// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // See malloc.h for overview. // // TODO(rsc): double-check stats. package runtime #include #include #include #include "go-alloc.h" #include "runtime.h" #include "arch.h" #include "malloc.h" #include "interface.h" #include "go-type.h" #include "race.h" MHeap *runtime_mheap; int32 runtime_checking; extern MStats mstats; // defined in zruntime_def_$GOOS_$GOARCH.go extern volatile intgo runtime_MemProfileRate __asm__ (GOSYM_PREFIX "runtime.MemProfileRate"); // Allocate an object of at least size bytes. // Small objects are allocated from the per-thread cache's free lists. // Large objects (> 32 kB) are allocated straight from the heap. void* runtime_mallocgc(uintptr size, uint32 flag, int32 dogc, int32 zeroed) { M *m; G *g; int32 sizeclass; intgo rate; MCache *c; uintptr npages; MSpan *s; void *v; bool incallback; m = runtime_m(); g = runtime_g(); incallback = false; if(m->mcache == nil && g->ncgo > 0) { // For gccgo this case can occur when a cgo or SWIG function // has an interface return type and the function // returns a non-pointer, so memory allocation occurs // after syscall.Cgocall but before syscall.CgocallDone. // We treat it as a callback. runtime_exitsyscall(); m = runtime_m(); incallback = true; dogc = false; } if(runtime_gcwaiting && g != m->g0 && m->locks == 0 && dogc) { runtime_gosched(); m = runtime_m(); } if(m->mallocing) runtime_throw("malloc/free - deadlock"); m->mallocing = 1; if(size == 0) size = 1; if(DebugTypeAtBlockEnd) size += sizeof(uintptr); c = m->mcache; c->local_nmalloc++; if(size <= MaxSmallSize) { // Allocate from mcache free lists. sizeclass = runtime_SizeToClass(size); size = runtime_class_to_size[sizeclass]; v = runtime_MCache_Alloc(c, sizeclass, size, zeroed); if(v == nil) runtime_throw("out of memory"); c->local_alloc += size; c->local_total_alloc += size; c->local_by_size[sizeclass].nmalloc++; } else { // TODO(rsc): Report tracebacks for very large allocations. // Allocate directly from heap. npages = size >> PageShift; if((size & PageMask) != 0) npages++; s = runtime_MHeap_Alloc(runtime_mheap, npages, 0, 1, zeroed); if(s == nil) runtime_throw("out of memory"); size = npages<local_alloc += size; c->local_total_alloc += size; v = (void*)(s->start << PageShift); // setup for mark sweep runtime_markspan(v, 0, 0, true); } if (sizeof(void*) == 4 && c->local_total_alloc >= (1<<30)) { // purge cache stats to prevent overflow runtime_lock(runtime_mheap); runtime_purgecachedstats(c); runtime_unlock(runtime_mheap); } if(!(flag & FlagNoGC)) runtime_markallocated(v, size, (flag&FlagNoPointers) != 0); if(DebugTypeAtBlockEnd) *(uintptr*)((uintptr)v+size-sizeof(uintptr)) = 0; m->mallocing = 0; if(!(flag & FlagNoProfiling) && (rate = runtime_MemProfileRate) > 0) { if(size >= (uint32) rate) goto profile; if((uint32) m->mcache->next_sample > size) m->mcache->next_sample -= size; else { // pick next profile time // If you change this, also change allocmcache. if(rate > 0x3fffffff) // make 2*rate not overflow rate = 0x3fffffff; m->mcache->next_sample = runtime_fastrand1() % (2*rate); profile: runtime_setblockspecial(v, true); runtime_MProf_Malloc(v, size); } } if(dogc && mstats.heap_alloc >= mstats.next_gc) runtime_gc(0); if(raceenabled) { runtime_racemalloc(v, size, m->racepc); m->racepc = nil; } if(incallback) runtime_entersyscall(); return v; } void* __go_alloc(uintptr size) { return runtime_mallocgc(size, 0, 0, 1); } // Free the object whose base pointer is v. void __go_free(void *v) { M *m; int32 sizeclass; MSpan *s; MCache *c; uint32 prof; uintptr size; if(v == nil) return; // If you change this also change mgc0.c:/^sweep, // which has a copy of the guts of free. m = runtime_m(); if(m->mallocing) runtime_throw("malloc/free - deadlock"); m->mallocing = 1; if(!runtime_mlookup(v, nil, nil, &s)) { runtime_printf("free %p: not an allocated block\n", v); runtime_throw("free runtime_mlookup"); } prof = runtime_blockspecial(v); if(raceenabled) runtime_racefree(v); // Find size class for v. sizeclass = s->sizeclass; c = m->mcache; if(sizeclass == 0) { // Large object. size = s->npages<start< sizeof(uintptr)) ((uintptr*)v)[1] = (uintptr)0xfeedfeedfeedfeedll; // mark as "needs to be zeroed" // Must mark v freed before calling MCache_Free: // it might coalesce v and other blocks into a bigger span // and change the bitmap further. runtime_markfreed(v, size); c->local_by_size[sizeclass].nfree++; runtime_MCache_Free(c, v, sizeclass, size); } c->local_nfree++; c->local_alloc -= size; if(prof) runtime_MProf_Free(v, size); m->mallocing = 0; } int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **sp) { M *m; uintptr n, i; byte *p; MSpan *s; m = runtime_m(); m->mcache->local_nlookup++; if (sizeof(void*) == 4 && m->mcache->local_nlookup >= (1<<30)) { // purge cache stats to prevent overflow runtime_lock(runtime_mheap); runtime_purgecachedstats(m->mcache); runtime_unlock(runtime_mheap); } s = runtime_MHeap_LookupMaybe(runtime_mheap, v); if(sp) *sp = s; if(s == nil) { runtime_checkfreed(v, 1); if(base) *base = nil; if(size) *size = 0; return 0; } p = (byte*)((uintptr)s->start<sizeclass == 0) { // Large object. if(base) *base = p; if(size) *size = s->npages<= (byte*)s->limit) { // pointers past the last block do not count as pointers. return 0; } n = s->elemsize; if(base) { i = ((byte*)v - p)/n; *base = p + i*n; } if(size) *size = n; return 1; } MCache* runtime_allocmcache(void) { intgo rate; MCache *c; runtime_lock(runtime_mheap); c = runtime_FixAlloc_Alloc(&runtime_mheap->cachealloc); mstats.mcache_inuse = runtime_mheap->cachealloc.inuse; mstats.mcache_sys = runtime_mheap->cachealloc.sys; runtime_unlock(runtime_mheap); runtime_memclr((byte*)c, sizeof(*c)); // Set first allocation sample size. rate = runtime_MemProfileRate; if(rate > 0x3fffffff) // make 2*rate not overflow rate = 0x3fffffff; if(rate != 0) c->next_sample = runtime_fastrand1() % (2*rate); return c; } void runtime_freemcache(MCache *c) { runtime_MCache_ReleaseAll(c); runtime_lock(runtime_mheap); runtime_purgecachedstats(c); runtime_FixAlloc_Free(&runtime_mheap->cachealloc, c); runtime_unlock(runtime_mheap); } void runtime_purgecachedstats(MCache *c) { // Protected by either heap or GC lock. mstats.heap_alloc += c->local_cachealloc; c->local_cachealloc = 0; mstats.heap_objects += c->local_objects; c->local_objects = 0; mstats.nmalloc += c->local_nmalloc; c->local_nmalloc = 0; mstats.nfree += c->local_nfree; c->local_nfree = 0; mstats.nlookup += c->local_nlookup; c->local_nlookup = 0; mstats.alloc += c->local_alloc; c->local_alloc= 0; mstats.total_alloc += c->local_total_alloc; c->local_total_alloc= 0; } extern uintptr runtime_sizeof_C_MStats __asm__ (GOSYM_PREFIX "runtime.Sizeof_C_MStats"); #define MaxArena32 (2U<<30) void runtime_mallocinit(void) { byte *p; uintptr arena_size, bitmap_size; extern byte _end[]; byte *want; uintptr limit; runtime_sizeof_C_MStats = sizeof(MStats); p = nil; arena_size = 0; bitmap_size = 0; // for 64-bit build USED(p); USED(arena_size); USED(bitmap_size); if((runtime_mheap = runtime_SysAlloc(sizeof(*runtime_mheap))) == nil) runtime_throw("runtime: cannot allocate heap metadata"); runtime_InitSizes(); // limit = runtime_memlimit(); // See https://code.google.com/p/go/issues/detail?id=5049 // TODO(rsc): Fix after 1.1. limit = 0; // Set up the allocation arena, a contiguous area of memory where // allocated data will be found. The arena begins with a bitmap large // enough to hold 4 bits per allocated word. if(sizeof(void*) == 8 && (limit == 0 || limit > (1<<30))) { // On a 64-bit machine, allocate from a single contiguous reservation. // 128 GB (MaxMem) should be big enough for now. // // The code will work with the reservation at any address, but ask // SysReserve to use 0x000000c000000000 if possible. // Allocating a 128 GB region takes away 37 bits, and the amd64 // doesn't let us choose the top 17 bits, so that leaves the 11 bits // in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means // that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x0x00df. // In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid // UTF-8 sequences, and they are otherwise as far away from // ff (likely a common byte) as possible. An earlier attempt to use 0x11f8 // caused out of memory errors on OS X during thread allocations. // These choices are both for debuggability and to reduce the // odds of the conservative garbage collector not collecting memory // because some non-pointer block of memory had a bit pattern // that matched a memory address. // // Actually we reserve 136 GB (because the bitmap ends up being 8 GB) // but it hardly matters: e0 00 is not valid UTF-8 either. // // If this fails we fall back to the 32 bit memory mechanism arena_size = MaxMem; bitmap_size = arena_size / (sizeof(void*)*8/4); p = runtime_SysReserve((void*)(0x00c0ULL<<32), bitmap_size + arena_size); } if (p == nil) { // On a 32-bit machine, we can't typically get away // with a giant virtual address space reservation. // Instead we map the memory information bitmap // immediately after the data segment, large enough // to handle another 2GB of mappings (256 MB), // along with a reservation for another 512 MB of memory. // When that gets used up, we'll start asking the kernel // for any memory anywhere and hope it's in the 2GB // following the bitmap (presumably the executable begins // near the bottom of memory, so we'll have to use up // most of memory before the kernel resorts to giving out // memory before the beginning of the text segment). // // Alternatively we could reserve 512 MB bitmap, enough // for 4GB of mappings, and then accept any memory the // kernel threw at us, but normally that's a waste of 512 MB // of address space, which is probably too much in a 32-bit world. bitmap_size = MaxArena32 / (sizeof(void*)*8/4); arena_size = 512<<20; if(limit > 0 && arena_size+bitmap_size > limit) { bitmap_size = (limit / 9) & ~((1<bitmap = p; runtime_mheap->arena_start = p + bitmap_size; runtime_mheap->arena_used = runtime_mheap->arena_start; runtime_mheap->arena_end = runtime_mheap->arena_start + arena_size; // Initialize the rest of the allocator. runtime_MHeap_Init(runtime_mheap, runtime_SysAlloc); runtime_m()->mcache = runtime_allocmcache(); // See if it works. runtime_free(runtime_malloc(1)); } void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n) { byte *p; if(n > (uintptr)(h->arena_end - h->arena_used)) { // We are in 32-bit mode, maybe we didn't use all possible address space yet. // Reserve some more space. byte *new_end; uintptr needed; needed = (uintptr)h->arena_used + n - (uintptr)h->arena_end; // Round wanted arena size to a multiple of 256MB. needed = (needed + (256<<20) - 1) & ~((256<<20)-1); new_end = h->arena_end + needed; if(new_end <= h->arena_start + MaxArena32) { p = runtime_SysReserve(h->arena_end, new_end - h->arena_end); if(p == h->arena_end) h->arena_end = new_end; } } if(n <= (uintptr)(h->arena_end - h->arena_used)) { // Keep taking from our reservation. p = h->arena_used; runtime_SysMap(p, n); h->arena_used += n; runtime_MHeap_MapBits(h); if(raceenabled) runtime_racemapshadow(p, n); return p; } // If using 64-bit, our reservation is all we have. if(sizeof(void*) == 8 && (uintptr)h->bitmap >= 0xffffffffU) return nil; // On 32-bit, once the reservation is gone we can // try to get memory at a location chosen by the OS // and hope that it is in the range we allocated bitmap for. p = runtime_SysAlloc(n); if(p == nil) return nil; if(p < h->arena_start || (uintptr)(p+n - h->arena_start) >= MaxArena32) { runtime_printf("runtime: memory allocated by OS (%p) not in usable range [%p,%p)\n", p, h->arena_start, h->arena_start+MaxArena32); runtime_SysFree(p, n); return nil; } if(p+n > h->arena_used) { h->arena_used = p+n; if(h->arena_used > h->arena_end) h->arena_end = h->arena_used; runtime_MHeap_MapBits(h); if(raceenabled) runtime_racemapshadow(p, n); } return p; } static Lock settype_lock; void runtime_settype_flush(M *mp, bool sysalloc) { uintptr *buf, *endbuf; uintptr size, ofs, j, t; uintptr ntypes, nbytes2, nbytes3; uintptr *data2; byte *data3; bool sysalloc3; void *v; uintptr typ, p; MSpan *s; buf = mp->settype_buf; endbuf = buf + mp->settype_bufsize; runtime_lock(&settype_lock); while(buf < endbuf) { v = (void*)*buf; *buf = 0; buf++; typ = *buf; buf++; // (Manually inlined copy of runtime_MHeap_Lookup) p = (uintptr)v>>PageShift; if(sizeof(void*) == 8) p -= (uintptr)runtime_mheap->arena_start >> PageShift; s = runtime_mheap->map[p]; if(s->sizeclass == 0) { s->types.compression = MTypes_Single; s->types.data = typ; continue; } size = s->elemsize; ofs = ((uintptr)v - (s->start<types.compression) { case MTypes_Empty: ntypes = (s->npages << PageShift) / size; nbytes3 = 8*sizeof(uintptr) + 1*ntypes; if(!sysalloc) { data3 = runtime_mallocgc(nbytes3, FlagNoProfiling|FlagNoPointers, 0, 1); } else { data3 = runtime_SysAlloc(nbytes3); if(data3 == nil) runtime_throw("runtime: cannot allocate memory"); if(0) runtime_printf("settype(0->3): SysAlloc(%x) --> %p\n", (uint32)nbytes3, data3); } s->types.compression = MTypes_Bytes; s->types.sysalloc = sysalloc; s->types.data = (uintptr)data3; ((uintptr*)data3)[1] = typ; data3[8*sizeof(uintptr) + ofs] = 1; break; case MTypes_Words: ((uintptr*)s->types.data)[ofs] = typ; break; case MTypes_Bytes: data3 = (byte*)s->types.data; for(j=1; j<8; j++) { if(((uintptr*)data3)[j] == typ) { break; } if(((uintptr*)data3)[j] == 0) { ((uintptr*)data3)[j] = typ; break; } } if(j < 8) { data3[8*sizeof(uintptr) + ofs] = j; } else { ntypes = (s->npages << PageShift) / size; nbytes2 = ntypes * sizeof(uintptr); if(!sysalloc) { data2 = runtime_mallocgc(nbytes2, FlagNoProfiling|FlagNoPointers, 0, 1); } else { data2 = runtime_SysAlloc(nbytes2); if(data2 == nil) runtime_throw("runtime: cannot allocate memory"); if(0) runtime_printf("settype.(3->2): SysAlloc(%x) --> %p\n", (uint32)nbytes2, data2); } sysalloc3 = s->types.sysalloc; s->types.compression = MTypes_Words; s->types.sysalloc = sysalloc; s->types.data = (uintptr)data2; // Move the contents of data3 to data2. Then deallocate data3. for(j=0; j2): SysFree(%p,%x)\n", data3, (uint32)nbytes3); runtime_SysFree(data3, nbytes3); } data2[ofs] = typ; } break; } } runtime_unlock(&settype_lock); mp->settype_bufsize = 0; } // It is forbidden to use this function if it is possible that // explicit deallocation via calling runtime_free(v) may happen. void runtime_settype(void *v, uintptr t) { M *mp; uintptr *buf; uintptr i; MSpan *s; if(t == 0) runtime_throw("settype: zero type"); mp = runtime_m(); buf = mp->settype_buf; i = mp->settype_bufsize; buf[i+0] = (uintptr)v; buf[i+1] = t; i += 2; mp->settype_bufsize = i; if(i == nelem(mp->settype_buf)) { runtime_settype_flush(mp, false); } if(DebugTypeAtBlockEnd) { s = runtime_MHeap_Lookup(runtime_mheap, v); *(uintptr*)((uintptr)v+s->elemsize-sizeof(uintptr)) = t; } } void runtime_settype_sysfree(MSpan *s) { uintptr ntypes, nbytes; if(!s->types.sysalloc) return; nbytes = (uintptr)-1; switch (s->types.compression) { case MTypes_Words: ntypes = (s->npages << PageShift) / s->elemsize; nbytes = ntypes * sizeof(uintptr); break; case MTypes_Bytes: ntypes = (s->npages << PageShift) / s->elemsize; nbytes = 8*sizeof(uintptr) + 1*ntypes; break; } if(nbytes != (uintptr)-1) { if(0) runtime_printf("settype: SysFree(%p,%x)\n", (void*)s->types.data, (uint32)nbytes); runtime_SysFree((void*)s->types.data, nbytes); } } uintptr runtime_gettype(void *v) { MSpan *s; uintptr t, ofs; byte *data; s = runtime_MHeap_LookupMaybe(runtime_mheap, v); if(s != nil) { t = 0; switch(s->types.compression) { case MTypes_Empty: break; case MTypes_Single: t = s->types.data; break; case MTypes_Words: ofs = (uintptr)v - (s->start<types.data)[ofs/s->elemsize]; break; case MTypes_Bytes: ofs = (uintptr)v - (s->start<types.data; t = data[8*sizeof(uintptr) + ofs/s->elemsize]; t = ((uintptr*)data)[t]; break; default: runtime_throw("runtime_gettype: invalid compression kind"); } if(0) { runtime_lock(&settype_lock); runtime_printf("%p -> %d,%X\n", v, (int32)s->types.compression, (int64)t); runtime_unlock(&settype_lock); } return t; } return 0; } // Runtime stubs. void* runtime_mal(uintptr n) { return runtime_mallocgc(n, 0, 1, 1); } void * runtime_new(const Type *typ) { void *ret; uint32 flag; if(raceenabled) runtime_m()->racepc = runtime_getcallerpc(&typ); if(typ->__size == 0) { // All 0-length allocations use this pointer. // The language does not require the allocations to // have distinct values. ret = (uint8*)&runtime_zerobase; } else { flag = typ->__code&GO_NO_POINTERS ? FlagNoPointers : 0; ret = runtime_mallocgc(typ->__size, flag, 1, 1); if(UseSpanType && !flag) { if(false) runtime_printf("new %S: %p\n", *typ->__reflection, ret); runtime_settype(ret, (uintptr)typ | TypeInfo_SingleObject); } } return ret; } static void* cnew(const Type *typ, intgo n, int32 objtyp) { uint32 flag; void *ret; if((objtyp&(PtrSize-1)) != objtyp) runtime_throw("runtime: invalid objtyp"); if(n < 0 || (typ->__size > 0 && (uintptr)n > (MaxMem/typ->__size))) runtime_panicstring("runtime: allocation size out of range"); if(typ->__size == 0 || n == 0) { // All 0-length allocations use this pointer. // The language does not require the allocations to // have distinct values. return &runtime_zerobase; } flag = typ->__code&GO_NO_POINTERS ? FlagNoPointers : 0; ret = runtime_mallocgc(typ->__size*n, flag, 1, 1); if(UseSpanType && !flag) { if(false) runtime_printf("cnew [%D]%S: %p\n", (int64)n, *typ->__reflection, ret); runtime_settype(ret, (uintptr)typ | TypeInfo_SingleObject); } return ret; } // same as runtime_new, but callable from C void* runtime_cnew(const Type *typ) { return cnew(typ, 1, TypeInfo_SingleObject); } void* runtime_cnewarray(const Type *typ, intgo n) { return cnew(typ, n, TypeInfo_Array); } func GC() { runtime_gc(1); } func SetFinalizer(obj Eface, finalizer Eface) { byte *base; uintptr size; const FuncType *ft; if(obj.__type_descriptor == nil) { runtime_printf("runtime.SetFinalizer: first argument is nil interface\n"); goto throw; } if(obj.__type_descriptor->__code != GO_PTR) { runtime_printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.__type_descriptor->__reflection); goto throw; } if(!runtime_mlookup(obj.__object, &base, &size, nil) || obj.__object != base) { runtime_printf("runtime.SetFinalizer: pointer not at beginning of allocated block\n"); goto throw; } ft = nil; if(finalizer.__type_descriptor != nil) { if(finalizer.__type_descriptor->__code != GO_FUNC) goto badfunc; ft = (const FuncType*)finalizer.__type_descriptor; if(ft->__dotdotdot || ft->__in.__count != 1 || !__go_type_descriptors_equal(*(Type**)ft->__in.__values, obj.__type_descriptor)) goto badfunc; } if(!runtime_addfinalizer(obj.__object, finalizer.__type_descriptor != nil ? *(void**)finalizer.__object : nil, ft)) { runtime_printf("runtime.SetFinalizer: finalizer already set\n"); goto throw; } return; badfunc: runtime_printf("runtime.SetFinalizer: second argument is %S, not func(%S)\n", *finalizer.__type_descriptor->__reflection, *obj.__type_descriptor->__reflection); throw: runtime_throw("runtime.SetFinalizer"); }