/* Copyright (C) 2005-2018 Free Software Foundation, Inc. Contributed by Richard Henderson . This file is part of the GNU Offloading and Multi Processing Library (libgomp). Libgomp is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* This is a Linux specific implementation of a barrier synchronization mechanism for libgomp. This type is private to the library. This implementation uses atomic instructions and the futex syscall. */ #include #include "wait.h" void gomp_barrier_wait_end (gomp_barrier_t *bar, gomp_barrier_state_t state) { if (__builtin_expect (state & BAR_WAS_LAST, 0)) { /* Next time we'll be awaiting TOTAL threads again. */ bar->awaited = bar->total; __atomic_store_n (&bar->generation, bar->generation + BAR_INCR, MEMMODEL_RELEASE); futex_wake ((int *) &bar->generation, INT_MAX); } else { do do_wait ((int *) &bar->generation, state); while (__atomic_load_n (&bar->generation, MEMMODEL_ACQUIRE) == state); } } void gomp_barrier_wait (gomp_barrier_t *bar) { gomp_barrier_wait_end (bar, gomp_barrier_wait_start (bar)); } /* Like gomp_barrier_wait, except that if the encountering thread is not the last one to hit the barrier, it returns immediately. The intended usage is that a thread which intends to gomp_barrier_destroy this barrier calls gomp_barrier_wait, while all other threads call gomp_barrier_wait_last. When gomp_barrier_wait returns, the barrier can be safely destroyed. */ void gomp_barrier_wait_last (gomp_barrier_t *bar) { gomp_barrier_state_t state = gomp_barrier_wait_start (bar); if (state & BAR_WAS_LAST) gomp_barrier_wait_end (bar, state); } void gomp_team_barrier_wake (gomp_barrier_t *bar, int count) { futex_wake ((int *) &bar->generation, count == 0 ? INT_MAX : count); } void gomp_team_barrier_wait_end (gomp_barrier_t *bar, gomp_barrier_state_t state) { unsigned int generation, gen; if (__builtin_expect (state & BAR_WAS_LAST, 0)) { /* Next time we'll be awaiting TOTAL threads again. */ struct gomp_thread *thr = gomp_thread (); struct gomp_team *team = thr->ts.team; bar->awaited = bar->total; team->work_share_cancelled = 0; if (__builtin_expect (team->task_count, 0)) { gomp_barrier_handle_tasks (state); state &= ~BAR_WAS_LAST; } else { state &= ~BAR_CANCELLED; state += BAR_INCR - BAR_WAS_LAST; __atomic_store_n (&bar->generation, state, MEMMODEL_RELEASE); futex_wake ((int *) &bar->generation, INT_MAX); return; } } generation = state; state &= ~BAR_CANCELLED; do { do_wait ((int *) &bar->generation, generation); gen = __atomic_load_n (&bar->generation, MEMMODEL_ACQUIRE); if (__builtin_expect (gen & BAR_TASK_PENDING, 0)) { gomp_barrier_handle_tasks (state); gen = __atomic_load_n (&bar->generation, MEMMODEL_ACQUIRE); } generation |= gen & BAR_WAITING_FOR_TASK; } while (gen != state + BAR_INCR); } void gomp_team_barrier_wait (gomp_barrier_t *bar) { gomp_team_barrier_wait_end (bar, gomp_barrier_wait_start (bar)); } void gomp_team_barrier_wait_final (gomp_barrier_t *bar) { gomp_barrier_state_t state = gomp_barrier_wait_final_start (bar); if (__builtin_expect (state & BAR_WAS_LAST, 0)) bar->awaited_final = bar->total; gomp_team_barrier_wait_end (bar, state); } bool gomp_team_barrier_wait_cancel_end (gomp_barrier_t *bar, gomp_barrier_state_t state) { unsigned int generation, gen; if (__builtin_expect (state & BAR_WAS_LAST, 0)) { /* Next time we'll be awaiting TOTAL threads again. */ /* BAR_CANCELLED should never be set in state here, because cancellation means that at least one of the threads has been cancelled, thus on a cancellable barrier we should never see all threads to arrive. */ struct gomp_thread *thr = gomp_thread (); struct gomp_team *team = thr->ts.team; bar->awaited = bar->total; team->work_share_cancelled = 0; if (__builtin_expect (team->task_count, 0)) { gomp_barrier_handle_tasks (state); state &= ~BAR_WAS_LAST; } else { state += BAR_INCR - BAR_WAS_LAST; __atomic_store_n (&bar->generation, state, MEMMODEL_RELEASE); futex_wake ((int *) &bar->generation, INT_MAX); return false; } } if (__builtin_expect (state & BAR_CANCELLED, 0)) return true; generation = state; do { do_wait ((int *) &bar->generation, generation); gen = __atomic_load_n (&bar->generation, MEMMODEL_ACQUIRE); if (__builtin_expect (gen & BAR_CANCELLED, 0)) return true; if (__builtin_expect (gen & BAR_TASK_PENDING, 0)) { gomp_barrier_handle_tasks (state); gen = __atomic_load_n (&bar->generation, MEMMODEL_ACQUIRE); } generation |= gen & BAR_WAITING_FOR_TASK; } while (gen != state + BAR_INCR); return false; } bool gomp_team_barrier_wait_cancel (gomp_barrier_t *bar) { return gomp_team_barrier_wait_cancel_end (bar, gomp_barrier_wait_start (bar)); } void gomp_team_barrier_cancel (struct gomp_team *team) { gomp_mutex_lock (&team->task_lock); if (team->barrier.generation & BAR_CANCELLED) { gomp_mutex_unlock (&team->task_lock); return; } team->barrier.generation |= BAR_CANCELLED; gomp_mutex_unlock (&team->task_lock); futex_wake ((int *) &team->barrier.generation, INT_MAX); }