.c = c cas.index = uint16(index) cas.kind = caseSend cas.elem = elem if debugSelect { print("selectsend s=", sel, " pc=", hex(cas.pc), " chan=", cas.c, " index=", cas.index, "\n") } } func selectrecv(sel *hselect, c *hchan, elem unsafe.Pointer, index int32) { // nil cases do not compete if c != nil { selectrecvImpl(sel, c, getcallerpc(unsafe.Pointer(&sel)), elem, nil, index) } return } func selectrecv2(sel *hselect, c *hchan, elem unsafe.Pointer, received *bool, index int32) { // nil cases do not compete if c != nil { selectrecvImpl(sel, c, getcallerpc(unsafe.Pointer(&sel)), elem, received, index) } return } func selectrecvImpl(sel *hselect, c *hchan, pc uintptr, elem unsafe.Pointer, received *bool, index int32) { i := sel.ncase if i >= sel.tcase { throw("selectrecv: too many cases") } sel.ncase = i + 1 cas := (*scase)(add(unsafe.Pointer(&sel.scase), uintptr(i)*unsafe.Sizeof(sel.scase[0]))) cas.pc = pc cas.c = c cas.index = uint16(index) cas.kind = caseRecv cas.elem = elem cas.receivedp = received if debugSelect { print("selectrecv s=", sel, " pc=", hex(cas.pc), " chan=", cas.c, " index=", cas.index, "\n") } } func selectdefault(sel *hselect, index int32) { selectdefaultImpl(sel, getcallerpc(unsafe.Pointer(&sel)), index) return } func selectdefaultImpl(sel *hselect, callerpc uintptr, index int32) { i := sel.ncase if i >= sel.tcase { throw("selectdefault: too many cases") } sel.ncase = i + 1 cas := (*scase)(add(unsafe.Pointer(&sel.scase), uintptr(i)*unsafe.Sizeof(sel.scase[0]))) cas.pc = callerpc cas.c = nil cas.index = uint16(index) cas.kind = caseDefault if debugSelect { print("selectdefault s=", sel, " pc=", hex(cas.pc), " index=", cas.index, "\n") } } func sellock(scases []scase, lockorder []uint16) { var c *hchan for _, o := range lockorder { c0 := scases[o].c if c0 != nil && c0 != c { c = c0 lock(&c.lock) } } } func selunlock(scases []scase, lockorder []uint16) { // We must be very careful here to not touch sel after we have unlocked // the last lock, because sel can be freed right after the last unlock. // Consider the following situation. // First M calls runtime·park() in runtime·selectgo() passing the sel. // Once runtime·park() has unlocked the last lock, another M makes // the G that calls select runnable again and schedules it for execution. // When the G runs on another M, it locks all the locks and frees sel. // Now if the first M touches sel, it will access freed memory. n := len(scases) r := 0 // skip the default case if n > 0 && scases[lockorder[0]].c == nil { r = 1 } for i := n - 1; i >= r; i-- { c := scases[lockorder[i]].c if i > 0 && c == scases[lockorder[i-1]].c { continue // will unlock it on the next iteration } unlock(&c.lock) } } func selparkcommit(gp *g, _ unsafe.Pointer) bool { // This must not access gp's stack (see gopark). In // particular, it must not access the *hselect. That's okay, // because by the time this is called, gp.waiting has all // channels in lock order. var lastc *hchan for sg := gp.waiting; sg != nil; sg = sg.waitlink { if sg.c != lastc && lastc != nil { // As soon as we unlock the channel, fields in // any sudog with that channel may change, // including c and waitlink. Since multiple // sudogs may have the same channel, we unlock // only after we've passed the last instance // of a channel. unlock(&lastc.lock) } lastc = sg.c } if lastc != nil { unlock(&lastc.lock) } return true } func block() { gopark(nil, nil, "select (no cases)", traceEvGoStop, 1) // forever } // selectgo implements the select statement. // // *sel is on the current goroutine's stack (regardless of any // escaping in selectgo). // // selectgo does not return. Instead, it overwrites its return PC and // returns directly to the triggered select case. Because of this, it // cannot appear at the top of a split stack. func selectgo(sel *hselect) int32 { _, index := selectgoImpl(sel) return int32(index) } // selectgoImpl returns scase.pc and scase.so for the select // case which fired. func selectgoImpl(sel *hselect) (uintptr, uint16) { if debugSelect { print("select: sel=", sel, "\n") } scaseslice := slice{unsafe.Pointer(&sel.scase), int(sel.ncase), int(sel.ncase)} scases := *(*[]scase)(unsafe.Pointer(&scaseslice)) var t0 int64 if blockprofilerate > 0 { t0 = cputicks() for i := 0; i < int(sel.ncase); i++ { scases[i].releasetime = -1 } } // The compiler rewrites selects that statically have // only 0 or 1 cases plus default into simpler constructs. // The only way we can end up with such small sel.ncase // values here is for a larger select in which most channels // have been nilled out. The general code handles those // cases correctly, and they are rare enough not to bother // optimizing (and needing to test). // generate permuted order pollslice := slice{unsafe.Pointer(sel.pollorder), int(sel.ncase), int(sel.ncase)} pollorder := *(*[]uint16)(unsafe.Pointer(&pollslice)) for i := 1; i < int(sel.ncase); i++ { j := int(fastrand()) % (i + 1) pollorder[i] = pollorder[j] pollorder[j] = uint16(i) } // sort the cases by Hchan address to get the locking order. // simple heap sort, to guarantee n log n time and constant stack footprint. lockslice := slice{unsafe.Pointer(sel.lockorder), int(sel.ncase), int(sel.ncase)} lockorder := *(*[]uint16)(unsafe.Pointer(&lockslice)) for i := 0; i < int(sel.ncase); i++ { j := i // Start with the pollorder to permute cases on the same channel. c := scases[pollorder[i]].c for j > 0 && scases[lockorder[(j-1)/2]].c.sortkey() < c.sortkey() { k := (j - 1) / 2 lockorder[j] = lockorder[k] j = k } lockorder[j] = pollorder[i] } for i := int(sel.ncase) - 1; i >= 0; i-- { o := lockorder[i] c := scases[o].c lockorder[i] = lockorder[0] j := 0 for { k := j*2 + 1 if k >= i { break } if k+1 < i && scases[lockorder[k]].c.sortkey() < scases[lockorder[k+1]].c.sortkey() { k++ } if c.sortkey() < scases[lockorder[k]].c.sortkey() { lockorder[j] = lockorder[k] j = k continue } break } lockorder[j] = o } /* for i := 0; i+1 < int(sel.ncase); i++ { if scases[lockorder[i]].c.sortkey() > scases[lockorder[i+1]].c.sortkey() { print("i=", i, " x=", lockorder[i], " y=", lockorder[i+1], "\n") throw("select: broken sort") } } */ // lock all the channels involved in the select sellock(scases, lockorder) var ( gp *g done uint32 sg *sudog c *hchan k *scase sglist *sudog sgnext *sudog qp unsafe.Pointer nextp **sudog ) loop: // pass 1 - look for something already waiting var dfl *scase var cas *scase for i := 0; i < int(sel.ncase); i++ { cas = &scases[pollorder[i]] c = cas.c switch cas.kind { case caseRecv: sg = c.sendq.dequeue() if sg != nil { goto recv } if c.qcount > 0 { goto bufrecv } if c.closed != 0 { goto rclose } case caseSend: if raceenabled { racereadpc(unsafe.Pointer(c), cas.pc, chansendpc) } if c.closed != 0 { goto sclose } sg = c.recvq.dequeue() if sg != nil { goto send } if c.qcount < c.dataqsiz { goto bufsend } case caseDefault: dfl = cas } } if dfl != nil { selunlock(scases, lockorder) cas = dfl goto retc } // pass 2 - enqueue on all chans gp = getg() done = 0 if gp.waiting != nil { throw("gp.waiting != nil") } nextp = &gp.waiting for _, casei := range lockorder { cas = &scases[casei] c = cas.c sg := acquireSudog() sg.g = gp // Note: selectdone is adjusted for stack copies in stack1.go:adjustsudogs sg.selectdone = (*uint32)(noescape(unsafe.Pointer(&done))) // No stack splits between assigning elem and enqueuing // sg on gp.waiting where copystack can find it. sg.elem = cas.elem sg.releasetime = 0 if t0 != 0 { sg.releasetime = -1 } sg.c = c // Construct waiting list in lock order. *nextp = sg nextp = &sg.waitlink switch cas.kind { case caseRecv: c.recvq.enqueue(sg) case caseSend: c.sendq.enqueue(sg) } } // wait for someone to wake us up gp.param = nil gopark(selparkcommit, nil, "select", traceEvGoBlockSelect, 2) // While we were asleep, some goroutine came along and completed // one of the cases in the select and woke us up (called ready). // As part of that process, the goroutine did a cas on done above // (aka *sg.selectdone for all queued sg) to win the right to // complete the select. Now done = 1. // // If we copy (grow) our own stack, we will update the // selectdone pointers inside the gp.waiting sudog list to point // at the new stack. Another goroutine attempting to // complete one of our (still linked in) select cases might // see the new selectdone pointer (pointing at the new stack) // before the new stack has real data; if the new stack has done = 0 // (before the old values are copied over), the goroutine might // do a cas via sg.selectdone and incorrectly believe that it has // won the right to complete the select, executing a second // communication and attempting to wake us (call ready) again. // // Then things break. // // The best break is that the goroutine doing ready sees the // _Gcopystack status and throws, as in #17007. // A worse break would be for us to continue on, start running real code, // block in a semaphore acquisition (sema.go), and have the other // goroutine wake us up without having really acquired the semaphore. // That would result in the goroutine spuriously running and then // queue up another spurious wakeup when the semaphore really is ready. // In general the situation can cascade until something notices the // problem and causes a crash. // // A stack shrink does not have this problem, because it locks // all the channels that are involved first, blocking out the // possibility of a cas on selectdone. // // A stack growth before gopark above does not have this // problem, because we hold those channel locks (released by // selparkcommit). // // A stack growth after sellock below does not have this // problem, because again we hold those channel locks. // // The only problem is a stack growth during sellock. // To keep that from happening, run sellock on the system stack. // // It might be that we could avoid this if copystack copied the // stack before calling adjustsudogs. In that case, // syncadjustsudogs would need to recopy the tiny part that // it copies today, resulting in a little bit of extra copying. // // An even better fix, not for the week before a release candidate, // would be to put space in every sudog and make selectdone // point at (say) the space in the first sudog. systemstack(func() { sellock(scases, lockorder) }) sg = (*sudog)(gp.param) gp.param = nil // pass 3 - dequeue from unsuccessful chans // otherwise they stack up on quiet channels // record the successful case, if any. // We singly-linked up the SudoGs in lock order. cas = nil sglist = gp.waiting // Clear all elem before unlinking from gp.waiting. for sg1 := gp.waiting; sg1 != nil; sg1 = sg1.waitlink { sg1.selectdone = nil sg1.elem = nil sg1.c = nil } gp.waiting = nil for _, casei := range lockorder { k = &scases[casei] if sglist.releasetime > 0 { k.releasetime = sglist.releasetime } if sg == sglist { // sg has already been dequeued by the G that woke us up. cas = k } else { c = k.c if k.kind == caseSend { c.sendq.dequeueSudoG(sglist) } else { c.recvq.dequeueSudoG(sglist) } } sgnext = sglist.waitlink sglist.waitlink = nil releaseSudog(sglist) sglist = sgnext } if cas == nil { // We can wake up with gp.param == nil (so cas == nil) // when a channel involved in the select has been closed. // It is easiest to loop and re-run the operation; // we'll see that it's now closed. // Maybe some day we can signal the close explicitly, // but we'd have to distinguish close-on-reader from close-on-writer. // It's easiest not to duplicate the code and just recheck above. // We know that something closed, and things never un-close, // so we won't block again. goto loop } c = cas.c if debugSelect { print("wait-return: sel=", sel, " c=", c, " cas=", cas, " kind=", cas.kind, "\n") } if cas.kind == caseRecv { if cas.receivedp != nil { *cas.receivedp = true } } if raceenabled { if cas.kind == caseRecv && cas.elem != nil { raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc) } else if cas.kind == caseSend { raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc) } } if msanenabled { if cas.kind == caseRecv && cas.elem != nil { msanwrite(cas.elem, c.elemtype.size) } else if cas.kind == caseSend { msanread(cas.elem, c.elemtype.size) } } selunlock(scases, lockorder) goto retc bufrecv: // can receive from buffer if raceenabled { if cas.elem != nil { raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc) } raceacquire(chanbuf(c, c.recvx)) racerelease(chanbuf(c, c.recvx)) } if msanenabled && cas.elem != nil { msanwrite(cas.elem, c.elemtype.size) } if cas.receivedp != nil { *cas.receivedp = true } qp = chanbuf(c, c.recvx) if cas.elem != nil { typedmemmove(c.elemtype, cas.elem, qp) } typedmemclr(c.elemtype, qp) c.recvx++ if c.recvx == c.dataqsiz { c.recvx = 0 } c.qcount-- selunlock(scases, lockorder) goto retc bufsend: // can send to buffer if raceenabled { raceacquire(chanbuf(c, c.sendx)) racerelease(chanbuf(c, c.sendx)) raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc) } if msanenabled { msanread(cas.elem, c.elemtype.size) } typedmemmove(c.elemtype, chanbuf(c, c.sendx), cas.elem) c.sendx++ if c.sendx == c.dataqsiz { c.sendx = 0 } c.qcount++ selunlock(scases, lockorder) goto retc recv: // can receive from sleeping sender (sg) recv(c, sg, cas.elem, func() { selunlock(scases, lockorder) }) if debugSelect { print("syncrecv: sel=", sel, " c=", c, "\n") } if cas.receivedp != nil { *cas.receivedp = true } goto retc rclose: // read at end of closed channel selunlock(scases, lockorder) if cas.receivedp != nil { *cas.receivedp = false } if cas.elem != nil { typedmemclr(c.elemtype, cas.elem) } if raceenabled { raceacquire(unsafe.Pointer(c)) } goto retc send: // can send to a sleeping receiver (sg) if raceenabled { raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc) } if msanenabled { msanread(cas.elem, c.elemtype.size) } send(c, sg, cas.elem, func() { selunlock(scases, lockorder) }) if debugSelect { print("syncsend: sel=", sel, " c=", c, "\n") } goto retc retc: if cas.releasetime > 0 { blockevent(cas.releasetime-t0, 2) } return cas.pc, cas.index sclose: // send on closed channel selunlock(scases, lockorder) panic(plainError("send on closed channel")) } func (c *hchan) sortkey() uintptr { // TODO(khr): if we have a moving garbage collector, we'll need to // change this function. return uintptr(unsafe.Pointer(c)) } // A runtimeSelect is a single case passed to rselect. // This must match ../reflect/value.go:/runtimeSelect type runtimeSelect struct { dir selectDir typ unsafe.Pointer // channel type (not used here) ch *hchan // channel val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir) } // These values must match ../reflect/value.go:/SelectDir. type selectDir int const ( _ selectDir = iota selectSend // case Chan <- Send selectRecv // case <-Chan: selectDefault // default ) //go:linkname reflect_rselect reflect.rselect func reflect_rselect(cases []runtimeSelect) (chosen int, recvOK bool) { // flagNoScan is safe here, because all objects are also referenced from cases. size := selectsize(uintptr(len(cases))) sel := (*hselect)(mallocgc(size, nil, true)) newselect(sel, int64(size), int32(len(cases))) r := new(bool) for i := range cases { rc := &cases[i] switch rc.dir { case selectDefault: selectdefaultImpl(sel, uintptr(i), 0) case selectSend: if rc.ch == nil { break } selectsendImpl(sel, rc.ch, uintptr(i), rc.val, 0) case selectRecv: if rc.ch == nil { break } selectrecvImpl(sel, rc.ch, uintptr(i), rc.val, r, 0) } } pc, _ := selectgoImpl(sel) chosen = int(pc) recvOK = *r return } func (q *waitq) dequeueSudoG(sgp *sudog) { x := sgp.prev y := sgp.next if x != nil { if y != nil { // middle of queue x.next = y y.prev = x sgp.next = nil sgp.prev = nil return } // end of queue x.next = nil q.last = x sgp.prev = nil return } if y != nil { // start of queue y.prev = nil q.first = y sgp.next = nil return } // x==y==nil. Either sgp is the only element in the queue, // or it has already been removed. Use q.first to disambiguate. if q.first == sgp { q.first = nil q.last = nil } }