// The template and inlines for the -*- C++ -*- internal _Array helper class.
// Copyright (C) 1997-2015 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
/** @file bits/valarray_array.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{valarray}
*/
// Written by Gabriel Dos Reis
#ifndef _VALARRAY_ARRAY_H
#define _VALARRAY_ARRAY_H 1
#pragma GCC system_header
#include
#include
#include
#include
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
//
// Helper functions on raw pointers
//
// We get memory by the old fashion way
inline void*
__valarray_get_memory(size_t __n)
{ return operator new(__n); }
template
inline _Tp*__restrict__
__valarray_get_storage(size_t __n)
{
return static_cast<_Tp*__restrict__>
(std::__valarray_get_memory(__n * sizeof(_Tp)));
}
// Return memory to the system
inline void
__valarray_release_memory(void* __p)
{ operator delete(__p); }
// Turn a raw-memory into an array of _Tp filled with _Tp()
// This is required in 'valarray v(n);'
template
struct _Array_default_ctor
{
// Please note that this isn't exception safe. But
// valarrays aren't required to be exception safe.
inline static void
_S_do_it(_Tp* __b, _Tp* __e)
{
while (__b != __e)
new(__b++) _Tp();
}
};
template
struct _Array_default_ctor<_Tp, true>
{
// For fundamental types, it suffices to say 'memset()'
inline static void
_S_do_it(_Tp* __b, _Tp* __e)
{ __builtin_memset(__b, 0, (__e - __b) * sizeof(_Tp)); }
};
template
inline void
__valarray_default_construct(_Tp* __b, _Tp* __e)
{
_Array_default_ctor<_Tp, __is_scalar<_Tp>::__value>::_S_do_it(__b, __e);
}
// Turn a raw-memory into an array of _Tp filled with __t
// This is the required in valarray v(n, t). Also
// used in valarray<>::resize().
template
struct _Array_init_ctor
{
// Please note that this isn't exception safe. But
// valarrays aren't required to be exception safe.
inline static void
_S_do_it(_Tp* __b, _Tp* __e, const _Tp __t)
{
while (__b != __e)
new(__b++) _Tp(__t);
}
};
template
struct _Array_init_ctor<_Tp, true>
{
inline static void
_S_do_it(_Tp* __b, _Tp* __e, const _Tp __t)
{
while (__b != __e)
*__b++ = __t;
}
};
template
inline void
__valarray_fill_construct(_Tp* __b, _Tp* __e, const _Tp __t)
{
_Array_init_ctor<_Tp, __is_trivial(_Tp)>::_S_do_it(__b, __e, __t);
}
//
// copy-construct raw array [__o, *) from plain array [__b, __e)
// We can't just say 'memcpy()'
//
template
struct _Array_copy_ctor
{
// Please note that this isn't exception safe. But
// valarrays aren't required to be exception safe.
inline static void
_S_do_it(const _Tp* __b, const _Tp* __e, _Tp* __restrict__ __o)
{
while (__b != __e)
new(__o++) _Tp(*__b++);
}
};
template
struct _Array_copy_ctor<_Tp, true>
{
inline static void
_S_do_it(const _Tp* __b, const _Tp* __e, _Tp* __restrict__ __o)
{ __builtin_memcpy(__o, __b, (__e - __b) * sizeof(_Tp)); }
};
template
inline void
__valarray_copy_construct(const _Tp* __b, const _Tp* __e,
_Tp* __restrict__ __o)
{
_Array_copy_ctor<_Tp, __is_trivial(_Tp)>::_S_do_it(__b, __e, __o);
}
// copy-construct raw array [__o, *) from strided array __a[<__n : __s>]
template
inline void
__valarray_copy_construct (const _Tp* __restrict__ __a, size_t __n,
size_t __s, _Tp* __restrict__ __o)
{
if (__is_trivial(_Tp))
while (__n--)
{
*__o++ = *__a;
__a += __s;
}
else
while (__n--)
{
new(__o++) _Tp(*__a);
__a += __s;
}
}
// copy-construct raw array [__o, *) from indexed array __a[__i[<__n>]]
template
inline void
__valarray_copy_construct (const _Tp* __restrict__ __a,
const size_t* __restrict__ __i,
_Tp* __restrict__ __o, size_t __n)
{
if (__is_trivial(_Tp))
while (__n--)
*__o++ = __a[*__i++];
else
while (__n--)
new (__o++) _Tp(__a[*__i++]);
}
// Do the necessary cleanup when we're done with arrays.
template
inline void
__valarray_destroy_elements(_Tp* __b, _Tp* __e)
{
if (!__is_trivial(_Tp))
while (__b != __e)
{
__b->~_Tp();
++__b;
}
}
// Fill a plain array __a[<__n>] with __t
template
inline void
__valarray_fill(_Tp* __restrict__ __a, size_t __n, const _Tp& __t)
{
while (__n--)
*__a++ = __t;
}
// fill strided array __a[<__n-1 : __s>] with __t
template
inline void
__valarray_fill(_Tp* __restrict__ __a, size_t __n,
size_t __s, const _Tp& __t)
{
for (size_t __i = 0; __i < __n; ++__i, __a += __s)
*__a = __t;
}
// fill indirect array __a[__i[<__n>]] with __i
template
inline void
__valarray_fill(_Tp* __restrict__ __a, const size_t* __restrict__ __i,
size_t __n, const _Tp& __t)
{
for (size_t __j = 0; __j < __n; ++__j, ++__i)
__a[*__i] = __t;
}
// copy plain array __a[<__n>] in __b[<__n>]
// For non-fundamental types, it is wrong to say 'memcpy()'
template
struct _Array_copier
{
inline static void
_S_do_it(const _Tp* __restrict__ __a, size_t __n, _Tp* __restrict__ __b)
{
while(__n--)
*__b++ = *__a++;
}
};
template
struct _Array_copier<_Tp, true>
{
inline static void
_S_do_it(const _Tp* __restrict__ __a, size_t __n, _Tp* __restrict__ __b)
{ __builtin_memcpy(__b, __a, __n * sizeof (_Tp)); }
};
// Copy a plain array __a[<__n>] into a play array __b[<>]
template
inline void
__valarray_copy(const _Tp* __restrict__ __a, size_t __n,
_Tp* __restrict__ __b)
{
_Array_copier<_Tp, __is_trivial(_Tp)>::_S_do_it(__a, __n, __b);
}
// Copy strided array __a[<__n : __s>] in plain __b[<__n>]
template
inline void
__valarray_copy(const _Tp* __restrict__ __a, size_t __n, size_t __s,
_Tp* __restrict__ __b)
{
for (size_t __i = 0; __i < __n; ++__i, ++__b, __a += __s)
*__b = *__a;
}
// Copy a plain array __a[<__n>] into a strided array __b[<__n : __s>]
template
inline void
__valarray_copy(const _Tp* __restrict__ __a, _Tp* __restrict__ __b,
size_t __n, size_t __s)
{
for (size_t __i = 0; __i < __n; ++__i, ++__a, __b += __s)
*__b = *__a;
}
// Copy strided array __src[<__n : __s1>] into another
// strided array __dst[< : __s2>]. Their sizes must match.
template
inline void
__valarray_copy(const _Tp* __restrict__ __src, size_t __n, size_t __s1,
_Tp* __restrict__ __dst, size_t __s2)
{
for (size_t __i = 0; __i < __n; ++__i)
__dst[__i * __s2] = __src[__i * __s1];
}
// Copy an indexed array __a[__i[<__n>]] in plain array __b[<__n>]
template
inline void
__valarray_copy(const _Tp* __restrict__ __a,
const size_t* __restrict__ __i,
_Tp* __restrict__ __b, size_t __n)
{
for (size_t __j = 0; __j < __n; ++__j, ++__b, ++__i)
*__b = __a[*__i];
}
// Copy a plain array __a[<__n>] in an indexed array __b[__i[<__n>]]
template
inline void
__valarray_copy(const _Tp* __restrict__ __a, size_t __n,
_Tp* __restrict__ __b, const size_t* __restrict__ __i)
{
for (size_t __j = 0; __j < __n; ++__j, ++__a, ++__i)
__b[*__i] = *__a;
}
// Copy the __n first elements of an indexed array __src[<__i>] into
// another indexed array __dst[<__j>].
template
inline void
__valarray_copy(const _Tp* __restrict__ __src, size_t __n,
const size_t* __restrict__ __i,
_Tp* __restrict__ __dst, const size_t* __restrict__ __j)
{
for (size_t __k = 0; __k < __n; ++__k)
__dst[*__j++] = __src[*__i++];
}
//
// Compute the sum of elements in range [__f, __l)
// This is a naive algorithm. It suffers from cancelling.
// In the future try to specialize
// for _Tp = float, double, long double using a more accurate
// algorithm.
//
template
inline _Tp
__valarray_sum(const _Tp* __f, const _Tp* __l)
{
_Tp __r = _Tp();
while (__f != __l)
__r += *__f++;
return __r;
}
// Compute the product of all elements in range [__f, __l)
template
inline _Tp
__valarray_product(const _Tp* __f, const _Tp* __l)
{
_Tp __r = _Tp(1);
while (__f != __l)
__r = __r * *__f++;
return __r;
}
// Compute the min/max of an array-expression
template
inline typename _Ta::value_type
__valarray_min(const _Ta& __a)
{
size_t __s = __a.size();
typedef typename _Ta::value_type _Value_type;
_Value_type __r = __s == 0 ? _Value_type() : __a[0];
for (size_t __i = 1; __i < __s; ++__i)
{
_Value_type __t = __a[__i];
if (__t < __r)
__r = __t;
}
return __r;
}
template
inline typename _Ta::value_type
__valarray_max(const _Ta& __a)
{
size_t __s = __a.size();
typedef typename _Ta::value_type _Value_type;
_Value_type __r = __s == 0 ? _Value_type() : __a[0];
for (size_t __i = 1; __i < __s; ++__i)
{
_Value_type __t = __a[__i];
if (__t > __r)
__r = __t;
}
return __r;
}
//
// Helper class _Array, first layer of valarray abstraction.
// All operations on valarray should be forwarded to this class
// whenever possible. -- gdr
//
template
struct _Array
{
explicit _Array(size_t);
explicit _Array(_Tp* const __restrict__);
explicit _Array(const valarray<_Tp>&);
_Array(const _Tp* __restrict__, size_t);
_Tp* begin() const;
_Tp* const __restrict__ _M_data;
};
// Copy-construct plain array __b[<__n>] from indexed array __a[__i[<__n>]]
template
inline void
__valarray_copy_construct(_Array<_Tp> __a, _Array __i,
_Array<_Tp> __b, size_t __n)
{ std::__valarray_copy_construct(__a._M_data, __i._M_data,
__b._M_data, __n); }
// Copy-construct plain array __b[<__n>] from strided array __a[<__n : __s>]
template
inline void
__valarray_copy_construct(_Array<_Tp> __a, size_t __n, size_t __s,
_Array<_Tp> __b)
{ std::__valarray_copy_construct(__a._M_data, __n, __s, __b._M_data); }
template
inline void
__valarray_fill (_Array<_Tp> __a, size_t __n, const _Tp& __t)
{ std::__valarray_fill(__a._M_data, __n, __t); }
template
inline void
__valarray_fill(_Array<_Tp> __a, size_t __n, size_t __s, const _Tp& __t)
{ std::__valarray_fill(__a._M_data, __n, __s, __t); }
template
inline void
__valarray_fill(_Array<_Tp> __a, _Array __i,
size_t __n, const _Tp& __t)
{ std::__valarray_fill(__a._M_data, __i._M_data, __n, __t); }
// Copy a plain array __a[<__n>] into a play array __b[<>]
template
inline void
__valarray_copy(_Array<_Tp> __a, size_t __n, _Array<_Tp> __b)
{ std::__valarray_copy(__a._M_data, __n, __b._M_data); }
// Copy strided array __a[<__n : __s>] in plain __b[<__n>]
template
inline void
__valarray_copy(_Array<_Tp> __a, size_t __n, size_t __s, _Array<_Tp> __b)
{ std::__valarray_copy(__a._M_data, __n, __s, __b._M_data); }
// Copy a plain array __a[<__n>] into a strided array __b[<__n : __s>]
template
inline void
__valarray_copy(_Array<_Tp> __a, _Array<_Tp> __b, size_t __n, size_t __s)
{ __valarray_copy(__a._M_data, __b._M_data, __n, __s); }
// Copy strided array __src[<__n : __s1>] into another
// strided array __dst[< : __s2>]. Their sizes must match.
template
inline void
__valarray_copy(_Array<_Tp> __a, size_t __n, size_t __s1,
_Array<_Tp> __b, size_t __s2)
{ std::__valarray_copy(__a._M_data, __n, __s1, __b._M_data, __s2); }
// Copy an indexed array __a[__i[<__n>]] in plain array __b[<__n>]
template
inline void
__valarray_copy(_Array<_Tp> __a, _Array __i,
_Array<_Tp> __b, size_t __n)
{ std::__valarray_copy(__a._M_data, __i._M_data, __b._M_data, __n); }
// Copy a plain array __a[<__n>] in an indexed array __b[__i[<__n>]]
template
inline void
__valarray_copy(_Array<_Tp> __a, size_t __n, _Array<_Tp> __b,
_Array __i)
{ std::__valarray_copy(__a._M_data, __n, __b._M_data, __i._M_data); }
// Copy the __n first elements of an indexed array __src[<__i>] into
// another indexed array __dst[<__j>].
template
inline void
__valarray_copy(_Array<_Tp> __src, size_t __n, _Array __i,
_Array<_Tp> __dst, _Array __j)
{
std::__valarray_copy(__src._M_data, __n, __i._M_data,
__dst._M_data, __j._M_data);
}
template
inline
_Array<_Tp>::_Array(size_t __n)
: _M_data(__valarray_get_storage<_Tp>(__n))
{ std::__valarray_default_construct(_M_data, _M_data + __n); }
template
inline
_Array<_Tp>::_Array(_Tp* const __restrict__ __p)
: _M_data (__p) {}
template
inline
_Array<_Tp>::_Array(const valarray<_Tp>& __v)
: _M_data (__v._M_data) {}
template
inline
_Array<_Tp>::_Array(const _Tp* __restrict__ __b, size_t __s)
: _M_data(__valarray_get_storage<_Tp>(__s))
{ std::__valarray_copy_construct(__b, __s, _M_data); }
template
inline _Tp*
_Array<_Tp>::begin () const
{ return _M_data; }
#define _DEFINE_ARRAY_FUNCTION(_Op, _Name) \
template \
inline void \
_Array_augmented_##_Name(_Array<_Tp> __a, size_t __n, const _Tp& __t) \
{ \
for (_Tp* __p = __a._M_data; __p < __a._M_data + __n; ++__p) \
*__p _Op##= __t; \
} \
\
template \
inline void \
_Array_augmented_##_Name(_Array<_Tp> __a, size_t __n, _Array<_Tp> __b) \
{ \
_Tp* __p = __a._M_data; \
for (_Tp* __q = __b._M_data; __q < __b._M_data + __n; ++__p, ++__q) \
*__p _Op##= *__q; \
} \
\
template \
void \
_Array_augmented_##_Name(_Array<_Tp> __a, \
const _Expr<_Dom, _Tp>& __e, size_t __n) \
{ \
_Tp* __p(__a._M_data); \
for (size_t __i = 0; __i < __n; ++__i, ++__p) \
*__p _Op##= __e[__i]; \
} \
\
template \
inline void \
_Array_augmented_##_Name(_Array<_Tp> __a, size_t __n, size_t __s, \
_Array<_Tp> __b) \
{ \
_Tp* __q(__b._M_data); \
for (_Tp* __p = __a._M_data; __p < __a._M_data + __s * __n; \
__p += __s, ++__q) \
*__p _Op##= *__q; \
} \
\
template \
inline void \
_Array_augmented_##_Name(_Array<_Tp> __a, _Array<_Tp> __b, \
size_t __n, size_t __s) \
{ \
_Tp* __q(__b._M_data); \
for (_Tp* __p = __a._M_data; __p < __a._M_data + __n; \
++__p, __q += __s) \
*__p _Op##= *__q; \
} \
\
template \
void \
_Array_augmented_##_Name(_Array<_Tp> __a, size_t __s, \
const _Expr<_Dom, _Tp>& __e, size_t __n) \
{ \
_Tp* __p(__a._M_data); \
for (size_t __i = 0; __i < __n; ++__i, __p += __s) \
*__p _Op##= __e[__i]; \
} \
\
template \
inline void \
_Array_augmented_##_Name(_Array<_Tp> __a, _Array __i, \
_Array<_Tp> __b, size_t __n) \
{ \
_Tp* __q(__b._M_data); \
for (size_t* __j = __i._M_data; __j < __i._M_data + __n; \
++__j, ++__q) \
__a._M_data[*__j] _Op##= *__q; \
} \
\
template \
inline void \
_Array_augmented_##_Name(_Array<_Tp> __a, size_t __n, \
_Array<_Tp> __b, _Array __i) \
{ \
_Tp* __p(__a._M_data); \
for (size_t* __j = __i._M_data; __j<__i._M_data + __n; \
++__j, ++__p) \
*__p _Op##= __b._M_data[*__j]; \
} \
\
template \
void \
_Array_augmented_##_Name(_Array<_Tp> __a, _Array __i, \
const _Expr<_Dom, _Tp>& __e, size_t __n) \
{ \
size_t* __j(__i._M_data); \
for (size_t __k = 0; __k<__n; ++__k, ++__j) \
__a._M_data[*__j] _Op##= __e[__k]; \
} \
\
template \
void \
_Array_augmented_##_Name(_Array<_Tp> __a, _Array __m, \
_Array<_Tp> __b, size_t __n) \
{ \
bool* __ok(__m._M_data); \
_Tp* __p(__a._M_data); \
for (_Tp* __q = __b._M_data; __q < __b._M_data + __n; \
++__q, ++__ok, ++__p) \
{ \
while (! *__ok) \
{ \
++__ok; \
++__p; \
} \
*__p _Op##= *__q; \
} \
} \
\
template \
void \
_Array_augmented_##_Name(_Array<_Tp> __a, size_t __n, \
_Array<_Tp> __b, _Array __m) \
{ \
bool* __ok(__m._M_data); \
_Tp* __q(__b._M_data); \
for (_Tp* __p = __a._M_data; __p < __a._M_data + __n; \
++__p, ++__ok, ++__q) \
{ \
while (! *__ok) \
{ \
++__ok; \
++__q; \
} \
*__p _Op##= *__q; \
} \
} \
\
template \
void \
_Array_augmented_##_Name(_Array<_Tp> __a, _Array __m, \
const _Expr<_Dom, _Tp>& __e, size_t __n) \
{ \
bool* __ok(__m._M_data); \
_Tp* __p(__a._M_data); \
for (size_t __i = 0; __i < __n; ++__i, ++__ok, ++__p) \
{ \
while (! *__ok) \
{ \
++__ok; \
++__p; \
} \
*__p _Op##= __e[__i]; \
} \
}
_DEFINE_ARRAY_FUNCTION(+, __plus)
_DEFINE_ARRAY_FUNCTION(-, __minus)
_DEFINE_ARRAY_FUNCTION(*, __multiplies)
_DEFINE_ARRAY_FUNCTION(/, __divides)
_DEFINE_ARRAY_FUNCTION(%, __modulus)
_DEFINE_ARRAY_FUNCTION(^, __bitwise_xor)
_DEFINE_ARRAY_FUNCTION(|, __bitwise_or)
_DEFINE_ARRAY_FUNCTION(&, __bitwise_and)
_DEFINE_ARRAY_FUNCTION(<<, __shift_left)
_DEFINE_ARRAY_FUNCTION(>>, __shift_right)
#undef _DEFINE_ARRAY_FUNCTION
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace
# include
#endif /* _ARRAY_H */