/* Implementation of the MATMUL intrinsic Copyright (C) 2002-2021 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #if defined (HAVE_GFC_LOGICAL_8) /* Dimensions: retarray(x,y) a(x, count) b(count,y). Either a or b can be rank 1. In this case x or y is 1. */ extern void matmul_l8 (gfc_array_l8 * const restrict, gfc_array_l1 * const restrict, gfc_array_l1 * const restrict); export_proto(matmul_l8); void matmul_l8 (gfc_array_l8 * const restrict retarray, gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b) { const GFC_LOGICAL_1 * restrict abase; const GFC_LOGICAL_1 * restrict bbase; GFC_LOGICAL_8 * restrict dest; index_type rxstride; index_type rystride; index_type xcount; index_type ycount; index_type xstride; index_type ystride; index_type x; index_type y; int a_kind; int b_kind; const GFC_LOGICAL_1 * restrict pa; const GFC_LOGICAL_1 * restrict pb; index_type astride; index_type bstride; index_type count; index_type n; assert (GFC_DESCRIPTOR_RANK (a) == 2 || GFC_DESCRIPTOR_RANK (b) == 2); if (retarray->base_addr == NULL) { if (GFC_DESCRIPTOR_RANK (a) == 1) { GFC_DIMENSION_SET(retarray->dim[0], 0, GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1); } else if (GFC_DESCRIPTOR_RANK (b) == 1) { GFC_DIMENSION_SET(retarray->dim[0], 0, GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); } else { GFC_DIMENSION_SET(retarray->dim[0], 0, GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1); GFC_DIMENSION_SET(retarray->dim[1], 0, GFC_DESCRIPTOR_EXTENT(b,1) - 1, GFC_DESCRIPTOR_EXTENT(retarray,0)); } retarray->base_addr = xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_LOGICAL_8)); retarray->offset = 0; } else if (unlikely (compile_options.bounds_check)) { index_type ret_extent, arg_extent; if (GFC_DESCRIPTOR_RANK (a) == 1) { arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); if (arg_extent != ret_extent) runtime_error ("Incorrect extent in return array in" " MATMUL intrinsic: is %ld, should be %ld", (long int) ret_extent, (long int) arg_extent); } else if (GFC_DESCRIPTOR_RANK (b) == 1) { arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); if (arg_extent != ret_extent) runtime_error ("Incorrect extent in return array in" " MATMUL intrinsic: is %ld, should be %ld", (long int) ret_extent, (long int) arg_extent); } else { arg_extent = GFC_DESCRIPTOR_EXTENT(a,0); ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0); if (arg_extent != ret_extent) runtime_error ("Incorrect extent in return array in" " MATMUL intrinsic for dimension 1:" " is %ld, should be %ld", (long int) ret_extent, (long int) arg_extent); arg_extent = GFC_DESCRIPTOR_EXTENT(b,1); ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1); if (arg_extent != ret_extent) runtime_error ("Incorrect extent in return array in" " MATMUL intrinsic for dimension 2:" " is %ld, should be %ld", (long int) ret_extent, (long int) arg_extent); } } abase = a->base_addr; a_kind = GFC_DESCRIPTOR_SIZE (a); if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || a_kind == 16 #endif ) abase = GFOR_POINTER_TO_L1 (abase, a_kind); else internal_error (NULL, "Funny sized logical array"); bbase = b->base_addr; b_kind = GFC_DESCRIPTOR_SIZE (b); if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || b_kind == 16 #endif ) bbase = GFOR_POINTER_TO_L1 (bbase, b_kind); else internal_error (NULL, "Funny sized logical array"); dest = retarray->base_addr; if (GFC_DESCRIPTOR_RANK (retarray) == 1) { rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); rystride = rxstride; } else { rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0); rystride = GFC_DESCRIPTOR_STRIDE(retarray,1); } /* If we have rank 1 parameters, zero the absent stride, and set the size to one. */ if (GFC_DESCRIPTOR_RANK (a) == 1) { astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0); count = GFC_DESCRIPTOR_EXTENT(a,0); xstride = 0; rxstride = 0; xcount = 1; } else { astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1); count = GFC_DESCRIPTOR_EXTENT(a,1); xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0); xcount = GFC_DESCRIPTOR_EXTENT(a,0); } if (GFC_DESCRIPTOR_RANK (b) == 1) { bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0); assert(count == GFC_DESCRIPTOR_EXTENT(b,0)); ystride = 0; rystride = 0; ycount = 1; } else { bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0); assert(count == GFC_DESCRIPTOR_EXTENT(b,0)); ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1); ycount = GFC_DESCRIPTOR_EXTENT(b,1); } for (y = 0; y < ycount; y++) { for (x = 0; x < xcount; x++) { /* Do the summation for this element. For real and integer types this is the same as DOT_PRODUCT. For complex types we use do a*b, not conjg(a)*b. */ pa = abase; pb = bbase; *dest = 0; for (n = 0; n < count; n++) { if (*pa && *pb) { *dest = 1; break; } pa += astride; pb += bstride; } dest += rxstride; abase += xstride; } abase -= xstride * xcount; bbase += ystride; dest += rystride - (rxstride * xcount); } } #endif