// { dg-options "-mieee" { target alpha*-*-* } } // 1999-08-23 bkoz // Copyright (C) 1999, 2001, 2002 Free Software Foundation // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // 18.2.1.1 template class numeric_limits #include #include #include #include #include template struct extrema { static T min; static T max; }; #define DEFINE_EXTREMA(T, m, M) \ template<> T extrema::min = m; \ template<> T extrema::max = M DEFINE_EXTREMA(char, CHAR_MIN, CHAR_MAX); DEFINE_EXTREMA(signed char, SCHAR_MIN, SCHAR_MAX); DEFINE_EXTREMA(unsigned char, 0, UCHAR_MAX); DEFINE_EXTREMA(short, SHRT_MIN, SHRT_MAX); DEFINE_EXTREMA(unsigned short, 0, USHRT_MAX); DEFINE_EXTREMA(int, INT_MIN, INT_MAX); DEFINE_EXTREMA(unsigned, 0U, UINT_MAX); DEFINE_EXTREMA(long, LONG_MIN, LONG_MAX); DEFINE_EXTREMA(unsigned long, 0UL, ULONG_MAX); #if _GLIBCPP_USE_WCHAR_T DEFINE_EXTREMA(wchar_t, WCHAR_MIN, WCHAR_MAX); #endif //_GLIBCPP_USE_WCHAR_T DEFINE_EXTREMA(float, FLT_MIN, FLT_MAX); DEFINE_EXTREMA(double, DBL_MIN, DBL_MAX); DEFINE_EXTREMA(long double, LDBL_MIN, LDBL_MAX); #undef DEFINE_EXTREMA template void test_extrema() { bool test = true; T limits_min = std::numeric_limits::min(); T limits_max = std::numeric_limits::max(); T extrema_min = extrema::min; T extrema_max = extrema::max; VERIFY( extrema_min == limits_min ); VERIFY( extrema_max == limits_max ); } template void test_epsilon() { bool test = true; T epsilon = std::numeric_limits::epsilon(); T one = 1; VERIFY( one != (one + epsilon) ); } #ifdef __CHAR_UNSIGNED__ #define char_is_signed false #else #define char_is_signed true #endif void test_sign() { bool test = true; VERIFY( std::numeric_limits::is_signed == char_is_signed ); VERIFY( std::numeric_limits::is_signed == true ); VERIFY( std::numeric_limits::is_signed == false ); VERIFY( std::numeric_limits::is_signed == true ); VERIFY( std::numeric_limits::is_signed == false ); VERIFY( std::numeric_limits::is_signed == true ); VERIFY( std::numeric_limits::is_signed == false ); VERIFY( std::numeric_limits::is_signed == true ); VERIFY( std::numeric_limits::is_signed == false ); VERIFY( std::numeric_limits::is_signed == true ); VERIFY( std::numeric_limits::is_signed == true ); VERIFY( std::numeric_limits::is_signed == true ); } template void test_infinity() { bool test; if (std::numeric_limits::has_infinity) { T inf = std::numeric_limits::infinity(); test = (inf + inf == inf); } else test = true; VERIFY (test); } template void test_denorm_min() { bool test; if (std::numeric_limits::has_denorm == std::denorm_present) { T denorm = std::numeric_limits::denorm_min(); test = (denorm > 0); } else test = true; VERIFY (test); } template void test_qnan() { bool test; if (std::numeric_limits::has_quiet_NaN) { T nan = std::numeric_limits::quiet_NaN(); test = (nan != nan); } else test = true; VERIFY (test); } template void test_is_iec559() { bool test; if (std::numeric_limits::is_iec559) { // IEC 559 requires all of the following. test = (std::numeric_limits::has_infinity && std::numeric_limits::has_quiet_NaN && std::numeric_limits::has_signaling_NaN); } else { // If we had all of the following, why didn't we set IEC 559? test = (!std::numeric_limits::has_infinity || !std::numeric_limits::has_quiet_NaN || !std::numeric_limits::has_signaling_NaN); } VERIFY (test); } template struct A { int key; public: A(int i = 0): key(i) { } bool operator==(int i) { return i == key; } }; struct B { B(int i = 0) { } }; bool test01() { bool test = true; std::numeric_limits< A > obj; VERIFY( !obj.is_specialized ); VERIFY( obj.min() == 0 ); VERIFY( obj.max() == 0 ); VERIFY( obj.digits == 0 ); VERIFY( obj.digits10 == 0 ); VERIFY( !obj.is_signed ); VERIFY( !obj.is_integer ); VERIFY( !obj.is_exact ); VERIFY( obj.radix == 0 ); VERIFY( obj.epsilon() == 0 ); VERIFY( obj.round_error() == 0 ); VERIFY( obj.min_exponent == 0 ); VERIFY( obj.min_exponent10 == 0 ); VERIFY( obj.max_exponent == 0 ); VERIFY( obj.max_exponent10 == 0 ); VERIFY( !obj.has_infinity ); VERIFY( !obj.has_quiet_NaN ); VERIFY( !obj.has_signaling_NaN ); VERIFY( !obj.has_denorm ); VERIFY( !obj.has_denorm_loss ); VERIFY( obj.infinity() == 0 ); VERIFY( obj.quiet_NaN() == 0 ); VERIFY( obj.signaling_NaN() == 0 ); VERIFY( obj.denorm_min() == 0 ); VERIFY( !obj.is_iec559 ); VERIFY( !obj.is_bounded ); VERIFY( !obj.is_modulo ); VERIFY( !obj.traps ); VERIFY( !obj.tinyness_before ); VERIFY( obj.round_style == std::round_toward_zero ); #ifdef DEBUG_ASSERT assert(test); #endif return test; } // test linkage of the generic bits template struct std::numeric_limits; void test02() { typedef std::numeric_limits b_nl_type; // Should probably do all of them... const int* pi1 = &b_nl_type::digits; const int* pi2 = &b_nl_type::digits10; const int* pi3 = &b_nl_type::max_exponent10; const bool* pb1 = &b_nl_type::traps; } // libstdc++/5045 bool test03() { bool test = true; VERIFY( std::numeric_limits::digits10 == 0 ); if (__CHAR_BIT__ == 8) { VERIFY( std::numeric_limits::digits10 == 2 ); VERIFY( std::numeric_limits::digits10 == 2 ); } if (__CHAR_BIT__ * sizeof(short) == 16) { VERIFY( std::numeric_limits::digits10 == 4 ); VERIFY( std::numeric_limits::digits10 == 4 ); } if (__CHAR_BIT__ * sizeof(int) == 32) { VERIFY( std::numeric_limits::digits10 == 9 ); VERIFY( std::numeric_limits::digits10 == 9 ); } if (__CHAR_BIT__ * sizeof(long long) == 64) { VERIFY( std::numeric_limits::digits10 == 18 ); VERIFY( std::numeric_limits::digits10 == 19 ); } #ifdef DEBUG_ASSERT assert(test); #endif return test; } // libstdc++/8949 bool test04() { bool test = true; VERIFY( !std::numeric_limits::is_iec559 ); VERIFY( !std::numeric_limits::is_iec559 ); VERIFY( !std::numeric_limits::is_iec559 ); VERIFY( !std::numeric_limits::is_iec559 ); VERIFY( !std::numeric_limits::is_iec559 ); VERIFY( !std::numeric_limits::is_iec559 ); VERIFY( !std::numeric_limits::is_iec559 ); VERIFY( !std::numeric_limits::is_iec559 ); #ifdef DEBUG_ASSERT assert(test); #endif return test; } int main() { test01(); test02(); test03(); test04(); test_extrema(); test_extrema(); test_extrema(); test_extrema(); test_extrema(); test_extrema(); test_extrema(); test_extrema(); test_extrema(); test_extrema(); test_extrema(); test_extrema(); test_epsilon(); test_epsilon(); test_epsilon(); test_sign(); test_infinity(); test_infinity(); test_infinity(); test_denorm_min(); test_denorm_min(); test_denorm_min(); test_qnan(); test_qnan(); test_qnan(); // ??? How to test SNaN? We'd perhaps have to be prepared // to catch SIGFPE. Can't rely on a signal getting through // since the exception can be disabled in the FPU. test_is_iec559(); test_is_iec559(); test_is_iec559(); return 0; }