// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include #include #include #include #include #include "config.h" #ifdef HAVE_DL_ITERATE_PHDR #include #endif #include "runtime.h" #include "arch.h" #include "defs.h" #include "malloc.h" #include "race.h" #include "go-type.h" #include "go-defer.h" #ifdef USING_SPLIT_STACK /* FIXME: These are not declared anywhere. */ extern void __splitstack_getcontext(void *context[10]); extern void __splitstack_setcontext(void *context[10]); extern void *__splitstack_makecontext(size_t, void *context[10], size_t *); extern void * __splitstack_resetcontext(void *context[10], size_t *); extern void *__splitstack_find(void *, void *, size_t *, void **, void **, void **); extern void __splitstack_block_signals (int *, int *); extern void __splitstack_block_signals_context (void *context[10], int *, int *); #endif #ifndef PTHREAD_STACK_MIN # define PTHREAD_STACK_MIN 8192 #endif #if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK) # define StackMin PTHREAD_STACK_MIN #else # define StackMin 2 * 1024 * 1024 #endif uintptr runtime_stacks_sys; static void gtraceback(G*); #ifdef __rtems__ #define __thread #endif static __thread G *g; static __thread M *m; #ifndef SETCONTEXT_CLOBBERS_TLS static inline void initcontext(void) { } static inline void fixcontext(ucontext_t *c __attribute__ ((unused))) { } #else # if defined(__x86_64__) && defined(__sun__) // x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs // register to that of the thread which called getcontext. The effect // is that the address of all __thread variables changes. This bug // also affects pthread_self() and pthread_getspecific. We work // around it by clobbering the context field directly to keep %fs the // same. static __thread greg_t fs; static inline void initcontext(void) { ucontext_t c; getcontext(&c); fs = c.uc_mcontext.gregs[REG_FSBASE]; } static inline void fixcontext(ucontext_t* c) { c->uc_mcontext.gregs[REG_FSBASE] = fs; } # elif defined(__NetBSD__) // NetBSD has a bug: setcontext clobbers tlsbase, we need to save // and restore it ourselves. static __thread __greg_t tlsbase; static inline void initcontext(void) { ucontext_t c; getcontext(&c); tlsbase = c.uc_mcontext._mc_tlsbase; } static inline void fixcontext(ucontext_t* c) { c->uc_mcontext._mc_tlsbase = tlsbase; } # else # error unknown case for SETCONTEXT_CLOBBERS_TLS # endif #endif // We can not always refer to the TLS variables directly. The // compiler will call tls_get_addr to get the address of the variable, // and it may hold it in a register across a call to schedule. When // we get back from the call we may be running in a different thread, // in which case the register now points to the TLS variable for a // different thread. We use non-inlinable functions to avoid this // when necessary. G* runtime_g(void) __attribute__ ((noinline, no_split_stack)); G* runtime_g(void) { return g; } M* runtime_m(void) __attribute__ ((noinline, no_split_stack)); M* runtime_m(void) { return m; } // Set m and g. void runtime_setmg(M* mp, G* gp) { m = mp; g = gp; } // The static TLS size. See runtime_newm. static int tlssize; // Start a new thread. static void runtime_newosproc(M *mp) { pthread_attr_t attr; size_t stacksize; sigset_t clear, old; pthread_t tid; int ret; if(pthread_attr_init(&attr) != 0) runtime_throw("pthread_attr_init"); if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0) runtime_throw("pthread_attr_setdetachstate"); stacksize = PTHREAD_STACK_MIN; // With glibc before version 2.16 the static TLS size is taken // out of the stack size, and we get an error or a crash if // there is not enough stack space left. Add it back in if we // can, in case the program uses a lot of TLS space. FIXME: // This can be disabled in glibc 2.16 and later, if the bug is // indeed fixed then. stacksize += tlssize; if(pthread_attr_setstacksize(&attr, stacksize) != 0) runtime_throw("pthread_attr_setstacksize"); // Block signals during pthread_create so that the new thread // starts with signals disabled. It will enable them in minit. sigfillset(&clear); #ifdef SIGTRAP // Blocking SIGTRAP reportedly breaks gdb on Alpha GNU/Linux. sigdelset(&clear, SIGTRAP); #endif sigemptyset(&old); sigprocmask(SIG_BLOCK, &clear, &old); ret = pthread_create(&tid, &attr, runtime_mstart, mp); sigprocmask(SIG_SETMASK, &old, nil); if (ret != 0) runtime_throw("pthread_create"); } // First function run by a new goroutine. This replaces gogocall. static void kickoff(void) { void (*fn)(void*); if(g->traceback != nil) gtraceback(g); fn = (void (*)(void*))(g->entry); fn(g->param); runtime_goexit(); } // Switch context to a different goroutine. This is like longjmp. static void runtime_gogo(G*) __attribute__ ((noinline)); static void runtime_gogo(G* newg) { #ifdef USING_SPLIT_STACK __splitstack_setcontext(&newg->stack_context[0]); #endif g = newg; newg->fromgogo = true; fixcontext(&newg->context); setcontext(&newg->context); runtime_throw("gogo setcontext returned"); } // Save context and call fn passing g as a parameter. This is like // setjmp. Because getcontext always returns 0, unlike setjmp, we use // g->fromgogo as a code. It will be true if we got here via // setcontext. g == nil the first time this is called in a new m. static void runtime_mcall(void (*)(G*)) __attribute__ ((noinline)); static void runtime_mcall(void (*pfn)(G*)) { M *mp; G *gp; #ifndef USING_SPLIT_STACK int i; #endif // Ensure that all registers are on the stack for the garbage // collector. __builtin_unwind_init(); mp = m; gp = g; if(gp == mp->g0) runtime_throw("runtime: mcall called on m->g0 stack"); if(gp != nil) { #ifdef USING_SPLIT_STACK __splitstack_getcontext(&g->stack_context[0]); #else gp->gcnext_sp = &i; #endif gp->fromgogo = false; getcontext(&gp->context); // When we return from getcontext, we may be running // in a new thread. That means that m and g may have // changed. They are global variables so we will // reload them, but the addresses of m and g may be // cached in our local stack frame, and those // addresses may be wrong. Call functions to reload // the values for this thread. mp = runtime_m(); gp = runtime_g(); if(gp->traceback != nil) gtraceback(gp); } if (gp == nil || !gp->fromgogo) { #ifdef USING_SPLIT_STACK __splitstack_setcontext(&mp->g0->stack_context[0]); #endif mp->g0->entry = (byte*)pfn; mp->g0->param = gp; // It's OK to set g directly here because this case // can not occur if we got here via a setcontext to // the getcontext call just above. g = mp->g0; fixcontext(&mp->g0->context); setcontext(&mp->g0->context); runtime_throw("runtime: mcall function returned"); } } #ifdef HAVE_DL_ITERATE_PHDR // Called via dl_iterate_phdr. static int addtls(struct dl_phdr_info* info, size_t size __attribute__ ((unused)), void *data) { size_t *total = (size_t *)data; unsigned int i; for(i = 0; i < info->dlpi_phnum; ++i) { if(info->dlpi_phdr[i].p_type == PT_TLS) *total += info->dlpi_phdr[i].p_memsz; } return 0; } // Set the total TLS size. static void inittlssize() { size_t total = 0; dl_iterate_phdr(addtls, (void *)&total); tlssize = total; } #else static void inittlssize() { } #endif // Goroutine scheduler // The scheduler's job is to distribute ready-to-run goroutines over worker threads. // // The main concepts are: // G - goroutine. // M - worker thread, or machine. // P - processor, a resource that is required to execute Go code. // M must have an associated P to execute Go code, however it can be // blocked or in a syscall w/o an associated P. // // Design doc at http://golang.org/s/go11sched. typedef struct Sched Sched; struct Sched { Lock; uint64 goidgen; M* midle; // idle m's waiting for work int32 nmidle; // number of idle m's waiting for work int32 mlocked; // number of locked m's waiting for work int32 mcount; // number of m's that have been created P* pidle; // idle P's uint32 npidle; uint32 nmspinning; // Global runnable queue. G* runqhead; G* runqtail; int32 runqsize; // Global cache of dead G's. Lock gflock; G* gfree; int32 stopwait; Note stopnote; uint32 sysmonwait; Note sysmonnote; uint64 lastpoll; int32 profilehz; // cpu profiling rate }; // The max value of GOMAXPROCS. // There are no fundamental restrictions on the value. enum { MaxGomaxprocs = 1<<8 }; Sched runtime_sched; int32 runtime_gomaxprocs; bool runtime_singleproc; bool runtime_iscgo = true; uint32 runtime_needextram = 1; uint32 runtime_gcwaiting; M runtime_m0; G runtime_g0; // idle goroutine for m0 G* runtime_allg; G* runtime_lastg; M* runtime_allm; P** runtime_allp; M* runtime_extram; int8* runtime_goos; int32 runtime_ncpu; static int32 newprocs; void* runtime_mstart(void*); static void runqput(P*, G*); static G* runqget(P*); static void runqgrow(P*); static G* runqsteal(P*, P*); static void mput(M*); static M* mget(void); static void mcommoninit(M*); static void schedule(void); static void procresize(int32); static void acquirep(P*); static P* releasep(void); static void newm(void(*)(void), P*); static void stopm(void); static void startm(P*, bool); static void handoffp(P*); static void wakep(void); static void stoplockedm(void); static void startlockedm(G*); static void sysmon(void); static uint32 retake(uint32*); static void inclocked(int32); static void checkdead(void); static void exitsyscall0(G*); static void park0(G*); static void gosched0(G*); static void goexit0(G*); static void gfput(P*, G*); static G* gfget(P*); static void gfpurge(P*); static void globrunqput(G*); static G* globrunqget(P*); static P* pidleget(void); static void pidleput(P*); static void injectglist(G*); // The bootstrap sequence is: // // call osinit // call schedinit // make & queue new G // call runtime_mstart // // The new G calls runtime_main. void runtime_schedinit(void) { int32 n, procs; const byte *p; m = &runtime_m0; g = &runtime_g0; m->g0 = g; m->curg = g; g->m = m; initcontext(); inittlssize(); m->nomemprof++; runtime_mprofinit(); runtime_mallocinit(); mcommoninit(m); runtime_goargs(); runtime_goenvs(); // For debugging: // Allocate internal symbol table representation now, // so that we don't need to call malloc when we crash. // runtime_findfunc(0); runtime_sched.lastpoll = runtime_nanotime(); procs = 1; p = runtime_getenv("GOMAXPROCS"); if(p != nil && (n = runtime_atoi(p)) > 0) { if(n > MaxGomaxprocs) n = MaxGomaxprocs; procs = n; } runtime_allp = runtime_malloc((MaxGomaxprocs+1)*sizeof(runtime_allp[0])); procresize(procs); // Can not enable GC until all roots are registered. // mstats.enablegc = 1; m->nomemprof--; } extern void main_init(void) __asm__ (GOSYM_PREFIX "__go_init_main"); extern void main_main(void) __asm__ (GOSYM_PREFIX "main.main"); // The main goroutine. void runtime_main(void* dummy __attribute__((unused))) { newm(sysmon, nil); // Lock the main goroutine onto this, the main OS thread, // during initialization. Most programs won't care, but a few // do require certain calls to be made by the main thread. // Those can arrange for main.main to run in the main thread // by calling runtime.LockOSThread during initialization // to preserve the lock. runtime_lockOSThread(); if(m != &runtime_m0) runtime_throw("runtime_main not on m0"); __go_go(runtime_MHeap_Scavenger, nil); main_init(); runtime_unlockOSThread(); // For gccgo we have to wait until after main is initialized // to enable GC, because initializing main registers the GC // roots. mstats.enablegc = 1; main_main(); if(raceenabled) runtime_racefini(); // Make racy client program work: if panicking on // another goroutine at the same time as main returns, // let the other goroutine finish printing the panic trace. // Once it does, it will exit. See issue 3934. if(runtime_panicking) runtime_park(nil, nil, "panicwait"); runtime_exit(0); for(;;) *(int32*)0 = 0; } void runtime_goroutineheader(G *gp) { const char *status; switch(gp->status) { case Gidle: status = "idle"; break; case Grunnable: status = "runnable"; break; case Grunning: status = "running"; break; case Gsyscall: status = "syscall"; break; case Gwaiting: if(gp->waitreason) status = gp->waitreason; else status = "waiting"; break; default: status = "???"; break; } runtime_printf("goroutine %D [%s]:\n", gp->goid, status); } void runtime_goroutinetrailer(G *g) { if(g != nil && g->gopc != 0 && g->goid != 1) { String fn; String file; intgo line; if(__go_file_line(g->gopc - 1, &fn, &file, &line)) { runtime_printf("created by %S\n", fn); runtime_printf("\t%S:%D\n", file, (int64) line); } } } struct Traceback { G* gp; Location locbuf[100]; int32 c; }; void runtime_tracebackothers(G * volatile me) { G * volatile gp; Traceback tb; int32 traceback; tb.gp = me; traceback = runtime_gotraceback(nil); for(gp = runtime_allg; gp != nil; gp = gp->alllink) { if(gp == me || gp->status == Gdead) continue; if(gp->issystem && traceback < 2) continue; runtime_printf("\n"); runtime_goroutineheader(gp); // Our only mechanism for doing a stack trace is // _Unwind_Backtrace. And that only works for the // current thread, not for other random goroutines. // So we need to switch context to the goroutine, get // the backtrace, and then switch back. // This means that if g is running or in a syscall, we // can't reliably print a stack trace. FIXME. if(gp->status == Gsyscall || gp->status == Grunning) { runtime_printf("no stack trace available\n"); runtime_goroutinetrailer(gp); continue; } gp->traceback = &tb; #ifdef USING_SPLIT_STACK __splitstack_getcontext(&me->stack_context[0]); #endif getcontext(&me->context); if(gp->traceback != nil) { runtime_gogo(gp); } runtime_printtrace(tb.locbuf, tb.c, false); runtime_goroutinetrailer(gp); } } // Do a stack trace of gp, and then restore the context to // gp->dotraceback. static void gtraceback(G* gp) { Traceback* traceback; traceback = gp->traceback; gp->traceback = nil; traceback->c = runtime_callers(1, traceback->locbuf, sizeof traceback->locbuf / sizeof traceback->locbuf[0]); runtime_gogo(traceback->gp); } static void mcommoninit(M *mp) { // If there is no mcache runtime_callers() will crash, // and we are most likely in sysmon thread so the stack is senseless anyway. if(m->mcache) runtime_callers(1, mp->createstack, nelem(mp->createstack)); mp->fastrand = 0x49f6428aUL + mp->id + runtime_cputicks(); runtime_lock(&runtime_sched); mp->id = runtime_sched.mcount++; runtime_mpreinit(mp); // Add to runtime_allm so garbage collector doesn't free m // when it is just in a register or thread-local storage. mp->alllink = runtime_allm; // runtime_NumCgoCall() iterates over allm w/o schedlock, // so we need to publish it safely. runtime_atomicstorep(&runtime_allm, mp); runtime_unlock(&runtime_sched); } // Mark gp ready to run. void runtime_ready(G *gp) { // Mark runnable. if(gp->status != Gwaiting) { runtime_printf("goroutine %D has status %d\n", gp->goid, gp->status); runtime_throw("bad g->status in ready"); } gp->status = Grunnable; runqput(m->p, gp); if(runtime_atomicload(&runtime_sched.npidle) != 0 && runtime_atomicload(&runtime_sched.nmspinning) == 0) // TODO: fast atomic wakep(); } int32 runtime_gcprocs(void) { int32 n; // Figure out how many CPUs to use during GC. // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc. runtime_lock(&runtime_sched); n = runtime_gomaxprocs; if(n > runtime_ncpu) n = runtime_ncpu > 0 ? runtime_ncpu : 1; if(n > MaxGcproc) n = MaxGcproc; if(n > runtime_sched.nmidle+1) // one M is currently running n = runtime_sched.nmidle+1; runtime_unlock(&runtime_sched); return n; } static bool needaddgcproc(void) { int32 n; runtime_lock(&runtime_sched); n = runtime_gomaxprocs; if(n > runtime_ncpu) n = runtime_ncpu; if(n > MaxGcproc) n = MaxGcproc; n -= runtime_sched.nmidle+1; // one M is currently running runtime_unlock(&runtime_sched); return n > 0; } void runtime_helpgc(int32 nproc) { M *mp; int32 n, pos; runtime_lock(&runtime_sched); pos = 0; for(n = 1; n < nproc; n++) { // one M is currently running if(runtime_allp[pos]->mcache == m->mcache) pos++; mp = mget(); if(mp == nil) runtime_throw("runtime_gcprocs inconsistency"); mp->helpgc = n; mp->mcache = runtime_allp[pos]->mcache; pos++; runtime_notewakeup(&mp->park); } runtime_unlock(&runtime_sched); } void runtime_stoptheworld(void) { int32 i; uint32 s; P *p; bool wait; runtime_lock(&runtime_sched); runtime_sched.stopwait = runtime_gomaxprocs; runtime_atomicstore((uint32*)&runtime_gcwaiting, 1); // stop current P m->p->status = Pgcstop; runtime_sched.stopwait--; // try to retake all P's in Psyscall status for(i = 0; i < runtime_gomaxprocs; i++) { p = runtime_allp[i]; s = p->status; if(s == Psyscall && runtime_cas(&p->status, s, Pgcstop)) runtime_sched.stopwait--; } // stop idle P's while((p = pidleget()) != nil) { p->status = Pgcstop; runtime_sched.stopwait--; } wait = runtime_sched.stopwait > 0; runtime_unlock(&runtime_sched); // wait for remaining P's to stop voluntary if(wait) { runtime_notesleep(&runtime_sched.stopnote); runtime_noteclear(&runtime_sched.stopnote); } if(runtime_sched.stopwait) runtime_throw("stoptheworld: not stopped"); for(i = 0; i < runtime_gomaxprocs; i++) { p = runtime_allp[i]; if(p->status != Pgcstop) runtime_throw("stoptheworld: not stopped"); } } static void mhelpgc(void) { m->helpgc = -1; } void runtime_starttheworld(void) { P *p, *p1; M *mp; G *gp; bool add; gp = runtime_netpoll(false); // non-blocking injectglist(gp); add = needaddgcproc(); runtime_lock(&runtime_sched); if(newprocs) { procresize(newprocs); newprocs = 0; } else procresize(runtime_gomaxprocs); runtime_gcwaiting = 0; p1 = nil; while((p = pidleget()) != nil) { // procresize() puts p's with work at the beginning of the list. // Once we reach a p without a run queue, the rest don't have one either. if(p->runqhead == p->runqtail) { pidleput(p); break; } mp = mget(); if(mp == nil) { p->link = p1; p1 = p; continue; } if(mp->nextp) runtime_throw("starttheworld: inconsistent mp->nextp"); mp->nextp = p; runtime_notewakeup(&mp->park); } if(runtime_sched.sysmonwait) { runtime_sched.sysmonwait = false; runtime_notewakeup(&runtime_sched.sysmonnote); } runtime_unlock(&runtime_sched); while(p1) { p = p1; p1 = p1->link; add = false; newm(nil, p); } if(add) { // If GC could have used another helper proc, start one now, // in the hope that it will be available next time. // It would have been even better to start it before the collection, // but doing so requires allocating memory, so it's tricky to // coordinate. This lazy approach works out in practice: // we don't mind if the first couple gc rounds don't have quite // the maximum number of procs. newm(mhelpgc, nil); } } // Called to start an M. void* runtime_mstart(void* mp) { m = (M*)mp; g = m->g0; initcontext(); g->entry = nil; g->param = nil; // Record top of stack for use by mcall. // Once we call schedule we're never coming back, // so other calls can reuse this stack space. #ifdef USING_SPLIT_STACK __splitstack_getcontext(&g->stack_context[0]); #else g->gcinitial_sp = ∓ // Setting gcstack_size to 0 is a marker meaning that gcinitial_sp // is the top of the stack, not the bottom. g->gcstack_size = 0; g->gcnext_sp = ∓ #endif getcontext(&g->context); if(g->entry != nil) { // Got here from mcall. void (*pfn)(G*) = (void (*)(G*))g->entry; G* gp = (G*)g->param; pfn(gp); *(int*)0x21 = 0x21; } runtime_minit(); #ifdef USING_SPLIT_STACK { int dont_block_signals = 0; __splitstack_block_signals(&dont_block_signals, nil); } #endif // Install signal handlers; after minit so that minit can // prepare the thread to be able to handle the signals. if(m == &runtime_m0) { runtime_initsig(); if(runtime_iscgo) runtime_newextram(); } if(m->mstartfn) m->mstartfn(); if(m->helpgc) { m->helpgc = 0; stopm(); } else if(m != &runtime_m0) { acquirep(m->nextp); m->nextp = nil; } schedule(); // TODO(brainman): This point is never reached, because scheduler // does not release os threads at the moment. But once this path // is enabled, we must remove our seh here. return nil; } typedef struct CgoThreadStart CgoThreadStart; struct CgoThreadStart { M *m; G *g; void (*fn)(void); }; // Allocate a new m unassociated with any thread. // Can use p for allocation context if needed. M* runtime_allocm(P *p, int32 stacksize, byte** ret_g0_stack, size_t* ret_g0_stacksize) { M *mp; m->locks++; // disable GC because it can be called from sysmon if(m->p == nil) acquirep(p); // temporarily borrow p for mallocs in this function #if 0 if(mtype == nil) { Eface e; runtime_gc_m_ptr(&e); mtype = ((const PtrType*)e.__type_descriptor)->__element_type; } #endif mp = runtime_mal(sizeof *mp); mcommoninit(mp); mp->g0 = runtime_malg(stacksize, ret_g0_stack, ret_g0_stacksize); if(p == m->p) releasep(); m->locks--; return mp; } static M* lockextra(bool nilokay); static void unlockextra(M*); // needm is called when a cgo callback happens on a // thread without an m (a thread not created by Go). // In this case, needm is expected to find an m to use // and return with m, g initialized correctly. // Since m and g are not set now (likely nil, but see below) // needm is limited in what routines it can call. In particular // it can only call nosplit functions (textflag 7) and cannot // do any scheduling that requires an m. // // In order to avoid needing heavy lifting here, we adopt // the following strategy: there is a stack of available m's // that can be stolen. Using compare-and-swap // to pop from the stack has ABA races, so we simulate // a lock by doing an exchange (via casp) to steal the stack // head and replace the top pointer with MLOCKED (1). // This serves as a simple spin lock that we can use even // without an m. The thread that locks the stack in this way // unlocks the stack by storing a valid stack head pointer. // // In order to make sure that there is always an m structure // available to be stolen, we maintain the invariant that there // is always one more than needed. At the beginning of the // program (if cgo is in use) the list is seeded with a single m. // If needm finds that it has taken the last m off the list, its job // is - once it has installed its own m so that it can do things like // allocate memory - to create a spare m and put it on the list. // // Each of these extra m's also has a g0 and a curg that are // pressed into service as the scheduling stack and current // goroutine for the duration of the cgo callback. // // When the callback is done with the m, it calls dropm to // put the m back on the list. // // Unlike the gc toolchain, we start running on curg, since we are // just going to return and let the caller continue. void runtime_needm(void) { M *mp; // Lock extra list, take head, unlock popped list. // nilokay=false is safe here because of the invariant above, // that the extra list always contains or will soon contain // at least one m. mp = lockextra(false); // Set needextram when we've just emptied the list, // so that the eventual call into cgocallbackg will // allocate a new m for the extra list. We delay the // allocation until then so that it can be done // after exitsyscall makes sure it is okay to be // running at all (that is, there's no garbage collection // running right now). mp->needextram = mp->schedlink == nil; unlockextra(mp->schedlink); // Install m and g (= m->curg). runtime_setmg(mp, mp->curg); // Initialize g's context as in mstart. initcontext(); g->status = Gsyscall; g->entry = nil; g->param = nil; #ifdef USING_SPLIT_STACK __splitstack_getcontext(&g->stack_context[0]); #else g->gcinitial_sp = ∓ g->gcstack_size = 0; g->gcnext_sp = ∓ #endif getcontext(&g->context); if(g->entry != nil) { // Got here from mcall. void (*pfn)(G*) = (void (*)(G*))g->entry; G* gp = (G*)g->param; pfn(gp); *(int*)0x22 = 0x22; } // Initialize this thread to use the m. runtime_minit(); #ifdef USING_SPLIT_STACK { int dont_block_signals = 0; __splitstack_block_signals(&dont_block_signals, nil); } #endif } // newextram allocates an m and puts it on the extra list. // It is called with a working local m, so that it can do things // like call schedlock and allocate. void runtime_newextram(void) { M *mp, *mnext; G *gp; byte *g0_sp, *sp; size_t g0_spsize, spsize; // Create extra goroutine locked to extra m. // The goroutine is the context in which the cgo callback will run. // The sched.pc will never be returned to, but setting it to // runtime.goexit makes clear to the traceback routines where // the goroutine stack ends. mp = runtime_allocm(nil, StackMin, &g0_sp, &g0_spsize); gp = runtime_malg(StackMin, &sp, &spsize); gp->status = Gdead; mp->curg = gp; mp->locked = LockInternal; mp->lockedg = gp; gp->lockedm = mp; // put on allg for garbage collector runtime_lock(&runtime_sched); if(runtime_lastg == nil) runtime_allg = gp; else runtime_lastg->alllink = gp; runtime_lastg = gp; runtime_unlock(&runtime_sched); gp->goid = runtime_xadd64(&runtime_sched.goidgen, 1); // The context for gp will be set up in runtime_needm. But // here we need to set up the context for g0. getcontext(&mp->g0->context); mp->g0->context.uc_stack.ss_sp = g0_sp; #ifdef MAKECONTEXT_STACK_TOP mp->g0->context.uc_stack.ss_sp += g0_spsize; #endif mp->g0->context.uc_stack.ss_size = g0_spsize; makecontext(&mp->g0->context, kickoff, 0); // Add m to the extra list. mnext = lockextra(true); mp->schedlink = mnext; unlockextra(mp); } // dropm is called when a cgo callback has called needm but is now // done with the callback and returning back into the non-Go thread. // It puts the current m back onto the extra list. // // The main expense here is the call to signalstack to release the // m's signal stack, and then the call to needm on the next callback // from this thread. It is tempting to try to save the m for next time, // which would eliminate both these costs, but there might not be // a next time: the current thread (which Go does not control) might exit. // If we saved the m for that thread, there would be an m leak each time // such a thread exited. Instead, we acquire and release an m on each // call. These should typically not be scheduling operations, just a few // atomics, so the cost should be small. // // TODO(rsc): An alternative would be to allocate a dummy pthread per-thread // variable using pthread_key_create. Unlike the pthread keys we already use // on OS X, this dummy key would never be read by Go code. It would exist // only so that we could register at thread-exit-time destructor. // That destructor would put the m back onto the extra list. // This is purely a performance optimization. The current version, // in which dropm happens on each cgo call, is still correct too. // We may have to keep the current version on systems with cgo // but without pthreads, like Windows. void runtime_dropm(void) { M *mp, *mnext; // Undo whatever initialization minit did during needm. runtime_unminit(); // Clear m and g, and return m to the extra list. // After the call to setmg we can only call nosplit functions. mp = m; runtime_setmg(nil, nil); mp->curg->status = Gdead; mnext = lockextra(true); mp->schedlink = mnext; unlockextra(mp); } #define MLOCKED ((M*)1) // lockextra locks the extra list and returns the list head. // The caller must unlock the list by storing a new list head // to runtime.extram. If nilokay is true, then lockextra will // return a nil list head if that's what it finds. If nilokay is false, // lockextra will keep waiting until the list head is no longer nil. static M* lockextra(bool nilokay) { M *mp; void (*yield)(void); for(;;) { mp = runtime_atomicloadp(&runtime_extram); if(mp == MLOCKED) { yield = runtime_osyield; yield(); continue; } if(mp == nil && !nilokay) { runtime_usleep(1); continue; } if(!runtime_casp(&runtime_extram, mp, MLOCKED)) { yield = runtime_osyield; yield(); continue; } break; } return mp; } static void unlockextra(M *mp) { runtime_atomicstorep(&runtime_extram, mp); } static int32 countextra() { M *mp, *mc; int32 c; for(;;) { mp = runtime_atomicloadp(&runtime_extram); if(mp == MLOCKED) { runtime_osyield(); continue; } if(!runtime_casp(&runtime_extram, mp, MLOCKED)) { runtime_osyield(); continue; } c = 0; for(mc = mp; mc != nil; mc = mc->schedlink) c++; runtime_atomicstorep(&runtime_extram, mp); return c; } } // Create a new m. It will start off with a call to fn, or else the scheduler. static void newm(void(*fn)(void), P *p) { M *mp; mp = runtime_allocm(p, -1, nil, nil); mp->nextp = p; mp->mstartfn = fn; runtime_newosproc(mp); } // Stops execution of the current m until new work is available. // Returns with acquired P. static void stopm(void) { if(m->locks) runtime_throw("stopm holding locks"); if(m->p) runtime_throw("stopm holding p"); if(m->spinning) { m->spinning = false; runtime_xadd(&runtime_sched.nmspinning, -1); } retry: runtime_lock(&runtime_sched); mput(m); runtime_unlock(&runtime_sched); runtime_notesleep(&m->park); runtime_noteclear(&m->park); if(m->helpgc) { runtime_gchelper(); m->helpgc = 0; m->mcache = nil; goto retry; } acquirep(m->nextp); m->nextp = nil; } static void mspinning(void) { m->spinning = true; } // Schedules some M to run the p (creates an M if necessary). // If p==nil, tries to get an idle P, if no idle P's returns false. static void startm(P *p, bool spinning) { M *mp; void (*fn)(void); runtime_lock(&runtime_sched); if(p == nil) { p = pidleget(); if(p == nil) { runtime_unlock(&runtime_sched); if(spinning) runtime_xadd(&runtime_sched.nmspinning, -1); return; } } mp = mget(); runtime_unlock(&runtime_sched); if(mp == nil) { fn = nil; if(spinning) fn = mspinning; newm(fn, p); return; } if(mp->spinning) runtime_throw("startm: m is spinning"); if(mp->nextp) runtime_throw("startm: m has p"); mp->spinning = spinning; mp->nextp = p; runtime_notewakeup(&mp->park); } // Hands off P from syscall or locked M. static void handoffp(P *p) { // if it has local work, start it straight away if(p->runqhead != p->runqtail || runtime_sched.runqsize) { startm(p, false); return; } // no local work, check that there are no spinning/idle M's, // otherwise our help is not required if(runtime_atomicload(&runtime_sched.nmspinning) + runtime_atomicload(&runtime_sched.npidle) == 0 && // TODO: fast atomic runtime_cas(&runtime_sched.nmspinning, 0, 1)) { startm(p, true); return; } runtime_lock(&runtime_sched); if(runtime_gcwaiting) { p->status = Pgcstop; if(--runtime_sched.stopwait == 0) runtime_notewakeup(&runtime_sched.stopnote); runtime_unlock(&runtime_sched); return; } if(runtime_sched.runqsize) { runtime_unlock(&runtime_sched); startm(p, false); return; } // If this is the last running P and nobody is polling network, // need to wakeup another M to poll network. if(runtime_sched.npidle == (uint32)runtime_gomaxprocs-1 && runtime_atomicload64(&runtime_sched.lastpoll) != 0) { runtime_unlock(&runtime_sched); startm(p, false); return; } pidleput(p); runtime_unlock(&runtime_sched); } // Tries to add one more P to execute G's. // Called when a G is made runnable (newproc, ready). static void wakep(void) { // be conservative about spinning threads if(!runtime_cas(&runtime_sched.nmspinning, 0, 1)) return; startm(nil, true); } // Stops execution of the current m that is locked to a g until the g is runnable again. // Returns with acquired P. static void stoplockedm(void) { P *p; if(m->lockedg == nil || m->lockedg->lockedm != m) runtime_throw("stoplockedm: inconsistent locking"); if(m->p) { // Schedule another M to run this p. p = releasep(); handoffp(p); } inclocked(1); // Wait until another thread schedules lockedg again. runtime_notesleep(&m->park); runtime_noteclear(&m->park); if(m->lockedg->status != Grunnable) runtime_throw("stoplockedm: not runnable"); acquirep(m->nextp); m->nextp = nil; } // Schedules the locked m to run the locked gp. static void startlockedm(G *gp) { M *mp; P *p; mp = gp->lockedm; if(mp == m) runtime_throw("startlockedm: locked to me"); if(mp->nextp) runtime_throw("startlockedm: m has p"); // directly handoff current P to the locked m inclocked(-1); p = releasep(); mp->nextp = p; runtime_notewakeup(&mp->park); stopm(); } // Stops the current m for stoptheworld. // Returns when the world is restarted. static void gcstopm(void) { P *p; if(!runtime_gcwaiting) runtime_throw("gcstopm: not waiting for gc"); if(m->spinning) { m->spinning = false; runtime_xadd(&runtime_sched.nmspinning, -1); } p = releasep(); runtime_lock(&runtime_sched); p->status = Pgcstop; if(--runtime_sched.stopwait == 0) runtime_notewakeup(&runtime_sched.stopnote); runtime_unlock(&runtime_sched); stopm(); } // Schedules gp to run on the current M. // Never returns. static void execute(G *gp) { int32 hz; if(gp->status != Grunnable) { runtime_printf("execute: bad g status %d\n", gp->status); runtime_throw("execute: bad g status"); } gp->status = Grunning; m->p->tick++; m->curg = gp; gp->m = m; // Check whether the profiler needs to be turned on or off. hz = runtime_sched.profilehz; if(m->profilehz != hz) runtime_resetcpuprofiler(hz); runtime_gogo(gp); } // Finds a runnable goroutine to execute. // Tries to steal from other P's, get g from global queue, poll network. static G* findrunnable(void) { G *gp; P *p; int32 i; top: if(runtime_gcwaiting) { gcstopm(); goto top; } // local runq gp = runqget(m->p); if(gp) return gp; // global runq if(runtime_sched.runqsize) { runtime_lock(&runtime_sched); gp = globrunqget(m->p); runtime_unlock(&runtime_sched); if(gp) return gp; } // poll network gp = runtime_netpoll(false); // non-blocking if(gp) { injectglist(gp->schedlink); gp->status = Grunnable; return gp; } // If number of spinning M's >= number of busy P's, block. // This is necessary to prevent excessive CPU consumption // when GOMAXPROCS>>1 but the program parallelism is low. if(!m->spinning && 2 * runtime_atomicload(&runtime_sched.nmspinning) >= runtime_gomaxprocs - runtime_atomicload(&runtime_sched.npidle)) // TODO: fast atomic goto stop; if(!m->spinning) { m->spinning = true; runtime_xadd(&runtime_sched.nmspinning, 1); } // random steal from other P's for(i = 0; i < 2*runtime_gomaxprocs; i++) { if(runtime_gcwaiting) goto top; p = runtime_allp[runtime_fastrand1()%runtime_gomaxprocs]; if(p == m->p) gp = runqget(p); else gp = runqsteal(m->p, p); if(gp) return gp; } stop: // return P and block runtime_lock(&runtime_sched); if(runtime_gcwaiting) { runtime_unlock(&runtime_sched); goto top; } if(runtime_sched.runqsize) { gp = globrunqget(m->p); runtime_unlock(&runtime_sched); return gp; } p = releasep(); pidleput(p); runtime_unlock(&runtime_sched); if(m->spinning) { m->spinning = false; runtime_xadd(&runtime_sched.nmspinning, -1); } // check all runqueues once again for(i = 0; i < runtime_gomaxprocs; i++) { p = runtime_allp[i]; if(p && p->runqhead != p->runqtail) { runtime_lock(&runtime_sched); p = pidleget(); runtime_unlock(&runtime_sched); if(p) { acquirep(p); goto top; } break; } } // poll network if(runtime_xchg64(&runtime_sched.lastpoll, 0) != 0) { if(m->p) runtime_throw("findrunnable: netpoll with p"); if(m->spinning) runtime_throw("findrunnable: netpoll with spinning"); gp = runtime_netpoll(true); // block until new work is available runtime_atomicstore64(&runtime_sched.lastpoll, runtime_nanotime()); if(gp) { runtime_lock(&runtime_sched); p = pidleget(); runtime_unlock(&runtime_sched); if(p) { acquirep(p); injectglist(gp->schedlink); gp->status = Grunnable; return gp; } injectglist(gp); } } stopm(); goto top; } // Injects the list of runnable G's into the scheduler. // Can run concurrently with GC. static void injectglist(G *glist) { int32 n; G *gp; if(glist == nil) return; runtime_lock(&runtime_sched); for(n = 0; glist; n++) { gp = glist; glist = gp->schedlink; gp->status = Grunnable; globrunqput(gp); } runtime_unlock(&runtime_sched); for(; n && runtime_sched.npidle; n--) startm(nil, false); } // One round of scheduler: find a runnable goroutine and execute it. // Never returns. static void schedule(void) { G *gp; if(m->locks) runtime_throw("schedule: holding locks"); top: if(runtime_gcwaiting) { gcstopm(); goto top; } gp = runqget(m->p); if(gp == nil) gp = findrunnable(); if(m->spinning) { m->spinning = false; runtime_xadd(&runtime_sched.nmspinning, -1); } // M wakeup policy is deliberately somewhat conservative (see nmspinning handling), // so see if we need to wakeup another M here. if (m->p->runqhead != m->p->runqtail && runtime_atomicload(&runtime_sched.nmspinning) == 0 && runtime_atomicload(&runtime_sched.npidle) > 0) // TODO: fast atomic wakep(); if(gp->lockedm) { startlockedm(gp); goto top; } execute(gp); } // Puts the current goroutine into a waiting state and unlocks the lock. // The goroutine can be made runnable again by calling runtime_ready(gp). void runtime_park(void(*unlockf)(Lock*), Lock *lock, const char *reason) { m->waitlock = lock; m->waitunlockf = unlockf; g->waitreason = reason; runtime_mcall(park0); } // runtime_park continuation on g0. static void park0(G *gp) { gp->status = Gwaiting; gp->m = nil; m->curg = nil; if(m->waitunlockf) { m->waitunlockf(m->waitlock); m->waitunlockf = nil; m->waitlock = nil; } if(m->lockedg) { stoplockedm(); execute(gp); // Never returns. } schedule(); } // Scheduler yield. void runtime_gosched(void) { runtime_mcall(gosched0); } // runtime_gosched continuation on g0. static void gosched0(G *gp) { gp->status = Grunnable; gp->m = nil; m->curg = nil; runtime_lock(&runtime_sched); globrunqput(gp); runtime_unlock(&runtime_sched); if(m->lockedg) { stoplockedm(); execute(gp); // Never returns. } schedule(); } // Finishes execution of the current goroutine. void runtime_goexit(void) { if(raceenabled) runtime_racegoend(); runtime_mcall(goexit0); } // runtime_goexit continuation on g0. static void goexit0(G *gp) { gp->status = Gdead; gp->entry = nil; gp->m = nil; gp->lockedm = nil; m->curg = nil; m->lockedg = nil; if(m->locked & ~LockExternal) { runtime_printf("invalid m->locked = %d", m->locked); runtime_throw("internal lockOSThread error"); } m->locked = 0; gfput(m->p, gp); schedule(); } // The goroutine g is about to enter a system call. // Record that it's not using the cpu anymore. // This is called only from the go syscall library and cgocall, // not from the low-level system calls used by the runtime. // // Entersyscall cannot split the stack: the runtime_gosave must // make g->sched refer to the caller's stack segment, because // entersyscall is going to return immediately after. void runtime_entersyscall(void) __attribute__ ((no_split_stack)); void runtime_entersyscall() { if(m->profilehz > 0) runtime_setprof(false); // Leave SP around for gc and traceback. #ifdef USING_SPLIT_STACK g->gcstack = __splitstack_find(nil, nil, &g->gcstack_size, &g->gcnext_segment, &g->gcnext_sp, &g->gcinitial_sp); #else { uint32 v; g->gcnext_sp = (byte *) &v; } #endif // Save the registers in the g structure so that any pointers // held in registers will be seen by the garbage collector. getcontext(&g->gcregs); g->status = Gsyscall; if(runtime_atomicload(&runtime_sched.sysmonwait)) { // TODO: fast atomic runtime_lock(&runtime_sched); if(runtime_atomicload(&runtime_sched.sysmonwait)) { runtime_atomicstore(&runtime_sched.sysmonwait, 0); runtime_notewakeup(&runtime_sched.sysmonnote); } runtime_unlock(&runtime_sched); } m->mcache = nil; m->p->tick++; m->p->m = nil; runtime_atomicstore(&m->p->status, Psyscall); if(runtime_gcwaiting) { runtime_lock(&runtime_sched); if (runtime_sched.stopwait > 0 && runtime_cas(&m->p->status, Psyscall, Pgcstop)) { if(--runtime_sched.stopwait == 0) runtime_notewakeup(&runtime_sched.stopnote); } runtime_unlock(&runtime_sched); } } // The same as runtime_entersyscall(), but with a hint that the syscall is blocking. void runtime_entersyscallblock(void) { P *p; if(m->profilehz > 0) runtime_setprof(false); // Leave SP around for gc and traceback. #ifdef USING_SPLIT_STACK g->gcstack = __splitstack_find(nil, nil, &g->gcstack_size, &g->gcnext_segment, &g->gcnext_sp, &g->gcinitial_sp); #else g->gcnext_sp = (byte *) &p; #endif // Save the registers in the g structure so that any pointers // held in registers will be seen by the garbage collector. getcontext(&g->gcregs); g->status = Gsyscall; p = releasep(); handoffp(p); if(g->isbackground) // do not consider blocked scavenger for deadlock detection inclocked(1); } // The goroutine g exited its system call. // Arrange for it to run on a cpu again. // This is called only from the go syscall library, not // from the low-level system calls used by the runtime. void runtime_exitsyscall(void) { G *gp; P *p; // Check whether the profiler needs to be turned on. if(m->profilehz > 0) runtime_setprof(true); gp = g; // Try to re-acquire the last P. if(m->p && m->p->status == Psyscall && runtime_cas(&m->p->status, Psyscall, Prunning)) { // There's a cpu for us, so we can run. m->mcache = m->p->mcache; m->p->m = m; m->p->tick++; gp->status = Grunning; // Garbage collector isn't running (since we are), // so okay to clear gcstack and gcsp. #ifdef USING_SPLIT_STACK gp->gcstack = nil; #endif gp->gcnext_sp = nil; runtime_memclr(&gp->gcregs, sizeof gp->gcregs); return; } if(gp->isbackground) // do not consider blocked scavenger for deadlock detection inclocked(-1); // Try to get any other idle P. m->p = nil; if(runtime_sched.pidle) { runtime_lock(&runtime_sched); p = pidleget(); runtime_unlock(&runtime_sched); if(p) { acquirep(p); #ifdef USING_SPLIT_STACK gp->gcstack = nil; #endif gp->gcnext_sp = nil; runtime_memclr(&gp->gcregs, sizeof gp->gcregs); return; } } // Call the scheduler. runtime_mcall(exitsyscall0); // Scheduler returned, so we're allowed to run now. // Delete the gcstack information that we left for // the garbage collector during the system call. // Must wait until now because until gosched returns // we don't know for sure that the garbage collector // is not running. #ifdef USING_SPLIT_STACK gp->gcstack = nil; #endif gp->gcnext_sp = nil; runtime_memclr(&gp->gcregs, sizeof gp->gcregs); } // runtime_exitsyscall slow path on g0. // Failed to acquire P, enqueue gp as runnable. static void exitsyscall0(G *gp) { P *p; gp->status = Grunnable; gp->m = nil; m->curg = nil; runtime_lock(&runtime_sched); p = pidleget(); if(p == nil) globrunqput(gp); runtime_unlock(&runtime_sched); if(p) { acquirep(p); execute(gp); // Never returns. } if(m->lockedg) { // Wait until another thread schedules gp and so m again. stoplockedm(); execute(gp); // Never returns. } stopm(); schedule(); // Never returns. } // Allocate a new g, with a stack big enough for stacksize bytes. G* runtime_malg(int32 stacksize, byte** ret_stack, size_t* ret_stacksize) { G *newg; newg = runtime_malloc(sizeof(G)); if(stacksize >= 0) { #if USING_SPLIT_STACK int dont_block_signals = 0; *ret_stack = __splitstack_makecontext(stacksize, &newg->stack_context[0], ret_stacksize); __splitstack_block_signals_context(&newg->stack_context[0], &dont_block_signals, nil); #else *ret_stack = runtime_mallocgc(stacksize, FlagNoProfiling|FlagNoGC, 0, 0); *ret_stacksize = stacksize; newg->gcinitial_sp = *ret_stack; newg->gcstack_size = stacksize; runtime_xadd(&runtime_stacks_sys, stacksize); #endif } return newg; } /* For runtime package testing. */ void runtime_testing_entersyscall(void) __asm__ (GOSYM_PREFIX "runtime.entersyscall"); void runtime_testing_entersyscall() { runtime_entersyscall(); } void runtime_testing_exitsyscall(void) __asm__ (GOSYM_PREFIX "runtime.exitsyscall"); void runtime_testing_exitsyscall() { runtime_exitsyscall(); } G* __go_go(void (*fn)(void*), void* arg) { byte *sp; size_t spsize; G *newg; m->locks++; // disable preemption because it can be holding p in a local var if((newg = gfget(m->p)) != nil) { #ifdef USING_SPLIT_STACK int dont_block_signals = 0; sp = __splitstack_resetcontext(&newg->stack_context[0], &spsize); __splitstack_block_signals_context(&newg->stack_context[0], &dont_block_signals, nil); #else sp = newg->gcinitial_sp; spsize = newg->gcstack_size; if(spsize == 0) runtime_throw("bad spsize in __go_go"); newg->gcnext_sp = sp; #endif } else { newg = runtime_malg(StackMin, &sp, &spsize); runtime_lock(&runtime_sched); if(runtime_lastg == nil) runtime_allg = newg; else runtime_lastg->alllink = newg; runtime_lastg = newg; runtime_unlock(&runtime_sched); } newg->entry = (byte*)fn; newg->param = arg; newg->gopc = (uintptr)__builtin_return_address(0); newg->status = Grunnable; newg->goid = runtime_xadd64(&runtime_sched.goidgen, 1); { // Avoid warnings about variables clobbered by // longjmp. byte * volatile vsp = sp; size_t volatile vspsize = spsize; G * volatile vnewg = newg; getcontext(&vnewg->context); vnewg->context.uc_stack.ss_sp = vsp; #ifdef MAKECONTEXT_STACK_TOP vnewg->context.uc_stack.ss_sp += vspsize; #endif vnewg->context.uc_stack.ss_size = vspsize; makecontext(&vnewg->context, kickoff, 0); runqput(m->p, vnewg); if(runtime_atomicload(&runtime_sched.npidle) != 0 && runtime_atomicload(&runtime_sched.nmspinning) == 0 && fn != runtime_main) // TODO: fast atomic wakep(); m->locks--; return vnewg; } } // Put on gfree list. // If local list is too long, transfer a batch to the global list. static void gfput(P *p, G *gp) { gp->schedlink = p->gfree; p->gfree = gp; p->gfreecnt++; if(p->gfreecnt >= 64) { runtime_lock(&runtime_sched.gflock); while(p->gfreecnt >= 32) { p->gfreecnt--; gp = p->gfree; p->gfree = gp->schedlink; gp->schedlink = runtime_sched.gfree; runtime_sched.gfree = gp; } runtime_unlock(&runtime_sched.gflock); } } // Get from gfree list. // If local list is empty, grab a batch from global list. static G* gfget(P *p) { G *gp; retry: gp = p->gfree; if(gp == nil && runtime_sched.gfree) { runtime_lock(&runtime_sched.gflock); while(p->gfreecnt < 32 && runtime_sched.gfree) { p->gfreecnt++; gp = runtime_sched.gfree; runtime_sched.gfree = gp->schedlink; gp->schedlink = p->gfree; p->gfree = gp; } runtime_unlock(&runtime_sched.gflock); goto retry; } if(gp) { p->gfree = gp->schedlink; p->gfreecnt--; } return gp; } // Purge all cached G's from gfree list to the global list. static void gfpurge(P *p) { G *gp; runtime_lock(&runtime_sched.gflock); while(p->gfreecnt) { p->gfreecnt--; gp = p->gfree; p->gfree = gp->schedlink; gp->schedlink = runtime_sched.gfree; runtime_sched.gfree = gp; } runtime_unlock(&runtime_sched.gflock); } void runtime_Breakpoint(void) { runtime_breakpoint(); } void runtime_Gosched (void) __asm__ (GOSYM_PREFIX "runtime.Gosched"); void runtime_Gosched(void) { runtime_gosched(); } // Implementation of runtime.GOMAXPROCS. // delete when scheduler is even stronger int32 runtime_gomaxprocsfunc(int32 n) { int32 ret; if(n > MaxGomaxprocs) n = MaxGomaxprocs; runtime_lock(&runtime_sched); ret = runtime_gomaxprocs; if(n <= 0 || n == ret) { runtime_unlock(&runtime_sched); return ret; } runtime_unlock(&runtime_sched); runtime_semacquire(&runtime_worldsema); m->gcing = 1; runtime_stoptheworld(); newprocs = n; m->gcing = 0; runtime_semrelease(&runtime_worldsema); runtime_starttheworld(); return ret; } static void LockOSThread(void) { m->lockedg = g; g->lockedm = m; } void runtime_LockOSThread(void) __asm__ (GOSYM_PREFIX "runtime.LockOSThread"); void runtime_LockOSThread(void) { m->locked |= LockExternal; LockOSThread(); } void runtime_lockOSThread(void) { m->locked += LockInternal; LockOSThread(); } static void UnlockOSThread(void) { if(m->locked != 0) return; m->lockedg = nil; g->lockedm = nil; } void runtime_UnlockOSThread(void) __asm__ (GOSYM_PREFIX "runtime.UnlockOSThread"); void runtime_UnlockOSThread(void) { m->locked &= ~LockExternal; UnlockOSThread(); } void runtime_unlockOSThread(void) { if(m->locked < LockInternal) runtime_throw("runtime: internal error: misuse of lockOSThread/unlockOSThread"); m->locked -= LockInternal; UnlockOSThread(); } bool runtime_lockedOSThread(void) { return g->lockedm != nil && m->lockedg != nil; } // for testing of callbacks _Bool runtime_golockedOSThread(void) __asm__ (GOSYM_PREFIX "runtime.golockedOSThread"); _Bool runtime_golockedOSThread(void) { return runtime_lockedOSThread(); } // for testing of wire, unwire uint32 runtime_mid() { return m->id; } intgo runtime_NumGoroutine (void) __asm__ (GOSYM_PREFIX "runtime.NumGoroutine"); intgo runtime_NumGoroutine() { return runtime_gcount(); } int32 runtime_gcount(void) { G *gp; int32 n, s; n = 0; runtime_lock(&runtime_sched); // TODO(dvyukov): runtime.NumGoroutine() is O(N). // We do not want to increment/decrement centralized counter in newproc/goexit, // just to make runtime.NumGoroutine() faster. // Compromise solution is to introduce per-P counters of active goroutines. for(gp = runtime_allg; gp; gp = gp->alllink) { s = gp->status; if(s == Grunnable || s == Grunning || s == Gsyscall || s == Gwaiting) n++; } runtime_unlock(&runtime_sched); return n; } int32 runtime_mcount(void) { return runtime_sched.mcount; } static struct { Lock; void (*fn)(uintptr*, int32); int32 hz; uintptr pcbuf[100]; Location locbuf[100]; } prof; // Called if we receive a SIGPROF signal. void runtime_sigprof() { int32 n, i; // Windows does profiling in a dedicated thread w/o m. if(!Windows && (m == nil || m->mcache == nil)) return; if(prof.fn == nil || prof.hz == 0) return; runtime_lock(&prof); if(prof.fn == nil) { runtime_unlock(&prof); return; } n = runtime_callers(0, prof.locbuf, nelem(prof.locbuf)); for(i = 0; i < n; i++) prof.pcbuf[i] = prof.locbuf[i].pc; if(n > 0) prof.fn(prof.pcbuf, n); runtime_unlock(&prof); } // Arrange to call fn with a traceback hz times a second. void runtime_setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz) { // Force sane arguments. if(hz < 0) hz = 0; if(hz == 0) fn = nil; if(fn == nil) hz = 0; // Stop profiler on this cpu so that it is safe to lock prof. // if a profiling signal came in while we had prof locked, // it would deadlock. runtime_resetcpuprofiler(0); runtime_lock(&prof); prof.fn = fn; prof.hz = hz; runtime_unlock(&prof); runtime_lock(&runtime_sched); runtime_sched.profilehz = hz; runtime_unlock(&runtime_sched); if(hz != 0) runtime_resetcpuprofiler(hz); } // Change number of processors. The world is stopped, sched is locked. static void procresize(int32 new) { int32 i, old; G *gp; P *p; old = runtime_gomaxprocs; if(old < 0 || old > MaxGomaxprocs || new <= 0 || new >MaxGomaxprocs) runtime_throw("procresize: invalid arg"); // initialize new P's for(i = 0; i < new; i++) { p = runtime_allp[i]; if(p == nil) { p = (P*)runtime_mallocgc(sizeof(*p), 0, 0, 1); p->status = Pgcstop; runtime_atomicstorep(&runtime_allp[i], p); } if(p->mcache == nil) { if(old==0 && i==0) p->mcache = m->mcache; // bootstrap else p->mcache = runtime_allocmcache(); } if(p->runq == nil) { p->runqsize = 128; p->runq = (G**)runtime_mallocgc(p->runqsize*sizeof(G*), 0, 0, 1); } } // redistribute runnable G's evenly for(i = 0; i < old; i++) { p = runtime_allp[i]; while((gp = runqget(p)) != nil) globrunqput(gp); } // start at 1 because current M already executes some G and will acquire allp[0] below, // so if we have a spare G we want to put it into allp[1]. for(i = 1; runtime_sched.runqhead; i++) { gp = runtime_sched.runqhead; runtime_sched.runqhead = gp->schedlink; runqput(runtime_allp[i%new], gp); } runtime_sched.runqtail = nil; runtime_sched.runqsize = 0; // free unused P's for(i = new; i < old; i++) { p = runtime_allp[i]; runtime_freemcache(p->mcache); p->mcache = nil; gfpurge(p); p->status = Pdead; // can't free P itself because it can be referenced by an M in syscall } if(m->p) m->p->m = nil; m->p = nil; m->mcache = nil; p = runtime_allp[0]; p->m = nil; p->status = Pidle; acquirep(p); for(i = new-1; i > 0; i--) { p = runtime_allp[i]; p->status = Pidle; pidleput(p); } runtime_singleproc = new == 1; runtime_atomicstore((uint32*)&runtime_gomaxprocs, new); } // Associate p and the current m. static void acquirep(P *p) { if(m->p || m->mcache) runtime_throw("acquirep: already in go"); if(p->m || p->status != Pidle) { runtime_printf("acquirep: p->m=%p(%d) p->status=%d\n", p->m, p->m ? p->m->id : 0, p->status); runtime_throw("acquirep: invalid p state"); } m->mcache = p->mcache; m->p = p; p->m = m; p->status = Prunning; } // Disassociate p and the current m. static P* releasep(void) { P *p; if(m->p == nil || m->mcache == nil) runtime_throw("releasep: invalid arg"); p = m->p; if(p->m != m || p->mcache != m->mcache || p->status != Prunning) { runtime_printf("releasep: m=%p m->p=%p p->m=%p m->mcache=%p p->mcache=%p p->status=%d\n", m, m->p, p->m, m->mcache, p->mcache, p->status); runtime_throw("releasep: invalid p state"); } m->p = nil; m->mcache = nil; p->m = nil; p->status = Pidle; return p; } static void inclocked(int32 v) { runtime_lock(&runtime_sched); runtime_sched.mlocked += v; if(v > 0) checkdead(); runtime_unlock(&runtime_sched); } // Check for deadlock situation. // The check is based on number of running M's, if 0 -> deadlock. static void checkdead(void) { G *gp; int32 run, grunning, s; // -1 for sysmon run = runtime_sched.mcount - runtime_sched.nmidle - runtime_sched.mlocked - 1 - countextra(); if(run > 0) return; if(run < 0) { runtime_printf("checkdead: nmidle=%d mlocked=%d mcount=%d\n", runtime_sched.nmidle, runtime_sched.mlocked, runtime_sched.mcount); runtime_throw("checkdead: inconsistent counts"); } grunning = 0; for(gp = runtime_allg; gp; gp = gp->alllink) { if(gp->isbackground) continue; s = gp->status; if(s == Gwaiting) grunning++; else if(s == Grunnable || s == Grunning || s == Gsyscall) { runtime_printf("checkdead: find g %D in status %d\n", gp->goid, s); runtime_throw("checkdead: runnable g"); } } if(grunning == 0) // possible if main goroutine calls runtime_Goexit() runtime_exit(0); m->throwing = -1; // do not dump full stacks runtime_throw("all goroutines are asleep - deadlock!"); } static void sysmon(void) { uint32 idle, delay; int64 now, lastpoll; G *gp; uint32 ticks[MaxGomaxprocs]; idle = 0; // how many cycles in succession we had not wokeup somebody delay = 0; for(;;) { if(idle == 0) // start with 20us sleep... delay = 20; else if(idle > 50) // start doubling the sleep after 1ms... delay *= 2; if(delay > 10*1000) // up to 10ms delay = 10*1000; runtime_usleep(delay); if(runtime_gcwaiting || runtime_atomicload(&runtime_sched.npidle) == (uint32)runtime_gomaxprocs) { // TODO: fast atomic runtime_lock(&runtime_sched); if(runtime_atomicload(&runtime_gcwaiting) || runtime_atomicload(&runtime_sched.npidle) == (uint32)runtime_gomaxprocs) { runtime_atomicstore(&runtime_sched.sysmonwait, 1); runtime_unlock(&runtime_sched); runtime_notesleep(&runtime_sched.sysmonnote); runtime_noteclear(&runtime_sched.sysmonnote); idle = 0; delay = 20; } else runtime_unlock(&runtime_sched); } // poll network if not polled for more than 10ms lastpoll = runtime_atomicload64(&runtime_sched.lastpoll); now = runtime_nanotime(); if(lastpoll != 0 && lastpoll + 10*1000*1000 > now) { gp = runtime_netpoll(false); // non-blocking injectglist(gp); } // retake P's blocked in syscalls if(retake(ticks)) idle = 0; else idle++; } } static uint32 retake(uint32 *ticks) { uint32 i, s, n; int64 t; P *p; n = 0; for(i = 0; i < (uint32)runtime_gomaxprocs; i++) { p = runtime_allp[i]; if(p==nil) continue; t = p->tick; if(ticks[i] != t) { ticks[i] = t; continue; } s = p->status; if(s != Psyscall) continue; if(p->runqhead == p->runqtail && runtime_atomicload(&runtime_sched.nmspinning) + runtime_atomicload(&runtime_sched.npidle) > 0) // TODO: fast atomic continue; // Need to increment number of locked M's before the CAS. // Otherwise the M from which we retake can exit the syscall, // increment nmidle and report deadlock. inclocked(-1); if(runtime_cas(&p->status, s, Pidle)) { n++; handoffp(p); } inclocked(1); } return n; } // Put mp on midle list. // Sched must be locked. static void mput(M *mp) { mp->schedlink = runtime_sched.midle; runtime_sched.midle = mp; runtime_sched.nmidle++; checkdead(); } // Try to get an m from midle list. // Sched must be locked. static M* mget(void) { M *mp; if((mp = runtime_sched.midle) != nil){ runtime_sched.midle = mp->schedlink; runtime_sched.nmidle--; } return mp; } // Put gp on the global runnable queue. // Sched must be locked. static void globrunqput(G *gp) { gp->schedlink = nil; if(runtime_sched.runqtail) runtime_sched.runqtail->schedlink = gp; else runtime_sched.runqhead = gp; runtime_sched.runqtail = gp; runtime_sched.runqsize++; } // Try get a batch of G's from the global runnable queue. // Sched must be locked. static G* globrunqget(P *p) { G *gp, *gp1; int32 n; if(runtime_sched.runqsize == 0) return nil; n = runtime_sched.runqsize/runtime_gomaxprocs+1; if(n > runtime_sched.runqsize) n = runtime_sched.runqsize; runtime_sched.runqsize -= n; if(runtime_sched.runqsize == 0) runtime_sched.runqtail = nil; gp = runtime_sched.runqhead; runtime_sched.runqhead = gp->schedlink; n--; while(n--) { gp1 = runtime_sched.runqhead; runtime_sched.runqhead = gp1->schedlink; runqput(p, gp1); } return gp; } // Put p to on pidle list. // Sched must be locked. static void pidleput(P *p) { p->link = runtime_sched.pidle; runtime_sched.pidle = p; runtime_xadd(&runtime_sched.npidle, 1); // TODO: fast atomic } // Try get a p from pidle list. // Sched must be locked. static P* pidleget(void) { P *p; p = runtime_sched.pidle; if(p) { runtime_sched.pidle = p->link; runtime_xadd(&runtime_sched.npidle, -1); // TODO: fast atomic } return p; } // Put g on local runnable queue. // TODO(dvyukov): consider using lock-free queue. static void runqput(P *p, G *gp) { int32 h, t, s; runtime_lock(p); retry: h = p->runqhead; t = p->runqtail; s = p->runqsize; if(t == h-1 || (h == 0 && t == s-1)) { runqgrow(p); goto retry; } p->runq[t++] = gp; if(t == s) t = 0; p->runqtail = t; runtime_unlock(p); } // Get g from local runnable queue. static G* runqget(P *p) { G *gp; int32 t, h, s; if(p->runqhead == p->runqtail) return nil; runtime_lock(p); h = p->runqhead; t = p->runqtail; s = p->runqsize; if(t == h) { runtime_unlock(p); return nil; } gp = p->runq[h++]; if(h == s) h = 0; p->runqhead = h; runtime_unlock(p); return gp; } // Grow local runnable queue. // TODO(dvyukov): consider using fixed-size array // and transfer excess to the global list (local queue can grow way too big). static void runqgrow(P *p) { G **q; int32 s, t, h, t2; h = p->runqhead; t = p->runqtail; s = p->runqsize; t2 = 0; q = runtime_malloc(2*s*sizeof(*q)); while(t != h) { q[t2++] = p->runq[h++]; if(h == s) h = 0; } runtime_free(p->runq); p->runq = q; p->runqhead = 0; p->runqtail = t2; p->runqsize = 2*s; } // Steal half of elements from local runnable queue of p2 // and put onto local runnable queue of p. // Returns one of the stolen elements (or nil if failed). static G* runqsteal(P *p, P *p2) { G *gp, *gp1; int32 t, h, s, t2, h2, s2, c, i; if(p2->runqhead == p2->runqtail) return nil; // sort locks to prevent deadlocks if(p < p2) runtime_lock(p); runtime_lock(p2); if(p2->runqhead == p2->runqtail) { runtime_unlock(p2); if(p < p2) runtime_unlock(p); return nil; } if(p >= p2) runtime_lock(p); // now we've locked both queues and know the victim is not empty h = p->runqhead; t = p->runqtail; s = p->runqsize; h2 = p2->runqhead; t2 = p2->runqtail; s2 = p2->runqsize; gp = p2->runq[h2++]; // return value if(h2 == s2) h2 = 0; // steal roughly half if(t2 > h2) c = (t2 - h2) / 2; else c = (s2 - h2 + t2) / 2; // copy for(i = 0; i != c; i++) { // the target queue is full? if(t == h-1 || (h == 0 && t == s-1)) break; // the victim queue is empty? if(t2 == h2) break; gp1 = p2->runq[h2++]; if(h2 == s2) h2 = 0; p->runq[t++] = gp1; if(t == s) t = 0; } p->runqtail = t; p2->runqhead = h2; runtime_unlock(p2); runtime_unlock(p); return gp; } void runtime_testSchedLocalQueue(void) __asm__("runtime.testSchedLocalQueue"); void runtime_testSchedLocalQueue(void) { P p; G gs[1000]; int32 i, j; runtime_memclr((byte*)&p, sizeof(p)); p.runqsize = 1; p.runqhead = 0; p.runqtail = 0; p.runq = runtime_malloc(p.runqsize*sizeof(*p.runq)); for(i = 0; i < (int32)nelem(gs); i++) { if(runqget(&p) != nil) runtime_throw("runq is not empty initially"); for(j = 0; j < i; j++) runqput(&p, &gs[i]); for(j = 0; j < i; j++) { if(runqget(&p) != &gs[i]) { runtime_printf("bad element at iter %d/%d\n", i, j); runtime_throw("bad element"); } } if(runqget(&p) != nil) runtime_throw("runq is not empty afterwards"); } } void runtime_testSchedLocalQueueSteal(void) __asm__("runtime.testSchedLocalQueueSteal"); void runtime_testSchedLocalQueueSteal(void) { P p1, p2; G gs[1000], *gp; int32 i, j, s; runtime_memclr((byte*)&p1, sizeof(p1)); p1.runqsize = 1; p1.runqhead = 0; p1.runqtail = 0; p1.runq = runtime_malloc(p1.runqsize*sizeof(*p1.runq)); runtime_memclr((byte*)&p2, sizeof(p2)); p2.runqsize = nelem(gs); p2.runqhead = 0; p2.runqtail = 0; p2.runq = runtime_malloc(p2.runqsize*sizeof(*p2.runq)); for(i = 0; i < (int32)nelem(gs); i++) { for(j = 0; j < i; j++) { gs[j].sig = 0; runqput(&p1, &gs[j]); } gp = runqsteal(&p2, &p1); s = 0; if(gp) { s++; gp->sig++; } while((gp = runqget(&p2)) != nil) { s++; gp->sig++; } while((gp = runqget(&p1)) != nil) gp->sig++; for(j = 0; j < i; j++) { if(gs[j].sig != 1) { runtime_printf("bad element %d(%d) at iter %d\n", j, gs[j].sig, i); runtime_throw("bad element"); } } if(s != i/2 && s != i/2+1) { runtime_printf("bad steal %d, want %d or %d, iter %d\n", s, i/2, i/2+1, i); runtime_throw("bad steal"); } } } void runtime_proc_scan(void (*addroot)(Obj)) { addroot((Obj){(byte*)&runtime_sched, sizeof runtime_sched, 0}); } // When a function calls a closure, it passes the closure value to // __go_set_closure immediately before the function call. When a // function uses a closure, it calls __go_get_closure immediately on // function entry. This is a hack, but it will work on any system. // It would be better to use the static chain register when there is // one. It is also worth considering expanding these functions // directly in the compiler. void __go_set_closure(void* v) { g->closure = v; } void * __go_get_closure(void) { return g->closure; }