/* Implementation of the SUM intrinsic Copyright 2002, 2007, 2009 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #include #if defined (HAVE_GFC_INTEGER_4) && defined (HAVE_GFC_INTEGER_4) extern void sum_i4 (gfc_array_i4 * const restrict, gfc_array_i4 * const restrict, const index_type * const restrict); export_proto(sum_i4); void sum_i4 (gfc_array_i4 * const restrict retarray, gfc_array_i4 * const restrict array, const index_type * const restrict pdim) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride[GFC_MAX_DIMENSIONS]; const GFC_INTEGER_4 * restrict base; GFC_INTEGER_4 * restrict dest; index_type rank; index_type n; index_type len; index_type delta; index_type dim; int continue_loop; /* Make dim zero based to avoid confusion. */ dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; len = GFC_DESCRIPTOR_EXTENT(array,dim); if (len < 0) len = 0; delta = GFC_DESCRIPTOR_STRIDE(array,dim); for (n = 0; n < dim; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); if (extent[n] < 0) extent[n] = 0; } for (n = dim; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1); extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); if (extent[n] < 0) extent[n] = 0; } if (retarray->data == NULL) { size_t alloc_size, str; for (n = 0; n < rank; n++) { if (n == 0) str = 1; else str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); } retarray->offset = 0; retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; if (alloc_size == 0) { /* Make sure we have a zero-sized array. */ GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); return; } else retarray->data = internal_malloc_size (alloc_size); } else { if (rank != GFC_DESCRIPTOR_RANK (retarray)) runtime_error ("rank of return array incorrect in" " SUM intrinsic: is %ld, should be %ld", (long int) (GFC_DESCRIPTOR_RANK (retarray)), (long int) rank); if (unlikely (compile_options.bounds_check)) bounds_ifunction_return ((array_t *) retarray, extent, "return value", "SUM"); } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); if (extent[n] <= 0) len = 0; } base = array->data; dest = retarray->data; continue_loop = 1; while (continue_loop) { const GFC_INTEGER_4 * restrict src; GFC_INTEGER_4 result; src = base; { result = 0; if (len <= 0) *dest = 0; else { for (n = 0; n < len; n++, src += delta) { result += *src; } *dest = result; } } /* Advance to the next element. */ count[0]++; base += sstride[0]; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; dest -= dstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the look. */ continue_loop = 0; break; } else { count[n]++; base += sstride[n]; dest += dstride[n]; } } } } extern void msum_i4 (gfc_array_i4 * const restrict, gfc_array_i4 * const restrict, const index_type * const restrict, gfc_array_l1 * const restrict); export_proto(msum_i4); void msum_i4 (gfc_array_i4 * const restrict retarray, gfc_array_i4 * const restrict array, const index_type * const restrict pdim, gfc_array_l1 * const restrict mask) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride[GFC_MAX_DIMENSIONS]; index_type mstride[GFC_MAX_DIMENSIONS]; GFC_INTEGER_4 * restrict dest; const GFC_INTEGER_4 * restrict base; const GFC_LOGICAL_1 * restrict mbase; int rank; int dim; index_type n; index_type len; index_type delta; index_type mdelta; int mask_kind; dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; len = GFC_DESCRIPTOR_EXTENT(array,dim); if (len <= 0) return; mbase = mask->data; mask_kind = GFC_DESCRIPTOR_SIZE (mask); if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); else runtime_error ("Funny sized logical array"); delta = GFC_DESCRIPTOR_STRIDE(array,dim); mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim); for (n = 0; n < dim; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); if (extent[n] < 0) extent[n] = 0; } for (n = dim; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1); extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1); if (extent[n] < 0) extent[n] = 0; } if (retarray->data == NULL) { size_t alloc_size, str; for (n = 0; n < rank; n++) { if (n == 0) str = 1; else str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); } alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; retarray->offset = 0; retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; if (alloc_size == 0) { /* Make sure we have a zero-sized array. */ GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); return; } else retarray->data = internal_malloc_size (alloc_size); } else { if (rank != GFC_DESCRIPTOR_RANK (retarray)) runtime_error ("rank of return array incorrect in SUM intrinsic"); if (unlikely (compile_options.bounds_check)) { bounds_ifunction_return ((array_t *) retarray, extent, "return value", "SUM"); bounds_equal_extents ((array_t *) mask, (array_t *) array, "MASK argument", "SUM"); } } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); if (extent[n] <= 0) return; } dest = retarray->data; base = array->data; while (base) { const GFC_INTEGER_4 * restrict src; const GFC_LOGICAL_1 * restrict msrc; GFC_INTEGER_4 result; src = base; msrc = mbase; { result = 0; if (len <= 0) *dest = 0; else { for (n = 0; n < len; n++, src += delta, msrc += mdelta) { if (*msrc) result += *src; } *dest = result; } } /* Advance to the next element. */ count[0]++; base += sstride[0]; mbase += mstride[0]; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; mbase -= mstride[n] * extent[n]; dest -= dstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the look. */ base = NULL; break; } else { count[n]++; base += sstride[n]; mbase += mstride[n]; dest += dstride[n]; } } } } extern void ssum_i4 (gfc_array_i4 * const restrict, gfc_array_i4 * const restrict, const index_type * const restrict, GFC_LOGICAL_4 *); export_proto(ssum_i4); void ssum_i4 (gfc_array_i4 * const restrict retarray, gfc_array_i4 * const restrict array, const index_type * const restrict pdim, GFC_LOGICAL_4 * mask) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride[GFC_MAX_DIMENSIONS]; GFC_INTEGER_4 * restrict dest; index_type rank; index_type n; index_type dim; if (*mask) { sum_i4 (retarray, array, pdim); return; } /* Make dim zero based to avoid confusion. */ dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; for (n = 0; n < dim; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); if (extent[n] <= 0) extent[n] = 0; } for (n = dim; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n + 1); if (extent[n] <= 0) extent[n] = 0; } if (retarray->data == NULL) { size_t alloc_size, str; for (n = 0; n < rank; n++) { if (n == 0) str = 1; else str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); } retarray->offset = 0; retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; if (alloc_size == 0) { /* Make sure we have a zero-sized array. */ GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); return; } else retarray->data = internal_malloc_size (alloc_size); } else { if (rank != GFC_DESCRIPTOR_RANK (retarray)) runtime_error ("rank of return array incorrect in" " SUM intrinsic: is %ld, should be %ld", (long int) (GFC_DESCRIPTOR_RANK (retarray)), (long int) rank); if (unlikely (compile_options.bounds_check)) { for (n=0; n < rank; n++) { index_type ret_extent; ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n); if (extent[n] != ret_extent) runtime_error ("Incorrect extent in return value of" " SUM intrinsic in dimension %ld:" " is %ld, should be %ld", (long int) n + 1, (long int) ret_extent, (long int) extent[n]); } } } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); } dest = retarray->data; while(1) { *dest = 0; count[0]++; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ dest -= dstride[n] * extent[n]; n++; if (n == rank) return; else { count[n]++; dest += dstride[n]; } } } } #endif