// Vector implementation -*- C++ -*-
// Copyright (C) 2001-2020 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file bits/stl_vector.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{vector}
*/
#ifndef _STL_VECTOR_H
#define _STL_VECTOR_H 1
#include
#include
#include
#if __cplusplus >= 201103L
#include
#endif
#if __cplusplus > 201703L
# include
#endif
#include
#if _GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR
extern "C" void
__sanitizer_annotate_contiguous_container(const void*, const void*,
const void*, const void*);
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
/// See bits/stl_deque.h's _Deque_base for an explanation.
template
struct _Vector_base
{
typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
rebind<_Tp>::other _Tp_alloc_type;
typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
pointer;
struct _Vector_impl_data
{
pointer _M_start;
pointer _M_finish;
pointer _M_end_of_storage;
_Vector_impl_data() _GLIBCXX_NOEXCEPT
: _M_start(), _M_finish(), _M_end_of_storage()
{ }
#if __cplusplus >= 201103L
_Vector_impl_data(_Vector_impl_data&& __x) noexcept
: _M_start(__x._M_start), _M_finish(__x._M_finish),
_M_end_of_storage(__x._M_end_of_storage)
{ __x._M_start = __x._M_finish = __x._M_end_of_storage = pointer(); }
#endif
void
_M_copy_data(_Vector_impl_data const& __x) _GLIBCXX_NOEXCEPT
{
_M_start = __x._M_start;
_M_finish = __x._M_finish;
_M_end_of_storage = __x._M_end_of_storage;
}
void
_M_swap_data(_Vector_impl_data& __x) _GLIBCXX_NOEXCEPT
{
// Do not use std::swap(_M_start, __x._M_start), etc as it loses
// information used by TBAA.
_Vector_impl_data __tmp;
__tmp._M_copy_data(*this);
_M_copy_data(__x);
__x._M_copy_data(__tmp);
}
};
struct _Vector_impl
: public _Tp_alloc_type, public _Vector_impl_data
{
_Vector_impl() _GLIBCXX_NOEXCEPT_IF(
is_nothrow_default_constructible<_Tp_alloc_type>::value)
: _Tp_alloc_type()
{ }
_Vector_impl(_Tp_alloc_type const& __a) _GLIBCXX_NOEXCEPT
: _Tp_alloc_type(__a)
{ }
#if __cplusplus >= 201103L
// Not defaulted, to enforce noexcept(true) even when
// !is_nothrow_move_constructible<_Tp_alloc_type>.
_Vector_impl(_Vector_impl&& __x) noexcept
: _Tp_alloc_type(std::move(__x)), _Vector_impl_data(std::move(__x))
{ }
_Vector_impl(_Tp_alloc_type&& __a) noexcept
: _Tp_alloc_type(std::move(__a))
{ }
_Vector_impl(_Tp_alloc_type&& __a, _Vector_impl&& __rv) noexcept
: _Tp_alloc_type(std::move(__a)), _Vector_impl_data(std::move(__rv))
{ }
#endif
#if _GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR
template
struct _Asan
{
typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>
::size_type size_type;
static void _S_shrink(_Vector_impl&, size_type) { }
static void _S_on_dealloc(_Vector_impl&) { }
typedef _Vector_impl& _Reinit;
struct _Grow
{
_Grow(_Vector_impl&, size_type) { }
void _M_grew(size_type) { }
};
};
// Enable ASan annotations for memory obtained from std::allocator.
template
struct _Asan >
{
typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>
::size_type size_type;
// Adjust ASan annotation for [_M_start, _M_end_of_storage) to
// mark end of valid region as __curr instead of __prev.
static void
_S_adjust(_Vector_impl& __impl, pointer __prev, pointer __curr)
{
__sanitizer_annotate_contiguous_container(__impl._M_start,
__impl._M_end_of_storage, __prev, __curr);
}
static void
_S_grow(_Vector_impl& __impl, size_type __n)
{ _S_adjust(__impl, __impl._M_finish, __impl._M_finish + __n); }
static void
_S_shrink(_Vector_impl& __impl, size_type __n)
{ _S_adjust(__impl, __impl._M_finish + __n, __impl._M_finish); }
static void
_S_on_dealloc(_Vector_impl& __impl)
{
if (__impl._M_start)
_S_adjust(__impl, __impl._M_finish, __impl._M_end_of_storage);
}
// Used on reallocation to tell ASan unused capacity is invalid.
struct _Reinit
{
explicit _Reinit(_Vector_impl& __impl) : _M_impl(__impl)
{
// Mark unused capacity as valid again before deallocating it.
_S_on_dealloc(_M_impl);
}
~_Reinit()
{
// Mark unused capacity as invalid after reallocation.
if (_M_impl._M_start)
_S_adjust(_M_impl, _M_impl._M_end_of_storage,
_M_impl._M_finish);
}
_Vector_impl& _M_impl;
#if __cplusplus >= 201103L
_Reinit(const _Reinit&) = delete;
_Reinit& operator=(const _Reinit&) = delete;
#endif
};
// Tell ASan when unused capacity is initialized to be valid.
struct _Grow
{
_Grow(_Vector_impl& __impl, size_type __n)
: _M_impl(__impl), _M_n(__n)
{ _S_grow(_M_impl, __n); }
~_Grow() { if (_M_n) _S_shrink(_M_impl, _M_n); }
void _M_grew(size_type __n) { _M_n -= __n; }
#if __cplusplus >= 201103L
_Grow(const _Grow&) = delete;
_Grow& operator=(const _Grow&) = delete;
#endif
private:
_Vector_impl& _M_impl;
size_type _M_n;
};
};
#define _GLIBCXX_ASAN_ANNOTATE_REINIT \
typename _Base::_Vector_impl::template _Asan<>::_Reinit const \
__attribute__((__unused__)) __reinit_guard(this->_M_impl)
#define _GLIBCXX_ASAN_ANNOTATE_GROW(n) \
typename _Base::_Vector_impl::template _Asan<>::_Grow \
__attribute__((__unused__)) __grow_guard(this->_M_impl, (n))
#define _GLIBCXX_ASAN_ANNOTATE_GREW(n) __grow_guard._M_grew(n)
#define _GLIBCXX_ASAN_ANNOTATE_SHRINK(n) \
_Base::_Vector_impl::template _Asan<>::_S_shrink(this->_M_impl, n)
#define _GLIBCXX_ASAN_ANNOTATE_BEFORE_DEALLOC \
_Base::_Vector_impl::template _Asan<>::_S_on_dealloc(this->_M_impl)
#else // ! (_GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR)
#define _GLIBCXX_ASAN_ANNOTATE_REINIT
#define _GLIBCXX_ASAN_ANNOTATE_GROW(n)
#define _GLIBCXX_ASAN_ANNOTATE_GREW(n)
#define _GLIBCXX_ASAN_ANNOTATE_SHRINK(n)
#define _GLIBCXX_ASAN_ANNOTATE_BEFORE_DEALLOC
#endif // _GLIBCXX_SANITIZE_STD_ALLOCATOR && _GLIBCXX_SANITIZE_VECTOR
};
public:
typedef _Alloc allocator_type;
_Tp_alloc_type&
_M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
{ return this->_M_impl; }
const _Tp_alloc_type&
_M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
{ return this->_M_impl; }
allocator_type
get_allocator() const _GLIBCXX_NOEXCEPT
{ return allocator_type(_M_get_Tp_allocator()); }
#if __cplusplus >= 201103L
_Vector_base() = default;
#else
_Vector_base() { }
#endif
_Vector_base(const allocator_type& __a) _GLIBCXX_NOEXCEPT
: _M_impl(__a) { }
// Kept for ABI compatibility.
#if !_GLIBCXX_INLINE_VERSION
_Vector_base(size_t __n)
: _M_impl()
{ _M_create_storage(__n); }
#endif
_Vector_base(size_t __n, const allocator_type& __a)
: _M_impl(__a)
{ _M_create_storage(__n); }
#if __cplusplus >= 201103L
_Vector_base(_Vector_base&&) = default;
// Kept for ABI compatibility.
# if !_GLIBCXX_INLINE_VERSION
_Vector_base(_Tp_alloc_type&& __a) noexcept
: _M_impl(std::move(__a)) { }
_Vector_base(_Vector_base&& __x, const allocator_type& __a)
: _M_impl(__a)
{
if (__x.get_allocator() == __a)
this->_M_impl._M_swap_data(__x._M_impl);
else
{
size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
_M_create_storage(__n);
}
}
# endif
_Vector_base(const allocator_type& __a, _Vector_base&& __x)
: _M_impl(_Tp_alloc_type(__a), std::move(__x._M_impl))
{ }
#endif
~_Vector_base() _GLIBCXX_NOEXCEPT
{
_M_deallocate(_M_impl._M_start,
_M_impl._M_end_of_storage - _M_impl._M_start);
}
public:
_Vector_impl _M_impl;
pointer
_M_allocate(size_t __n)
{
typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
return __n != 0 ? _Tr::allocate(_M_impl, __n) : pointer();
}
void
_M_deallocate(pointer __p, size_t __n)
{
typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
if (__p)
_Tr::deallocate(_M_impl, __p, __n);
}
protected:
void
_M_create_storage(size_t __n)
{
this->_M_impl._M_start = this->_M_allocate(__n);
this->_M_impl._M_finish = this->_M_impl._M_start;
this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
}
};
/**
* @brief A standard container which offers fixed time access to
* individual elements in any order.
*
* @ingroup sequences
*
* @tparam _Tp Type of element.
* @tparam _Alloc Allocator type, defaults to allocator<_Tp>.
*
* Meets the requirements of a container, a
* reversible container, and a
* sequence, including the
* optional sequence requirements with the
* %exception of @c push_front and @c pop_front.
*
* In some terminology a %vector can be described as a dynamic
* C-style array, it offers fast and efficient access to individual
* elements in any order and saves the user from worrying about
* memory and size allocation. Subscripting ( @c [] ) access is
* also provided as with C-style arrays.
*/
template >
class vector : protected _Vector_base<_Tp, _Alloc>
{
#ifdef _GLIBCXX_CONCEPT_CHECKS
// Concept requirements.
typedef typename _Alloc::value_type _Alloc_value_type;
# if __cplusplus < 201103L
__glibcxx_class_requires(_Tp, _SGIAssignableConcept)
# endif
__glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
#endif
#if __cplusplus >= 201103L
static_assert(is_same::type, _Tp>::value,
"std::vector must have a non-const, non-volatile value_type");
# if __cplusplus > 201703L || defined __STRICT_ANSI__
static_assert(is_same::value,
"std::vector must have the same value_type as its allocator");
# endif
#endif
typedef _Vector_base<_Tp, _Alloc> _Base;
typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Alloc_traits;
public:
typedef _Tp value_type;
typedef typename _Base::pointer pointer;
typedef typename _Alloc_traits::const_pointer const_pointer;
typedef typename _Alloc_traits::reference reference;
typedef typename _Alloc_traits::const_reference const_reference;
typedef __gnu_cxx::__normal_iterator iterator;
typedef __gnu_cxx::__normal_iterator
const_iterator;
typedef std::reverse_iterator const_reverse_iterator;
typedef std::reverse_iterator reverse_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Alloc allocator_type;
private:
#if __cplusplus >= 201103L
static constexpr bool
_S_nothrow_relocate(true_type)
{
return noexcept(std::__relocate_a(std::declval(),
std::declval(),
std::declval(),
std::declval<_Tp_alloc_type&>()));
}
static constexpr bool
_S_nothrow_relocate(false_type)
{ return false; }
static constexpr bool
_S_use_relocate()
{
// Instantiating std::__relocate_a might cause an error outside the
// immediate context (in __relocate_object_a's noexcept-specifier),
// so only do it if we know the type can be move-inserted into *this.
return _S_nothrow_relocate(__is_move_insertable<_Tp_alloc_type>{});
}
static pointer
_S_do_relocate(pointer __first, pointer __last, pointer __result,
_Tp_alloc_type& __alloc, true_type) noexcept
{
return std::__relocate_a(__first, __last, __result, __alloc);
}
static pointer
_S_do_relocate(pointer, pointer, pointer __result,
_Tp_alloc_type&, false_type) noexcept
{ return __result; }
static pointer
_S_relocate(pointer __first, pointer __last, pointer __result,
_Tp_alloc_type& __alloc) noexcept
{
using __do_it = __bool_constant<_S_use_relocate()>;
return _S_do_relocate(__first, __last, __result, __alloc, __do_it{});
}
#endif // C++11
protected:
using _Base::_M_allocate;
using _Base::_M_deallocate;
using _Base::_M_impl;
using _Base::_M_get_Tp_allocator;
public:
// [23.2.4.1] construct/copy/destroy
// (assign() and get_allocator() are also listed in this section)
/**
* @brief Creates a %vector with no elements.
*/
#if __cplusplus >= 201103L
vector() = default;
#else
vector() { }
#endif
/**
* @brief Creates a %vector with no elements.
* @param __a An allocator object.
*/
explicit
vector(const allocator_type& __a) _GLIBCXX_NOEXCEPT
: _Base(__a) { }
#if __cplusplus >= 201103L
/**
* @brief Creates a %vector with default constructed elements.
* @param __n The number of elements to initially create.
* @param __a An allocator.
*
* This constructor fills the %vector with @a __n default
* constructed elements.
*/
explicit
vector(size_type __n, const allocator_type& __a = allocator_type())
: _Base(_S_check_init_len(__n, __a), __a)
{ _M_default_initialize(__n); }
/**
* @brief Creates a %vector with copies of an exemplar element.
* @param __n The number of elements to initially create.
* @param __value An element to copy.
* @param __a An allocator.
*
* This constructor fills the %vector with @a __n copies of @a __value.
*/
vector(size_type __n, const value_type& __value,
const allocator_type& __a = allocator_type())
: _Base(_S_check_init_len(__n, __a), __a)
{ _M_fill_initialize(__n, __value); }
#else
/**
* @brief Creates a %vector with copies of an exemplar element.
* @param __n The number of elements to initially create.
* @param __value An element to copy.
* @param __a An allocator.
*
* This constructor fills the %vector with @a __n copies of @a __value.
*/
explicit
vector(size_type __n, const value_type& __value = value_type(),
const allocator_type& __a = allocator_type())
: _Base(_S_check_init_len(__n, __a), __a)
{ _M_fill_initialize(__n, __value); }
#endif
/**
* @brief %Vector copy constructor.
* @param __x A %vector of identical element and allocator types.
*
* All the elements of @a __x are copied, but any unused capacity in
* @a __x will not be copied
* (i.e. capacity() == size() in the new %vector).
*
* The newly-created %vector uses a copy of the allocator object used
* by @a __x (unless the allocator traits dictate a different object).
*/
vector(const vector& __x)
: _Base(__x.size(),
_Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
{
this->_M_impl._M_finish =
std::__uninitialized_copy_a(__x.begin(), __x.end(),
this->_M_impl._M_start,
_M_get_Tp_allocator());
}
#if __cplusplus >= 201103L
/**
* @brief %Vector move constructor.
*
* The newly-created %vector contains the exact contents of the
* moved instance.
* The contents of the moved instance are a valid, but unspecified
* %vector.
*/
vector(vector&&) noexcept = default;
/// Copy constructor with alternative allocator
vector(const vector& __x, const allocator_type& __a)
: _Base(__x.size(), __a)
{
this->_M_impl._M_finish =
std::__uninitialized_copy_a(__x.begin(), __x.end(),
this->_M_impl._M_start,
_M_get_Tp_allocator());
}
private:
vector(vector&& __rv, const allocator_type& __m, true_type) noexcept
: _Base(__m, std::move(__rv))
{ }
vector(vector&& __rv, const allocator_type& __m, false_type)
: _Base(__m)
{
if (__rv.get_allocator() == __m)
this->_M_impl._M_swap_data(__rv._M_impl);
else if (!__rv.empty())
{
this->_M_create_storage(__rv.size());
this->_M_impl._M_finish =
std::__uninitialized_move_a(__rv.begin(), __rv.end(),
this->_M_impl._M_start,
_M_get_Tp_allocator());
__rv.clear();
}
}
public:
/// Move constructor with alternative allocator
vector(vector&& __rv, const allocator_type& __m)
noexcept( noexcept(
vector(std::declval(), std::declval(),
std::declval())) )
: vector(std::move(__rv), __m, typename _Alloc_traits::is_always_equal{})
{ }
/**
* @brief Builds a %vector from an initializer list.
* @param __l An initializer_list.
* @param __a An allocator.
*
* Create a %vector consisting of copies of the elements in the
* initializer_list @a __l.
*
* This will call the element type's copy constructor N times
* (where N is @a __l.size()) and do no memory reallocation.
*/
vector(initializer_list __l,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
_M_range_initialize(__l.begin(), __l.end(),
random_access_iterator_tag());
}
#endif
/**
* @brief Builds a %vector from a range.
* @param __first An input iterator.
* @param __last An input iterator.
* @param __a An allocator.
*
* Create a %vector consisting of copies of the elements from
* [first,last).
*
* If the iterators are forward, bidirectional, or
* random-access, then this will call the elements' copy
* constructor N times (where N is distance(first,last)) and do
* no memory reallocation. But if only input iterators are
* used, then this will do at most 2N calls to the copy
* constructor, and logN memory reallocations.
*/
#if __cplusplus >= 201103L
template>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
_M_range_initialize(__first, __last,
std::__iterator_category(__first));
}
#else
template
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
#endif
/**
* The dtor only erases the elements, and note that if the
* elements themselves are pointers, the pointed-to memory is
* not touched in any way. Managing the pointer is the user's
* responsibility.
*/
~vector() _GLIBCXX_NOEXCEPT
{
std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
_M_get_Tp_allocator());
_GLIBCXX_ASAN_ANNOTATE_BEFORE_DEALLOC;
}
/**
* @brief %Vector assignment operator.
* @param __x A %vector of identical element and allocator types.
*
* All the elements of @a __x are copied, but any unused capacity in
* @a __x will not be copied.
*
* Whether the allocator is copied depends on the allocator traits.
*/
vector&
operator=(const vector& __x);
#if __cplusplus >= 201103L
/**
* @brief %Vector move assignment operator.
* @param __x A %vector of identical element and allocator types.
*
* The contents of @a __x are moved into this %vector (without copying,
* if the allocators permit it).
* Afterwards @a __x is a valid, but unspecified %vector.
*
* Whether the allocator is moved depends on the allocator traits.
*/
vector&
operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
{
constexpr bool __move_storage =
_Alloc_traits::_S_propagate_on_move_assign()
|| _Alloc_traits::_S_always_equal();
_M_move_assign(std::move(__x), __bool_constant<__move_storage>());
return *this;
}
/**
* @brief %Vector list assignment operator.
* @param __l An initializer_list.
*
* This function fills a %vector with copies of the elements in the
* initializer list @a __l.
*
* Note that the assignment completely changes the %vector and
* that the resulting %vector's size is the same as the number
* of elements assigned.
*/
vector&
operator=(initializer_list __l)
{
this->_M_assign_aux(__l.begin(), __l.end(),
random_access_iterator_tag());
return *this;
}
#endif
/**
* @brief Assigns a given value to a %vector.
* @param __n Number of elements to be assigned.
* @param __val Value to be assigned.
*
* This function fills a %vector with @a __n copies of the given
* value. Note that the assignment completely changes the
* %vector and that the resulting %vector's size is the same as
* the number of elements assigned.
*/
void
assign(size_type __n, const value_type& __val)
{ _M_fill_assign(__n, __val); }
/**
* @brief Assigns a range to a %vector.
* @param __first An input iterator.
* @param __last An input iterator.
*
* This function fills a %vector with copies of the elements in the
* range [__first,__last).
*
* Note that the assignment completely changes the %vector and
* that the resulting %vector's size is the same as the number
* of elements assigned.
*/
#if __cplusplus >= 201103L
template>
void
assign(_InputIterator __first, _InputIterator __last)
{ _M_assign_dispatch(__first, __last, __false_type()); }
#else
template
void
assign(_InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
#endif
#if __cplusplus >= 201103L
/**
* @brief Assigns an initializer list to a %vector.
* @param __l An initializer_list.
*
* This function fills a %vector with copies of the elements in the
* initializer list @a __l.
*
* Note that the assignment completely changes the %vector and
* that the resulting %vector's size is the same as the number
* of elements assigned.
*/
void
assign(initializer_list __l)
{
this->_M_assign_aux(__l.begin(), __l.end(),
random_access_iterator_tag());
}
#endif
/// Get a copy of the memory allocation object.
using _Base::get_allocator;
// iterators
/**
* Returns a read/write iterator that points to the first
* element in the %vector. Iteration is done in ordinary
* element order.
*/
iterator
begin() _GLIBCXX_NOEXCEPT
{ return iterator(this->_M_impl._M_start); }
/**
* Returns a read-only (constant) iterator that points to the
* first element in the %vector. Iteration is done in ordinary
* element order.
*/
const_iterator
begin() const _GLIBCXX_NOEXCEPT
{ return const_iterator(this->_M_impl._M_start); }
/**
* Returns a read/write iterator that points one past the last
* element in the %vector. Iteration is done in ordinary
* element order.
*/
iterator
end() _GLIBCXX_NOEXCEPT
{ return iterator(this->_M_impl._M_finish); }
/**
* Returns a read-only (constant) iterator that points one past
* the last element in the %vector. Iteration is done in
* ordinary element order.
*/
const_iterator
end() const _GLIBCXX_NOEXCEPT
{ return const_iterator(this->_M_impl._M_finish); }
/**
* Returns a read/write reverse iterator that points to the
* last element in the %vector. Iteration is done in reverse
* element order.
*/
reverse_iterator
rbegin() _GLIBCXX_NOEXCEPT
{ return reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points
* to the last element in the %vector. Iteration is done in
* reverse element order.
*/
const_reverse_iterator
rbegin() const _GLIBCXX_NOEXCEPT
{ return const_reverse_iterator(end()); }
/**
* Returns a read/write reverse iterator that points to one
* before the first element in the %vector. Iteration is done
* in reverse element order.
*/
reverse_iterator
rend() _GLIBCXX_NOEXCEPT
{ return reverse_iterator(begin()); }
/**
* Returns a read-only (constant) reverse iterator that points
* to one before the first element in the %vector. Iteration
* is done in reverse element order.
*/
const_reverse_iterator
rend() const _GLIBCXX_NOEXCEPT
{ return const_reverse_iterator(begin()); }
#if __cplusplus >= 201103L
/**
* Returns a read-only (constant) iterator that points to the
* first element in the %vector. Iteration is done in ordinary
* element order.
*/
const_iterator
cbegin() const noexcept
{ return const_iterator(this->_M_impl._M_start); }
/**
* Returns a read-only (constant) iterator that points one past
* the last element in the %vector. Iteration is done in
* ordinary element order.
*/
const_iterator
cend() const noexcept
{ return const_iterator(this->_M_impl._M_finish); }
/**
* Returns a read-only (constant) reverse iterator that points
* to the last element in the %vector. Iteration is done in
* reverse element order.
*/
const_reverse_iterator
crbegin() const noexcept
{ return const_reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points
* to one before the first element in the %vector. Iteration
* is done in reverse element order.
*/
const_reverse_iterator
crend() const noexcept
{ return const_reverse_iterator(begin()); }
#endif
// [23.2.4.2] capacity
/** Returns the number of elements in the %vector. */
size_type
size() const _GLIBCXX_NOEXCEPT
{ return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
/** Returns the size() of the largest possible %vector. */
size_type
max_size() const _GLIBCXX_NOEXCEPT
{ return _S_max_size(_M_get_Tp_allocator()); }
#if __cplusplus >= 201103L
/**
* @brief Resizes the %vector to the specified number of elements.
* @param __new_size Number of elements the %vector should contain.
*
* This function will %resize the %vector to the specified
* number of elements. If the number is smaller than the
* %vector's current size the %vector is truncated, otherwise
* default constructed elements are appended.
*/
void
resize(size_type __new_size)
{
if (__new_size > size())
_M_default_append(__new_size - size());
else if (__new_size < size())
_M_erase_at_end(this->_M_impl._M_start + __new_size);
}
/**
* @brief Resizes the %vector to the specified number of elements.
* @param __new_size Number of elements the %vector should contain.
* @param __x Data with which new elements should be populated.
*
* This function will %resize the %vector to the specified
* number of elements. If the number is smaller than the
* %vector's current size the %vector is truncated, otherwise
* the %vector is extended and new elements are populated with
* given data.
*/
void
resize(size_type __new_size, const value_type& __x)
{
if (__new_size > size())
_M_fill_insert(end(), __new_size - size(), __x);
else if (__new_size < size())
_M_erase_at_end(this->_M_impl._M_start + __new_size);
}
#else
/**
* @brief Resizes the %vector to the specified number of elements.
* @param __new_size Number of elements the %vector should contain.
* @param __x Data with which new elements should be populated.
*
* This function will %resize the %vector to the specified
* number of elements. If the number is smaller than the
* %vector's current size the %vector is truncated, otherwise
* the %vector is extended and new elements are populated with
* given data.
*/
void
resize(size_type __new_size, value_type __x = value_type())
{
if (__new_size > size())
_M_fill_insert(end(), __new_size - size(), __x);
else if (__new_size < size())
_M_erase_at_end(this->_M_impl._M_start + __new_size);
}
#endif
#if __cplusplus >= 201103L
/** A non-binding request to reduce capacity() to size(). */
void
shrink_to_fit()
{ _M_shrink_to_fit(); }
#endif
/**
* Returns the total number of elements that the %vector can
* hold before needing to allocate more memory.
*/
size_type
capacity() const _GLIBCXX_NOEXCEPT
{ return size_type(this->_M_impl._M_end_of_storage
- this->_M_impl._M_start); }
/**
* Returns true if the %vector is empty. (Thus begin() would
* equal end().)
*/
_GLIBCXX_NODISCARD bool
empty() const _GLIBCXX_NOEXCEPT
{ return begin() == end(); }
/**
* @brief Attempt to preallocate enough memory for specified number of
* elements.
* @param __n Number of elements required.
* @throw std::length_error If @a n exceeds @c max_size().
*
* This function attempts to reserve enough memory for the
* %vector to hold the specified number of elements. If the
* number requested is more than max_size(), length_error is
* thrown.
*
* The advantage of this function is that if optimal code is a
* necessity and the user can determine the number of elements
* that will be required, the user can reserve the memory in
* %advance, and thus prevent a possible reallocation of memory
* and copying of %vector data.
*/
void
reserve(size_type __n);
// element access
/**
* @brief Subscript access to the data contained in the %vector.
* @param __n The index of the element for which data should be
* accessed.
* @return Read/write reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and
* out_of_range lookups are not defined. (For checked lookups
* see at().)
*/
reference
operator[](size_type __n) _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_subscript(__n);
return *(this->_M_impl._M_start + __n);
}
/**
* @brief Subscript access to the data contained in the %vector.
* @param __n The index of the element for which data should be
* accessed.
* @return Read-only (constant) reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and
* out_of_range lookups are not defined. (For checked lookups
* see at().)
*/
const_reference
operator[](size_type __n) const _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_subscript(__n);
return *(this->_M_impl._M_start + __n);
}
protected:
/// Safety check used only from at().
void
_M_range_check(size_type __n) const
{
if (__n >= this->size())
__throw_out_of_range_fmt(__N("vector::_M_range_check: __n "
"(which is %zu) >= this->size() "
"(which is %zu)"),
__n, this->size());
}
public:
/**
* @brief Provides access to the data contained in the %vector.
* @param __n The index of the element for which data should be
* accessed.
* @return Read/write reference to data.
* @throw std::out_of_range If @a __n is an invalid index.
*
* This function provides for safer data access. The parameter
* is first checked that it is in the range of the vector. The
* function throws out_of_range if the check fails.
*/
reference
at(size_type __n)
{
_M_range_check(__n);
return (*this)[__n];
}
/**
* @brief Provides access to the data contained in the %vector.
* @param __n The index of the element for which data should be
* accessed.
* @return Read-only (constant) reference to data.
* @throw std::out_of_range If @a __n is an invalid index.
*
* This function provides for safer data access. The parameter
* is first checked that it is in the range of the vector. The
* function throws out_of_range if the check fails.
*/
const_reference
at(size_type __n) const
{
_M_range_check(__n);
return (*this)[__n];
}
/**
* Returns a read/write reference to the data at the first
* element of the %vector.
*/
reference
front() _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_nonempty();
return *begin();
}
/**
* Returns a read-only (constant) reference to the data at the first
* element of the %vector.
*/
const_reference
front() const _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_nonempty();
return *begin();
}
/**
* Returns a read/write reference to the data at the last
* element of the %vector.
*/
reference
back() _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_nonempty();
return *(end() - 1);
}
/**
* Returns a read-only (constant) reference to the data at the
* last element of the %vector.
*/
const_reference
back() const _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_nonempty();
return *(end() - 1);
}
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// DR 464. Suggestion for new member functions in standard containers.
// data access
/**
* Returns a pointer such that [data(), data() + size()) is a valid
* range. For a non-empty %vector, data() == &front().
*/
_Tp*
data() _GLIBCXX_NOEXCEPT
{ return _M_data_ptr(this->_M_impl._M_start); }
const _Tp*
data() const _GLIBCXX_NOEXCEPT
{ return _M_data_ptr(this->_M_impl._M_start); }
// [23.2.4.3] modifiers
/**
* @brief Add data to the end of the %vector.
* @param __x Data to be added.
*
* This is a typical stack operation. The function creates an
* element at the end of the %vector and assigns the given data
* to it. Due to the nature of a %vector this operation can be
* done in constant time if the %vector has preallocated space
* available.
*/
void
push_back(const value_type& __x)
{
if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
{
_GLIBCXX_ASAN_ANNOTATE_GROW(1);
_Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
__x);
++this->_M_impl._M_finish;
_GLIBCXX_ASAN_ANNOTATE_GREW(1);
}
else
_M_realloc_insert(end(), __x);
}
#if __cplusplus >= 201103L
void
push_back(value_type&& __x)
{ emplace_back(std::move(__x)); }
template
#if __cplusplus > 201402L
reference
#else
void
#endif
emplace_back(_Args&&... __args);
#endif
/**
* @brief Removes last element.
*
* This is a typical stack operation. It shrinks the %vector by one.
*
* Note that no data is returned, and if the last element's
* data is needed, it should be retrieved before pop_back() is
* called.
*/
void
pop_back() _GLIBCXX_NOEXCEPT
{
__glibcxx_requires_nonempty();
--this->_M_impl._M_finish;
_Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
_GLIBCXX_ASAN_ANNOTATE_SHRINK(1);
}
#if __cplusplus >= 201103L
/**
* @brief Inserts an object in %vector before specified iterator.
* @param __position A const_iterator into the %vector.
* @param __args Arguments.
* @return An iterator that points to the inserted data.
*
* This function will insert an object of type T constructed
* with T(std::forward(args)...) before the specified location.
* Note that this kind of operation could be expensive for a %vector
* and if it is frequently used the user should consider using
* std::list.
*/
template
iterator
emplace(const_iterator __position, _Args&&... __args)
{ return _M_emplace_aux(__position, std::forward<_Args>(__args)...); }
/**
* @brief Inserts given value into %vector before specified iterator.
* @param __position A const_iterator into the %vector.
* @param __x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value before
* the specified location. Note that this kind of operation
* could be expensive for a %vector and if it is frequently
* used the user should consider using std::list.
*/
iterator
insert(const_iterator __position, const value_type& __x);
#else
/**
* @brief Inserts given value into %vector before specified iterator.
* @param __position An iterator into the %vector.
* @param __x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value before
* the specified location. Note that this kind of operation
* could be expensive for a %vector and if it is frequently
* used the user should consider using std::list.
*/
iterator
insert(iterator __position, const value_type& __x);
#endif
#if __cplusplus >= 201103L
/**
* @brief Inserts given rvalue into %vector before specified iterator.
* @param __position A const_iterator into the %vector.
* @param __x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given rvalue before
* the specified location. Note that this kind of operation
* could be expensive for a %vector and if it is frequently
* used the user should consider using std::list.
*/
iterator
insert(const_iterator __position, value_type&& __x)
{ return _M_insert_rval(__position, std::move(__x)); }
/**
* @brief Inserts an initializer_list into the %vector.
* @param __position An iterator into the %vector.
* @param __l An initializer_list.
*
* This function will insert copies of the data in the
* initializer_list @a l into the %vector before the location
* specified by @a position.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
iterator
insert(const_iterator __position, initializer_list __l)
{
auto __offset = __position - cbegin();
_M_range_insert(begin() + __offset, __l.begin(), __l.end(),
std::random_access_iterator_tag());
return begin() + __offset;
}
#endif
#if __cplusplus >= 201103L
/**
* @brief Inserts a number of copies of given data into the %vector.
* @param __position A const_iterator into the %vector.
* @param __n Number of elements to be inserted.
* @param __x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a specified number of copies of
* the given data before the location specified by @a position.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
iterator
insert(const_iterator __position, size_type __n, const value_type& __x)
{
difference_type __offset = __position - cbegin();
_M_fill_insert(begin() + __offset, __n, __x);
return begin() + __offset;
}
#else
/**
* @brief Inserts a number of copies of given data into the %vector.
* @param __position An iterator into the %vector.
* @param __n Number of elements to be inserted.
* @param __x Data to be inserted.
*
* This function will insert a specified number of copies of
* the given data before the location specified by @a position.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
void
insert(iterator __position, size_type __n, const value_type& __x)
{ _M_fill_insert(__position, __n, __x); }
#endif
#if __cplusplus >= 201103L
/**
* @brief Inserts a range into the %vector.
* @param __position A const_iterator into the %vector.
* @param __first An input iterator.
* @param __last An input iterator.
* @return An iterator that points to the inserted data.
*
* This function will insert copies of the data in the range
* [__first,__last) into the %vector before the location specified
* by @a pos.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
template>
iterator
insert(const_iterator __position, _InputIterator __first,
_InputIterator __last)
{
difference_type __offset = __position - cbegin();
_M_insert_dispatch(begin() + __offset,
__first, __last, __false_type());
return begin() + __offset;
}
#else
/**
* @brief Inserts a range into the %vector.
* @param __position An iterator into the %vector.
* @param __first An input iterator.
* @param __last An input iterator.
*
* This function will insert copies of the data in the range
* [__first,__last) into the %vector before the location specified
* by @a pos.
*
* Note that this kind of operation could be expensive for a
* %vector and if it is frequently used the user should
* consider using std::list.
*/
template
void
insert(iterator __position, _InputIterator __first,
_InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename std::__is_integer<_InputIterator>::__type _Integral;
_M_insert_dispatch(__position, __first, __last, _Integral());
}
#endif
/**
* @brief Remove element at given position.
* @param __position Iterator pointing to element to be erased.
* @return An iterator pointing to the next element (or end()).
*
* This function will erase the element at the given position and thus
* shorten the %vector by one.
*
* Note This operation could be expensive and if it is
* frequently used the user should consider using std::list.
* The user is also cautioned that this function only erases
* the element, and that if the element is itself a pointer,
* the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibility.
*/
iterator
#if __cplusplus >= 201103L
erase(const_iterator __position)
{ return _M_erase(begin() + (__position - cbegin())); }
#else
erase(iterator __position)
{ return _M_erase(__position); }
#endif
/**
* @brief Remove a range of elements.
* @param __first Iterator pointing to the first element to be erased.
* @param __last Iterator pointing to one past the last element to be
* erased.
* @return An iterator pointing to the element pointed to by @a __last
* prior to erasing (or end()).
*
* This function will erase the elements in the range
* [__first,__last) and shorten the %vector accordingly.
*
* Note This operation could be expensive and if it is
* frequently used the user should consider using std::list.
* The user is also cautioned that this function only erases
* the elements, and that if the elements themselves are
* pointers, the pointed-to memory is not touched in any way.
* Managing the pointer is the user's responsibility.
*/
iterator
#if __cplusplus >= 201103L
erase(const_iterator __first, const_iterator __last)
{
const auto __beg = begin();
const auto __cbeg = cbegin();
return _M_erase(__beg + (__first - __cbeg), __beg + (__last - __cbeg));
}
#else
erase(iterator __first, iterator __last)
{ return _M_erase(__first, __last); }
#endif
/**
* @brief Swaps data with another %vector.
* @param __x A %vector of the same element and allocator types.
*
* This exchanges the elements between two vectors in constant time.
* (Three pointers, so it should be quite fast.)
* Note that the global std::swap() function is specialized such that
* std::swap(v1,v2) will feed to this function.
*
* Whether the allocators are swapped depends on the allocator traits.
*/
void
swap(vector& __x) _GLIBCXX_NOEXCEPT
{
#if __cplusplus >= 201103L
__glibcxx_assert(_Alloc_traits::propagate_on_container_swap::value
|| _M_get_Tp_allocator() == __x._M_get_Tp_allocator());
#endif
this->_M_impl._M_swap_data(__x._M_impl);
_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
__x._M_get_Tp_allocator());
}
/**
* Erases all the elements. Note that this function only erases the
* elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibility.
*/
void
clear() _GLIBCXX_NOEXCEPT
{ _M_erase_at_end(this->_M_impl._M_start); }
protected:
/**
* Memory expansion handler. Uses the member allocation function to
* obtain @a n bytes of memory, and then copies [first,last) into it.
*/
template
pointer
_M_allocate_and_copy(size_type __n,
_ForwardIterator __first, _ForwardIterator __last)
{
pointer __result = this->_M_allocate(__n);
__try
{
std::__uninitialized_copy_a(__first, __last, __result,
_M_get_Tp_allocator());
return __result;
}
__catch(...)
{
_M_deallocate(__result, __n);
__throw_exception_again;
}
}
// Internal constructor functions follow.
// Called by the range constructor to implement [23.1.1]/9
#if __cplusplus < 201103L
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 438. Ambiguity in the "do the right thing" clause
template
void
_M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
{
this->_M_impl._M_start = _M_allocate(_S_check_init_len(
static_cast(__n), _M_get_Tp_allocator()));
this->_M_impl._M_end_of_storage =
this->_M_impl._M_start + static_cast(__n);
_M_fill_initialize(static_cast(__n), __value);
}
// Called by the range constructor to implement [23.1.1]/9
template
void
_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{
_M_range_initialize(__first, __last,
std::__iterator_category(__first));
}
#endif
// Called by the second initialize_dispatch above
template
void
_M_range_initialize(_InputIterator __first, _InputIterator __last,
std::input_iterator_tag)
{
__try {
for (; __first != __last; ++__first)
#if __cplusplus >= 201103L
emplace_back(*__first);
#else
push_back(*__first);
#endif
} __catch(...) {
clear();
__throw_exception_again;
}
}
// Called by the second initialize_dispatch above
template
void
_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
std::forward_iterator_tag)
{
const size_type __n = std::distance(__first, __last);
this->_M_impl._M_start
= this->_M_allocate(_S_check_init_len(__n, _M_get_Tp_allocator()));
this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
this->_M_impl._M_finish =
std::__uninitialized_copy_a(__first, __last,
this->_M_impl._M_start,
_M_get_Tp_allocator());
}
// Called by the first initialize_dispatch above and by the
// vector(n,value,a) constructor.
void
_M_fill_initialize(size_type __n, const value_type& __value)
{
this->_M_impl._M_finish =
std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
_M_get_Tp_allocator());
}
#if __cplusplus >= 201103L
// Called by the vector(n) constructor.
void
_M_default_initialize(size_type __n)
{
this->_M_impl._M_finish =
std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
_M_get_Tp_allocator());
}
#endif
// Internal assign functions follow. The *_aux functions do the actual
// assignment work for the range versions.
// Called by the range assign to implement [23.1.1]/9
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 438. Ambiguity in the "do the right thing" clause
template
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign(__n, __val); }
// Called by the range assign to implement [23.1.1]/9
template
void
_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type)
{ _M_assign_aux(__first, __last, std::__iterator_category(__first)); }
// Called by the second assign_dispatch above
template
void
_M_assign_aux(_InputIterator __first, _InputIterator __last,
std::input_iterator_tag);
// Called by the second assign_dispatch above
template
void
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
std::forward_iterator_tag);
// Called by assign(n,t), and the range assign when it turns out
// to be the same thing.
void
_M_fill_assign(size_type __n, const value_type& __val);
// Internal insert functions follow.
// Called by the range insert to implement [23.1.1]/9
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 438. Ambiguity in the "do the right thing" clause
template
void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
__true_type)
{ _M_fill_insert(__pos, __n, __val); }
// Called by the range insert to implement [23.1.1]/9
template
void
_M_insert_dispatch(iterator __pos, _InputIterator __first,
_InputIterator __last, __false_type)
{
_M_range_insert(__pos, __first, __last,
std::__iterator_category(__first));
}
// Called by the second insert_dispatch above
template
void
_M_range_insert(iterator __pos, _InputIterator __first,
_InputIterator __last, std::input_iterator_tag);
// Called by the second insert_dispatch above
template
void
_M_range_insert(iterator __pos, _ForwardIterator __first,
_ForwardIterator __last, std::forward_iterator_tag);
// Called by insert(p,n,x), and the range insert when it turns out to be
// the same thing.
void
_M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
#if __cplusplus >= 201103L
// Called by resize(n).
void
_M_default_append(size_type __n);
bool
_M_shrink_to_fit();
#endif
#if __cplusplus < 201103L
// Called by insert(p,x)
void
_M_insert_aux(iterator __position, const value_type& __x);
void
_M_realloc_insert(iterator __position, const value_type& __x);
#else
// A value_type object constructed with _Alloc_traits::construct()
// and destroyed with _Alloc_traits::destroy().
struct _Temporary_value
{
template
explicit
_Temporary_value(vector* __vec, _Args&&... __args) : _M_this(__vec)
{
_Alloc_traits::construct(_M_this->_M_impl, _M_ptr(),
std::forward<_Args>(__args)...);
}
~_Temporary_value()
{ _Alloc_traits::destroy(_M_this->_M_impl, _M_ptr()); }
value_type&
_M_val() { return *_M_ptr(); }
private:
_Tp*
_M_ptr() { return reinterpret_cast<_Tp*>(&__buf); }
vector* _M_this;
typename aligned_storage::type __buf;
};
// Called by insert(p,x) and other functions when insertion needs to
// reallocate or move existing elements. _Arg is either _Tp& or _Tp.
template
void
_M_insert_aux(iterator __position, _Arg&& __arg);
template
void
_M_realloc_insert(iterator __position, _Args&&... __args);
// Either move-construct at the end, or forward to _M_insert_aux.
iterator
_M_insert_rval(const_iterator __position, value_type&& __v);
// Try to emplace at the end, otherwise forward to _M_insert_aux.
template
iterator
_M_emplace_aux(const_iterator __position, _Args&&... __args);
// Emplacing an rvalue of the correct type can use _M_insert_rval.
iterator
_M_emplace_aux(const_iterator __position, value_type&& __v)
{ return _M_insert_rval(__position, std::move(__v)); }
#endif
// Called by _M_fill_insert, _M_insert_aux etc.
size_type
_M_check_len(size_type __n, const char* __s) const
{
if (max_size() - size() < __n)
__throw_length_error(__N(__s));
const size_type __len = size() + (std::max)(size(), __n);
return (__len < size() || __len > max_size()) ? max_size() : __len;
}
// Called by constructors to check initial size.
static size_type
_S_check_init_len(size_type __n, const allocator_type& __a)
{
if (__n > _S_max_size(_Tp_alloc_type(__a)))
__throw_length_error(
__N("cannot create std::vector larger than max_size()"));
return __n;
}
static size_type
_S_max_size(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT
{
// std::distance(begin(), end()) cannot be greater than PTRDIFF_MAX,
// and realistically we can't store more than PTRDIFF_MAX/sizeof(T)
// (even if std::allocator_traits::max_size says we can).
const size_t __diffmax
= __gnu_cxx::__numeric_traits::__max / sizeof(_Tp);
const size_t __allocmax = _Alloc_traits::max_size(__a);
return (std::min)(__diffmax, __allocmax);
}
// Internal erase functions follow.
// Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
// _M_assign_aux.
void
_M_erase_at_end(pointer __pos) _GLIBCXX_NOEXCEPT
{
if (size_type __n = this->_M_impl._M_finish - __pos)
{
std::_Destroy(__pos, this->_M_impl._M_finish,
_M_get_Tp_allocator());
this->_M_impl._M_finish = __pos;
_GLIBCXX_ASAN_ANNOTATE_SHRINK(__n);
}
}
iterator
_M_erase(iterator __position);
iterator
_M_erase(iterator __first, iterator __last);
#if __cplusplus >= 201103L
private:
// Constant-time move assignment when source object's memory can be
// moved, either because the source's allocator will move too
// or because the allocators are equal.
void
_M_move_assign(vector&& __x, true_type) noexcept
{
vector __tmp(get_allocator());
this->_M_impl._M_swap_data(__x._M_impl);
__tmp._M_impl._M_swap_data(__x._M_impl);
std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
}
// Do move assignment when it might not be possible to move source
// object's memory, resulting in a linear-time operation.
void
_M_move_assign(vector&& __x, false_type)
{
if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
_M_move_assign(std::move(__x), true_type());
else
{
// The rvalue's allocator cannot be moved and is not equal,
// so we need to individually move each element.
this->_M_assign_aux(std::make_move_iterator(__x.begin()),
std::make_move_iterator(__x.end()),
std::random_access_iterator_tag());
__x.clear();
}
}
#endif
template
_Up*
_M_data_ptr(_Up* __ptr) const _GLIBCXX_NOEXCEPT
{ return __ptr; }
#if __cplusplus >= 201103L
template
typename std::pointer_traits<_Ptr>::element_type*
_M_data_ptr(_Ptr __ptr) const
{ return empty() ? nullptr : std::__to_address(__ptr); }
#else
template
_Up*
_M_data_ptr(_Up* __ptr) _GLIBCXX_NOEXCEPT
{ return __ptr; }
template
value_type*
_M_data_ptr(_Ptr __ptr)
{ return empty() ? (value_type*)0 : __ptr.operator->(); }
template
const value_type*
_M_data_ptr(_Ptr __ptr) const
{ return empty() ? (const value_type*)0 : __ptr.operator->(); }
#endif
};
#if __cpp_deduction_guides >= 201606
template::value_type,
typename _Allocator = allocator<_ValT>,
typename = _RequireInputIter<_InputIterator>,
typename = _RequireAllocator<_Allocator>>
vector(_InputIterator, _InputIterator, _Allocator = _Allocator())
-> vector<_ValT, _Allocator>;
#endif
/**
* @brief Vector equality comparison.
* @param __x A %vector.
* @param __y A %vector of the same type as @a __x.
* @return True iff the size and elements of the vectors are equal.
*
* This is an equivalence relation. It is linear in the size of the
* vectors. Vectors are considered equivalent if their sizes are equal,
* and if corresponding elements compare equal.
*/
template
inline bool
operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return (__x.size() == __y.size()
&& std::equal(__x.begin(), __x.end(), __y.begin())); }
#if __cpp_lib_three_way_comparison
/**
* @brief Vector ordering relation.
* @param __x A `vector`.
* @param __y A `vector` of the same type as `__x`.
* @return A value indicating whether `__x` is less than, equal to,
* greater than, or incomparable with `__y`.
*
* See `std::lexicographical_compare_three_way()` for how the determination
* is made. This operator is used to synthesize relational operators like
* `<` and `>=` etc.
*/
template
inline __detail::__synth3way_t<_Tp>
operator<=>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{
return std::lexicographical_compare_three_way(__x.begin(), __x.end(),
__y.begin(), __y.end(),
__detail::__synth3way);
}
#else
/**
* @brief Vector ordering relation.
* @param __x A %vector.
* @param __y A %vector of the same type as @a __x.
* @return True iff @a __x is lexicographically less than @a __y.
*
* This is a total ordering relation. It is linear in the size of the
* vectors. The elements must be comparable with @c <.
*
* See std::lexicographical_compare() for how the determination is made.
*/
template
inline bool
operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return std::lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end()); }
/// Based on operator==
template
inline bool
operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return !(__x == __y); }
/// Based on operator<
template
inline bool
operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return __y < __x; }
/// Based on operator<
template
inline bool
operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return !(__y < __x); }
/// Based on operator<
template
inline bool
operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{ return !(__x < __y); }
#endif // three-way comparison
/// See std::vector::swap().
template
inline void
swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
_GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
{ __x.swap(__y); }
_GLIBCXX_END_NAMESPACE_CONTAINER
#if __cplusplus >= 201703L
namespace __detail::__variant
{
template struct _Never_valueless_alt; // see
// Provide the strong exception-safety guarantee when emplacing a
// vector into a variant, but only if move assignment cannot throw.
template
struct _Never_valueless_alt<_GLIBCXX_STD_C::vector<_Tp, _Alloc>>
: std::is_nothrow_move_assignable<_GLIBCXX_STD_C::vector<_Tp, _Alloc>>
{ };
} // namespace __detail::__variant
#endif // C++17
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std
#endif /* _STL_VECTOR_H */