/* Generic helper function for repacking arrays. Copyright 2003, 2004, 2005, 2007, 2009, 2010, 2012 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #include #include extern void internal_unpack (gfc_array_char *, const void *); export_proto(internal_unpack); void internal_unpack (gfc_array_char * d, const void * s) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type stride[GFC_MAX_DIMENSIONS]; index_type stride0; index_type dim; index_type dsize; char *dest; const char *src; int n; int size; int type_size; dest = d->base_addr; /* This check may be redundant, but do it anyway. */ if (s == dest || !s) return; type_size = GFC_DTYPE_TYPE_SIZE (d); switch (type_size) { case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_DERIVED_1: internal_unpack_1 ((gfc_array_i1 *) d, (const GFC_INTEGER_1 *) s); return; case GFC_DTYPE_INTEGER_2: case GFC_DTYPE_LOGICAL_2: internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s); return; case GFC_DTYPE_INTEGER_4: case GFC_DTYPE_LOGICAL_4: internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s); return; case GFC_DTYPE_INTEGER_8: case GFC_DTYPE_LOGICAL_8: internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s); return; #if defined (HAVE_GFC_INTEGER_16) case GFC_DTYPE_INTEGER_16: case GFC_DTYPE_LOGICAL_16: internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s); return; #endif case GFC_DTYPE_REAL_4: internal_unpack_r4 ((gfc_array_r4 *) d, (const GFC_REAL_4 *) s); return; case GFC_DTYPE_REAL_8: internal_unpack_r8 ((gfc_array_r8 *) d, (const GFC_REAL_8 *) s); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # if defined(HAVE_GFC_REAL_10) case GFC_DTYPE_REAL_10: internal_unpack_r10 ((gfc_array_r10 *) d, (const GFC_REAL_10 *) s); return; # endif # if defined(HAVE_GFC_REAL_16) case GFC_DTYPE_REAL_16: internal_unpack_r16 ((gfc_array_r16 *) d, (const GFC_REAL_16 *) s); return; # endif #endif case GFC_DTYPE_COMPLEX_4: internal_unpack_c4 ((gfc_array_c4 *)d, (const GFC_COMPLEX_4 *)s); return; case GFC_DTYPE_COMPLEX_8: internal_unpack_c8 ((gfc_array_c8 *)d, (const GFC_COMPLEX_8 *)s); return; /* FIXME: This here is a hack, which will have to be removed when the array descriptor is reworked. Currently, we don't store the kind value for the type, but only the size. Because on targets with __float128, we have sizeof(logn double) == sizeof(__float128), we cannot discriminate here and have to fall back to the generic handling (which is suboptimal). */ #if !defined(GFC_REAL_16_IS_FLOAT128) # if defined(HAVE_GFC_COMPLEX_10) case GFC_DTYPE_COMPLEX_10: internal_unpack_c10 ((gfc_array_c10 *) d, (const GFC_COMPLEX_10 *) s); return; # endif # if defined(HAVE_GFC_COMPLEX_16) case GFC_DTYPE_COMPLEX_16: internal_unpack_c16 ((gfc_array_c16 *) d, (const GFC_COMPLEX_16 *) s); return; # endif #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(d->base_addr) || GFC_UNALIGNED_2(s)) break; else { internal_unpack_2 ((gfc_array_i2 *) d, (const GFC_INTEGER_2 *) s); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(d->base_addr) || GFC_UNALIGNED_4(s)) break; else { internal_unpack_4 ((gfc_array_i4 *) d, (const GFC_INTEGER_4 *) s); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(d->base_addr) || GFC_UNALIGNED_8(s)) break; else { internal_unpack_8 ((gfc_array_i8 *) d, (const GFC_INTEGER_8 *) s); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(d->base_addr) || GFC_UNALIGNED_16(s)) break; else { internal_unpack_16 ((gfc_array_i16 *) d, (const GFC_INTEGER_16 *) s); return; } #endif default: break; } size = GFC_DESCRIPTOR_SIZE (d); dim = GFC_DESCRIPTOR_RANK (d); dsize = 1; for (n = 0; n < dim; n++) { count[n] = 0; stride[n] = GFC_DESCRIPTOR_STRIDE(d,n); extent[n] = GFC_DESCRIPTOR_EXTENT(d,n); if (extent[n] <= 0) return; if (dsize == stride[n]) dsize *= extent[n]; else dsize = 0; } src = s; if (dsize != 0) { memcpy (dest, src, dsize * size); return; } stride0 = stride[0] * size; while (dest) { /* Copy the data. */ memcpy (dest, src, size); /* Advance to the next element. */ src += size; dest += stride0; count[0]++; /* Advance to the next source element. */ n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ dest -= stride[n] * extent[n] * size; n++; if (n == dim) { dest = NULL; break; } else { count[n]++; dest += stride[n] * size; } } } }