// -*- C++ -*- // Copyright (C) 2016 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file variant * This is the C++ Library header. */ #ifndef _GLIBCXX_VARIANT #define _GLIBCXX_VARIANT 1 #pragma GCC system_header #if __cplusplus <= 201402L # include #else #include #include #include #include #include namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION template class tuple; template class variant; template struct hash; template struct variant_size; template struct variant_size : variant_size<_Variant> {}; template struct variant_size : variant_size<_Variant> {}; template struct variant_size : variant_size<_Variant> {}; template struct variant_size> : std::integral_constant {}; template constexpr size_t variant_size_v = variant_size<_Variant>::value; template struct variant_alternative; template struct variant_alternative<_Np, variant<_First, _Rest...>> : variant_alternative<_Np-1, variant<_Rest...>> {}; template struct variant_alternative<0, variant<_First, _Rest...>> { using type = _First; }; template using variant_alternative_t = typename variant_alternative<_Np, _Variant>::type; constexpr size_t variant_npos = -1; namespace __detail { namespace __variant { // Returns the first apparence of _Tp in _Types. // Returns sizeof...(_Types) if _Tp is not in _Types. template struct __index_of : std::integral_constant {}; template constexpr size_t __index_of_v = __index_of<_Tp, _Types...>::value; template struct __index_of<_Tp, _First, _Rest...> : std::integral_constant ? 0 : __index_of_v<_Tp, _Rest...> + 1> {}; // Extract _From's qualifiers and references and apply it to _To. // __reserved_type_map is const char&. template struct __reserved_type_map_impl { using type = _To; }; template using __reserved_type_map = typename __reserved_type_map_impl<_From, _To>::type; template struct __reserved_type_map_impl<_From&, _To> { using type = add_lvalue_reference_t<__reserved_type_map<_From, _To>>; }; template struct __reserved_type_map_impl<_From&&, _To> { using type = add_rvalue_reference_t<__reserved_type_map<_From, _To>>; }; template struct __reserved_type_map_impl { using type = add_const_t<__reserved_type_map<_From, _To>>; }; template struct __reserved_type_map_impl { using type = add_volatile_t<__reserved_type_map<_From, _To>>; }; template struct __reserved_type_map_impl { using type = add_cv_t<__reserved_type_map<_From, _To>>; }; // Stores a reference alternative as a... well, reference. template struct _Reference_storage { static_assert(is_reference_v<_Reference>, "BUG: _Reference should be a reference"); _Reference_storage(_Reference __ref) noexcept : _M_storage(__ref) { } operator _Reference() noexcept { return static_cast<_Reference>(_M_storage); } _Reference _M_storage; }; // Stores a void alternative, because it is not a regular type. template struct _Void_storage { }; // Map from the alternative type to a non-qualified storage type. template struct __storage_type { using type = _Alternative; }; template struct __storage_type<_Alternative, enable_if_t>> { using type = _Reference_storage<_Alternative>; }; template struct __storage_type<_Alternative, enable_if_t>> { using type = _Void_storage<_Alternative>; }; template using __storage = typename __storage_type<_Type>::type; template> struct _Uninitialized; template struct _Uninitialized<_Type, true> { constexpr _Uninitialized() = default; template constexpr _Uninitialized(in_place_index_t<0>, _Args&&... __args) : _M_storage(std::forward<_Args>(__args)...) { } _Type _M_storage; }; template struct _Uninitialized<_Type, false> { constexpr _Uninitialized() = default; template constexpr _Uninitialized(in_place_index_t<0>, _Args&&... __args) { ::new (&_M_storage) _Type(std::forward<_Args>(__args)...); } typename std::aligned_storage::type _M_storage; }; // Reverse mapping of __storage_type. template struct __alternative_type { static_assert(!is_reference_v<_Storage_type>, "BUG: _Storage_type should not be reference"); using type = _Storage_type; }; template struct __alternative_type<_Reference_storage<_Reference>> { using type = _Reference; }; template struct __alternative_type<_Void_storage<_Void>> { using type = _Void; }; // Given a qualified storage type, return the desired reference. // The qualified storage type is supposed to carry the variant object's // qualifications and reference information, and the designated alternative's // storage type. // Returns the qualification-collapsed alternative references. // // For example, __get_alternative<_Reference_storage&> returns int&. template decltype(auto) __get_alternative(void* __ptr) { using _Storage = decay_t<_Qualified_storage>; using _Alternative = typename __alternative_type<_Storage>::type; return __reserved_type_map<_Qualified_storage, _Alternative>( *static_cast<_Storage*>(__ptr)); } // Various functions as "vtable" entries, where those vtables are used by // polymorphic operations. template constexpr void __erased_ctor(void* __lhs, void* __rhs) { ::new (__lhs) decay_t<_Lhs>(__get_alternative<_Rhs>(__rhs)); } template constexpr void __erased_use_alloc_ctor(const _Alloc& __a, void* __lhs, void* __rhs) { __uses_allocator_construct(__a, static_cast*>(__lhs), __get_alternative<_Rhs>(__rhs)); } // TODO: Find a potential chance to reuse this accross the project. template constexpr void __erased_dtor(void* __ptr) { using _Storage = decay_t<_Tp>; static_cast<_Storage*>(__ptr)->~_Storage(); } template constexpr void __erased_assign(void* __lhs, void* __rhs) { __get_alternative<_Lhs>(__lhs) = __get_alternative<_Rhs>(__rhs); } template constexpr void __erased_swap(void* __lhs, void* __rhs) { using std::swap; swap(__get_alternative<_Lhs>(__lhs), __get_alternative<_Rhs>(__rhs)); } template constexpr bool __erased_equal_to(void* __lhs, void* __rhs) { return __get_alternative<_Lhs>(__lhs) == __get_alternative<_Rhs>(__rhs); } template constexpr bool __erased_less_than(void* __lhs, void* __rhs) { return __get_alternative<_Lhs>(__lhs) < __get_alternative<_Rhs>(__rhs); } template constexpr size_t __erased_hash(void* __t) { return std::hash>{}(__get_alternative<_Tp>(__t)); } template struct _Variant_base; template struct _Variant_storage { constexpr _Variant_storage() = default; }; // Use recursive unions to implement a trivially destructible variant. template struct _Variant_storage<_First, _Rest...> { constexpr _Variant_storage() = default; template constexpr _Variant_storage(in_place_index_t<0>, _Args&&... __args) : _M_first(in_place<0>, forward<_Args>(__args)...) { } template> constexpr _Variant_storage(in_place_index_t<_Np>, _Args&&... __args) : _M_rest(in_place<_Np - 1>, forward<_Args>(__args)...) { } ~_Variant_storage() = default; constexpr void* _M_storage() const { return const_cast( static_cast(std::addressof(_M_first._M_storage))); } union { _Uninitialized<__storage<_First>> _M_first; _Variant_storage<_Rest...> _M_rest; }; }; template struct _Dtor_mixin { ~_Dtor_mixin() { static_cast<_Derived*>(this)->_M_destroy(); } }; template struct _Dtor_mixin<_Derived, true> { ~_Dtor_mixin() = default; }; // Helps SFINAE on special member functions. Otherwise it can live in variant // class. template struct _Variant_base : _Variant_storage<_Types...>, _Dtor_mixin<_Variant_base<_Types...>, __and_...>::value> { using _Storage = _Variant_storage<_Types...>; constexpr _Variant_base() noexcept(is_nothrow_default_constructible_v< variant_alternative_t<0, variant<_Types...>>>) : _Variant_base(in_place<0>) { } _Variant_base(const _Variant_base& __rhs) : _Storage(), _M_index(__rhs._M_index) { if (__rhs._M_valid()) { static constexpr void (*_S_vtable[])(void*, void*) = { &__erased_ctor<__storage<_Types>&, const __storage<_Types>&>... }; _S_vtable[__rhs._M_index](_M_storage(), __rhs._M_storage()); } } _Variant_base(_Variant_base&& __rhs) noexcept(__and_...>::value) : _Storage(), _M_index(__rhs._M_index) { if (__rhs._M_valid()) { static constexpr void (*_S_vtable[])(void*, void*) = { &__erased_ctor<__storage<_Types>&, __storage<_Types>&&>... }; _S_vtable[__rhs._M_index](_M_storage(), __rhs._M_storage()); } } template constexpr explicit _Variant_base(in_place_index_t<_Np> __i, _Args&&... __args) : _Storage(__i, forward<_Args>(__args)...), _M_index(_Np) { } template _Variant_base(const _Alloc& __a, const _Variant_base& __rhs) : _Storage(), _M_index(__rhs._M_index) { if (__rhs._M_valid()) { static constexpr void (*_S_vtable[])(const _Alloc&, void*, void*) = { &__erased_use_alloc_ctor<_Alloc, __storage<_Types>&, const __storage<_Types>&>... }; _S_vtable[__rhs._M_index](__a, _M_storage(), __rhs._M_storage()); } } template _Variant_base(const _Alloc& __a, _Variant_base&& __rhs) : _Storage(), _M_index(__rhs._M_index) { if (__rhs._M_valid()) { static constexpr void (*_S_vtable[])(const _Alloc&, void*, void*) = { &__erased_use_alloc_ctor<_Alloc, __storage<_Types>&, __storage<_Types>&&>... }; _S_vtable[__rhs._M_index](__a, _M_storage(), __rhs._M_storage()); } } template constexpr explicit _Variant_base(const _Alloc& __a, in_place_index_t<_Np>, _Args&&... __args) : _Storage(), _M_index(_Np) { using _Storage = __storage>>; __uses_allocator_construct(__a, static_cast<_Storage*>(_M_storage()), forward<_Args>(__args)...); __glibcxx_assert(_M_index == _Np); } _Variant_base& operator=(const _Variant_base& __rhs) { if (_M_index == __rhs._M_index) { if (__rhs._M_valid()) { static constexpr void (*_S_vtable[])(void*, void*) = { &__erased_assign<__storage<_Types>&, const __storage<_Types>&>... }; _S_vtable[__rhs._M_index](_M_storage(), __rhs._M_storage()); } } else { _Variant_base __tmp(__rhs); this->~_Variant_base(); __try { ::new (this) _Variant_base(std::move(__tmp)); } __catch (...) { _M_index = variant_npos; __throw_exception_again; } } __glibcxx_assert(_M_index == __rhs._M_index); return *this; } _Variant_base& operator=(_Variant_base&& __rhs) noexcept(__and_..., is_nothrow_move_assignable<_Types>...>::value) { if (_M_index == __rhs._M_index) { if (__rhs._M_valid()) { static constexpr void (*_S_vtable[])(void*, void*) = { &__erased_assign<__storage<_Types>&, __storage<_Types>&&>... }; _S_vtable[__rhs._M_index](_M_storage(), __rhs._M_storage()); } } else { this->~_Variant_base(); __try { ::new (this) _Variant_base(std::move(__rhs)); } __catch (...) { _M_index = variant_npos; __throw_exception_again; } } return *this; } void _M_destroy() { if (_M_valid()) { static constexpr void (*_S_vtable[])(void*) = { &__erased_dtor<__storage<_Types>&>... }; _S_vtable[this->_M_index](_M_storage()); } } constexpr void* _M_storage() const { return _Storage::_M_storage(); } constexpr bool _M_valid() const noexcept { return _M_index != variant_npos; } size_t _M_index; }; // For how many times does _Tp appear in _Tuple? template struct __tuple_count; template constexpr size_t __tuple_count_v = __tuple_count<_Tp, _Tuple>::value; template struct __tuple_count<_Tp, tuple<_Types...>> : integral_constant { }; template struct __tuple_count<_Tp, tuple<_First, _Rest...>> : integral_constant< size_t, __tuple_count_v<_Tp, tuple<_Rest...>> + is_same_v<_Tp, _First>> { }; // TODO: Reuse this in ? template constexpr bool __exactly_once = __tuple_count_v<_Tp, tuple<_Types...>> == 1; // Takes _Types and create an overloaded _S_fun for each type. // If a type appears more than once in _Types, create only one overload. template struct __overload_set { static void _S_fun(); }; template struct __overload_set<_First, _Rest...> : __overload_set<_Rest...> { using __overload_set<_Rest...>::_S_fun; static integral_constant _S_fun(_First); }; template struct __overload_set : __overload_set<_Rest...> { using __overload_set<_Rest...>::_S_fun; }; // Helper for variant(_Tp&&) and variant::operator=(_Tp&&). // __accepted_index maps the arbitrary _Tp to an alternative type in _Variant. template struct __accepted_index { static constexpr size_t value = variant_npos; }; template struct __accepted_index< _Tp, variant<_Types...>, decltype(__overload_set<_Types...>::_S_fun(std::declval<_Tp>()), std::declval())> { static constexpr size_t value = sizeof...(_Types) - 1 - decltype(__overload_set<_Types...>:: _S_fun(std::declval<_Tp>()))::value; }; // Returns the raw storage for __v. template void* __get_storage(_Variant&& __v) { return __v._M_storage(); } // Returns the reference to the desired alternative. // It is as unsafe as a reinterpret_cast. template decltype(auto) __access(_Variant&& __v) { return __get_alternative<__reserved_type_map<_Variant&&, __storage<_Tp>>>( __get_storage(forward<_Variant>(__v))); } // A helper used to create variadic number of _To types. template using _To_type = _To; // Call the actual visitor. // _Args are qualified storage types. template decltype(auto) __visit_invoke(_Visitor&& __visitor, _To_type<_Args, void*>... __ptrs) { return forward<_Visitor>(__visitor)(__get_alternative<_Args>(__ptrs)...); } // Used for storing multi-dimensional vtable. template struct _Multi_array { constexpr const _Tp& _M_access() const { return _M_data; } _Tp _M_data; }; template struct _Multi_array<_Tp, __first, __rest...> { template constexpr const _Tp& _M_access(size_t __first_index, _Args... __rest_indices) const { return _M_arr[__first_index]._M_access(__rest_indices...); } _Multi_array<_Tp, __rest...> _M_arr[__first]; }; // Creates a multi-dimensional vtable recursively. // _Variant_tuple is initially the input from visit(), and gets gradually // consumed. // _Arg_tuple is enumerated alternative sequence, represented by a // qualified storage. // // For example, // visit([](auto, auto){}, // variant(), // variant()) // will trigger instantiations of: // __gen_vtable_impl<_Multi_array, // tuple, // variant>, // tuple<>> // __gen_vtable_impl<_Multi_array, // tuple>, // tuple> // __gen_vtable_impl<_Multi_array, // tuple<>, // tuple> // __gen_vtable_impl<_Multi_array, // tuple<>, // tuple> // __gen_vtable_impl<_Multi_array, // tuple<>, // tuple> // __gen_vtable_impl<_Multi_array, // tuple>, // tuple> // __gen_vtable_impl<_Multi_array, // tuple<>, // tuple> // __gen_vtable_impl<_Multi_array, // tuple<>, // tuple> // __gen_vtable_impl<_Multi_array, // tuple<>, // tuple> // The returned multi-dimensional vtable can be fast accessed by the visitor // using index calculation. template struct __gen_vtable_impl; template struct __gen_vtable_impl<_Array_type, tuple<_First, _Rest...>, tuple<_Args...>> { static constexpr _Array_type _S_apply() { _Array_type __vtable{}; _S_apply_all_alts( __vtable, make_index_sequence>>()); return __vtable; } template static constexpr void _S_apply_all_alts(_Array_type& __vtable, index_sequence<__indices...>) { (_S_apply_single_alt<__indices>(__vtable._M_arr[__indices]), ...); } template static constexpr void _S_apply_single_alt(auto& __element) { using _Alternative = variant_alternative_t<__index, decay_t<_First>>; using _Qualified_storage = __reserved_type_map< _First, __storage<_Alternative>>; __element = __gen_vtable_impl< decay_t, tuple<_Rest...>, tuple<_Args..., _Qualified_storage>>::_S_apply(); } }; template struct __gen_vtable_impl< _Multi_array<_Result_type (*)(_Visitor, _To_type<_Args, void*>...)>, tuple<>, tuple<_Args...>> { using _Array_type = _Multi_array<_Result_type (*)(_Visitor&&, _To_type<_Args, void*>...)>; static constexpr auto _S_apply() { return _Array_type{&__visit_invoke<_Visitor, _Args...>}; } }; template struct __gen_vtable { using _Func_ptr = _Result_type (*)(_Visitor&&, _To_type<_Variants, void*>...); using _Array_type = _Multi_array<_Func_ptr, variant_size_v>...>; static constexpr _Array_type _S_apply() { return __gen_vtable_impl< _Array_type, tuple<_Variants...>, tuple<>>::_S_apply(); } }; } // namespace __variant } // namespace __detail template inline constexpr bool holds_alternative(const variant<_Types...>& __v) noexcept { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T should occur for exactly once in alternatives"); return __v.index() == __detail::__variant::__index_of_v<_Tp, _Types...>; } template variant_alternative_t<_Np, variant<_Types...>>& get(variant<_Types...>&); template variant_alternative_t<_Np, variant<_Types...>>&& get(variant<_Types...>&&); template variant_alternative_t<_Np, variant<_Types...>> const& get(const variant<_Types...>&); template variant_alternative_t<_Np, variant<_Types...>> const&& get(const variant<_Types...>&&); template inline _Tp& get(variant<_Types...>& __v) { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T should occur for exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp should not be void"); return get<__detail::__variant::__index_of_v<_Tp, _Types...>>(__v); } template inline _Tp&& get(variant<_Types...>&& __v) { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T should occur for exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp should not be void"); return get<__detail::__variant::__index_of_v<_Tp, _Types...>>( std::move(__v)); } template inline const _Tp& get(const variant<_Types...>& __v) { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T should occur for exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp should not be void"); return get<__detail::__variant::__index_of_v<_Tp, _Types...>>(__v); } template inline const _Tp&& get(const variant<_Types...>&& __v) { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T should occur for exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp should not be void"); return get<__detail::__variant::__index_of_v<_Tp, _Types...>>( std::move(__v)); } template inline add_pointer_t>> get_if(variant<_Types...>* __ptr) noexcept { using _Alternative_type = variant_alternative_t<_Np, variant<_Types...>>; static_assert(_Np < sizeof...(_Types), "The index should be in [0, number of alternatives)"); static_assert(!is_void_v<_Alternative_type>, "_Tp should not be void"); if (__ptr && __ptr->index() == _Np) return &__detail::__variant::__access<_Alternative_type>(*__ptr); return nullptr; } template inline add_pointer_t>> get_if(const variant<_Types...>* __ptr) noexcept { using _Alternative_type = variant_alternative_t<_Np, variant<_Types...>>; static_assert(_Np < sizeof...(_Types), "The index should be in [0, number of alternatives)"); static_assert(!is_void_v<_Alternative_type>, "_Tp should not be void"); if (__ptr && __ptr->index() == _Np) return &__detail::__variant::__access<_Alternative_type>(*__ptr); return nullptr; } template inline add_pointer_t<_Tp> get_if(variant<_Types...>* __ptr) noexcept { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T should occur for exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp should not be void"); return get_if<__detail::__variant::__index_of_v<_Tp, _Types...>>(__ptr); } template inline add_pointer_t get_if(const variant<_Types...>* __ptr) noexcept { static_assert(__detail::__variant::__exactly_once<_Tp, _Types...>, "T should occur for exactly once in alternatives"); static_assert(!is_void_v<_Tp>, "_Tp should not be void"); return get_if<__detail::__variant::__index_of_v<_Tp, _Types...>>(__ptr); } template bool operator==(const variant<_Types...>& __lhs, const variant<_Types...>& __rhs) { if (__lhs.index() != __rhs.index()) return false; if (__lhs.valueless_by_exception()) return true; using __detail::__variant::__storage; static constexpr bool (*_S_vtable[])(void*, void*) = { &__detail::__variant::__erased_equal_to< const __storage<_Types>&, const __storage<_Types>&>... }; return _S_vtable[__lhs.index()]( __detail::__variant::__get_storage(__lhs), __detail::__variant::__get_storage(__rhs)); } template inline bool operator!=(const variant<_Types...>& __lhs, const variant<_Types...>& __rhs) { return !(__lhs == __rhs); } template inline bool operator<(const variant<_Types...>& __lhs, const variant<_Types...>& __rhs) { if (__lhs.index() < __rhs.index()) return true; if (__lhs.index() > __rhs.index()) return false; if (__lhs.valueless_by_exception()) return false; using __detail::__variant::__storage; static constexpr bool (*_S_vtable[])(void*, void*) = { &__detail::__variant::__erased_less_than< const __storage<_Types>&, const __storage<_Types>&>... }; return _S_vtable[__lhs.index()]( __detail::__variant::__get_storage(__lhs), __detail::__variant::__get_storage(__rhs)); } template inline bool operator>(const variant<_Types...>& __lhs, const variant<_Types...>& __rhs) { return __rhs < __lhs; } template inline bool operator<=(const variant<_Types...>& __lhs, const variant<_Types...>& __rhs) { return !(__lhs > __rhs); } template inline bool operator>=(const variant<_Types...>& __lhs, const variant<_Types...>& __rhs) { return !(__lhs < __rhs); } template decltype(auto) visit(_Visitor&&, _Variants&&...); struct monostate { }; constexpr bool operator<(monostate, monostate) noexcept { return false; } constexpr bool operator>(monostate, monostate) noexcept { return false; } constexpr bool operator<=(monostate, monostate) noexcept { return true; } constexpr bool operator>=(monostate, monostate) noexcept { return true; } constexpr bool operator==(monostate, monostate) noexcept { return true; } constexpr bool operator!=(monostate, monostate) noexcept { return false; } template inline auto swap(variant<_Types...>& __lhs, variant<_Types...>& __rhs) noexcept(noexcept(__lhs.swap(__rhs))) -> decltype(__lhs.swap(__rhs)) { __lhs.swap(__rhs); } class bad_variant_access : public exception { public: bad_variant_access() noexcept : _M_reason("Unknown reason") { } const char* what() const noexcept override { return _M_reason; } private: bad_variant_access(const char* __reason) : _M_reason(__reason) { } const char* _M_reason; friend void __throw_bad_variant_access(const char* __what); }; inline void __throw_bad_variant_access(const char* __what) { _GLIBCXX_THROW_OR_ABORT(bad_variant_access(__what)); } template class variant : private __detail::__variant::_Variant_base<_Types...>, private _Enable_default_constructor< is_default_constructible_v< variant_alternative_t<0, variant<_Types...>>>, variant<_Types...>>, private _Enable_copy_move< __and_...>::value, __and_..., is_move_constructible<_Types>..., is_copy_assignable<_Types>...>::value, __and_...>::value, __and_..., is_move_assignable<_Types>...>::value, variant<_Types...>> { private: using _Base = __detail::__variant::_Variant_base<_Types...>; using _Default_ctor_enabler = _Enable_default_constructor< is_default_constructible_v< variant_alternative_t<0, variant<_Types...>>>, variant<_Types...>>; template static constexpr bool __exactly_once = __detail::__variant::__exactly_once<_Tp, _Types...>; template static constexpr size_t __accepted_index = __detail::__variant::__accepted_index<_Tp&&, variant>::value; template struct __to_type_impl; template struct __to_type_impl<_Np, true> { using type = variant_alternative_t<_Np, variant>; }; template using __to_type = typename __to_type_impl<_Np>::type; template using __accepted_type = __to_type<__accepted_index<_Tp>>; template using __storage = __detail::__variant::__storage<_Tp>; template static constexpr size_t __index_of = __detail::__variant::__index_of_v<_Tp, _Types...>; public: constexpr variant() noexcept(is_nothrow_default_constructible_v<__to_type<0>>) = default; variant(const variant&) = default; variant(variant&&) noexcept(__and_< is_nothrow_move_constructible<_Types>...>::value) = default; template> && is_constructible_v<__accepted_type<_Tp&&>, _Tp&&> && !is_same_v, variant>>> constexpr variant(_Tp&& __t) noexcept(is_nothrow_constructible_v<__accepted_type<_Tp&&>, _Tp&&>) : variant(in_place<__accepted_index<_Tp&&>>, forward<_Tp>(__t)) { __glibcxx_assert(holds_alternative<__accepted_type<_Tp&&>>(*this)); } template && is_constructible_v<_Tp, _Args&&...>>> constexpr explicit variant(in_place_type_t<_Tp>, _Args&&... __args) : variant(in_place<__index_of<_Tp>>, forward<_Args>(__args)...) { __glibcxx_assert(holds_alternative<_Tp>(*this)); } template && is_constructible_v< _Tp, initializer_list<_Up>&, _Args&&...>>> constexpr explicit variant(in_place_type_t<_Tp>, initializer_list<_Up> __il, _Args&&... __args) : variant(in_place<__index_of<_Tp>>, __il, forward<_Args>(__args)...) { __glibcxx_assert(holds_alternative<_Tp>(*this)); } template, _Args&&...>>> constexpr explicit variant(in_place_index_t<_Np>, _Args&&... __args) : _Base(in_place<_Np>, forward<_Args>(__args)...), _Default_ctor_enabler(_Enable_default_constructor_tag{}) { __glibcxx_assert(index() == _Np); } template, initializer_list<_Up>&, _Args&&...>>> constexpr explicit variant(in_place_index_t<_Np>, initializer_list<_Up> __il, _Args&&... __args) : _Base(in_place<_Np>, __il, forward<_Args>(__args)...), _Default_ctor_enabler(_Enable_default_constructor_tag{}) { __glibcxx_assert(index() == _Np); } template, _Alloc>>> variant(allocator_arg_t, const _Alloc& __a) : variant(allocator_arg, __a, in_place<0>) { } template>>...>::value>> variant(allocator_arg_t, const _Alloc& __a, const variant& __rhs) : _Base(__a, __rhs), _Default_ctor_enabler(_Enable_default_constructor_tag{}) { } template>...>::value>> variant(allocator_arg_t, const _Alloc& __a, variant&& __rhs) : _Base(__a, std::move(__rhs)), _Default_ctor_enabler(_Enable_default_constructor_tag{}) { } template> && __is_uses_allocator_constructible_v< __accepted_type<_Tp&&>, _Alloc, _Tp&&> && !is_same_v, variant>, variant&>> variant(allocator_arg_t, const _Alloc& __a, _Tp&& __t) : variant(allocator_arg, __a, in_place<__accepted_index<_Tp&&>>, forward<_Tp>(__t)) { __glibcxx_assert(holds_alternative<__accepted_type<_Tp&&>>(*this)); } template && __is_uses_allocator_constructible_v< _Tp, _Alloc, _Args&&...>>> variant(allocator_arg_t, const _Alloc& __a, in_place_type_t<_Tp>, _Args&&... __args) : variant(allocator_arg, __a, in_place<__index_of<_Tp>>, forward<_Args>(__args)...) { __glibcxx_assert(holds_alternative<_Tp>(*this)); } template && __is_uses_allocator_constructible_v< _Tp, _Alloc, initializer_list<_Up>&, _Args&&...>>> variant(allocator_arg_t, const _Alloc& __a, in_place_type_t<_Tp>, initializer_list<_Up> __il, _Args&&... __args) : variant(allocator_arg, __a, in_place<__index_of<_Tp>>, __il, forward<_Args>(__args)...) { __glibcxx_assert(holds_alternative<_Tp>(*this)); } template, _Alloc, _Args&&...>>> variant(allocator_arg_t, const _Alloc& __a, in_place_index_t<_Np>, _Args&&... __args) : _Base(__a, in_place<_Np>, forward<_Args>(__args)...), _Default_ctor_enabler(_Enable_default_constructor_tag{}) { __glibcxx_assert(index() == _Np); } template, _Alloc, initializer_list<_Up>&, _Args&&...>>> variant(allocator_arg_t, const _Alloc& __a, in_place_index_t<_Np>, initializer_list<_Up> __il, _Args&&... __args) : _Base(__a, in_place<_Np>, __il, forward<_Args>(__args)...), _Default_ctor_enabler(_Enable_default_constructor_tag{}) { __glibcxx_assert(index() == _Np); } ~variant() = default; variant& operator=(const variant&) = default; variant& operator=(variant&&) noexcept(__and_..., is_nothrow_move_assignable<_Types>...>::value) = default; template enable_if_t<__exactly_once<__accepted_type<_Tp&&>> && is_constructible_v<__accepted_type<_Tp&&>, _Tp&&> && is_assignable_v<__accepted_type<_Tp&&>&, _Tp&&> && !is_same_v, variant>, variant&> operator=(_Tp&& __rhs) noexcept(is_nothrow_assignable_v<__accepted_type<_Tp&&>&, _Tp&&> && is_nothrow_constructible_v<__accepted_type<_Tp&&>, _Tp&&>) { constexpr auto __index = __accepted_index<_Tp&&>; if (index() == __index) *static_cast<__storage<__to_type<__index>>*>(this->_M_storage()) = forward<_Tp>(__rhs); else this->emplace<__index>(forward<_Tp>(__rhs)); __glibcxx_assert(holds_alternative<__accepted_type<_Tp&&>>(*this)); return *this; } template void emplace(_Args&&... __args) { static_assert(__exactly_once<_Tp>, "T should occur for exactly once in alternatives"); this->emplace<__index_of<_Tp>>(forward<_Args>(__args)...); __glibcxx_assert(holds_alternative<_Tp>(*this)); } template void emplace(initializer_list<_Up> __il, _Args&&... __args) { static_assert(__exactly_once<_Tp>, "T should occur for exactly once in alternatives"); this->emplace<__index_of<_Tp>>(__il, forward<_Args>(__args)...); __glibcxx_assert(holds_alternative<_Tp>(*this)); } template void emplace(_Args&&... __args) { static_assert(_Np < sizeof...(_Types), "The index should be in [0, number of alternatives)"); this->~variant(); __try { ::new (this) variant(in_place<_Np>, forward<_Args>(__args)...); } __catch (...) { this->_M_index = variant_npos; __throw_exception_again; } __glibcxx_assert(index() == _Np); } template void emplace(initializer_list<_Up> __il, _Args&&... __args) { static_assert(_Np < sizeof...(_Types), "The index should be in [0, number of alternatives)"); this->~variant(); __try { ::new (this) variant(in_place<_Np>, __il, forward<_Args>(__args)...); } __catch (...) { this->_M_index = variant_npos; __throw_exception_again; } __glibcxx_assert(index() == _Np); } constexpr bool valueless_by_exception() const noexcept { return !this->_M_valid(); } constexpr size_t index() const noexcept { return this->_M_index; } void swap(variant& __rhs) noexcept(__and_<__is_nothrow_swappable<_Types>...>::value && is_nothrow_move_assignable_v) { if (this->index() == __rhs.index()) { if (this->_M_valid()) { static constexpr void (*_S_vtable[])(void*, void*) = { &__detail::__variant::__erased_swap< __storage<_Types>&, __storage<_Types>&>... }; _S_vtable[__rhs._M_index](this->_M_storage(), __rhs._M_storage()); } } else if (!this->_M_valid()) { *this = std::move(__rhs); } else if (!__rhs._M_valid()) { __rhs = std::move(*this); } else { auto __tmp = std::move(__rhs); __rhs = std::move(*this); *this = std::move(__tmp); } } template friend void* __detail::__variant::__get_storage(_Vp&& __v); }; // To honor algebraic data type, variant<> should be a bottom type, which // is 0 (as opposed to a void type, which is 1). Use incomplete type to model // bottom type. template<> class variant<>; template variant_alternative_t<_Np, variant<_Types...>>& get(variant<_Types...>& __v) { static_assert(_Np < sizeof...(_Types), "The index should be in [0, number of alternatives)"); if (__v.index() != _Np) __throw_bad_variant_access("Unexpected index"); return __detail::__variant::__access< variant_alternative_t<_Np, variant<_Types...>>>(__v); } template variant_alternative_t<_Np, variant<_Types...>>&& get(variant<_Types...>&& __v) { static_assert(_Np < sizeof...(_Types), "The index should be in [0, number of alternatives)"); if (__v.index() != _Np) __throw_bad_variant_access("Unexpected index"); return __detail::__variant::__access< variant_alternative_t<_Np, variant<_Types...>>>(std::move(__v)); } template const variant_alternative_t<_Np, variant<_Types...>>& get(const variant<_Types...>& __v) { static_assert(_Np < sizeof...(_Types), "The index should be in [0, number of alternatives)"); if (__v.index() != _Np) __throw_bad_variant_access("Unexpected index"); return __detail::__variant::__access< variant_alternative_t<_Np, variant<_Types...>>>(__v); } template const variant_alternative_t<_Np, variant<_Types...>>&& get(const variant<_Types...>&& __v) { static_assert(_Np < sizeof...(_Types), "The index should be in [0, number of alternatives)"); if (__v.index() != _Np) __throw_bad_variant_access("Unexpected index"); return __detail::__variant::__access< variant_alternative_t<_Np, variant<_Types...>>>(std::move(__v)); } template decltype(auto) visit(_Visitor&& __visitor, _Variants&&... __variants) { using _Result_type = decltype(forward<_Visitor>(__visitor)(get<0>(__variants)...)); static constexpr auto _S_vtable = __detail::__variant::__gen_vtable< _Result_type, _Visitor&&, _Variants&&...>::_S_apply(); auto __func_ptr = _S_vtable._M_access(__variants.index()...); return (*__func_ptr)(forward<_Visitor>(__visitor), __detail::__variant::__get_storage(__variants)...); } template struct uses_allocator, _Alloc> : true_type { }; template struct hash> { using result_type = size_t; using argument_type = variant<_Types...>; size_t operator()(const variant<_Types...>& __t) const noexcept((... && noexcept(hash>{}(std::declval<_Types>())))) { if (!__t.valueless_by_exception()) { namespace __edv = __detail::__variant; static constexpr size_t (*_S_vtable[])(void*) = { &__edv::__erased_hash&>... }; return hash{}(__t.index()) + _S_vtable[__t.index()](__edv::__get_storage(__t)); } return hash{}(__t.index()); } }; template<> struct hash { using result_type = size_t; using argument_type = monostate; size_t operator()(const monostate& __t) const noexcept { constexpr size_t __magic_monostate_hash = -7777; return __magic_monostate_hash; } }; _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif // C++17 #endif // _GLIBCXX_VARIANT