/* Process declarations and variables for C compiler. Copyright (C) 1988, 92, 93, 94, 95, 1996 Free Software Foundation, Inc. Hacked by Michael Tiemann (tiemann@cygnus.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Process declarations and symbol lookup for C front end. Also constructs types; the standard scalar types at initialization, and structure, union, array and enum types when they are declared. */ /* ??? not all decl nodes are given the most useful possible line numbers. For example, the CONST_DECLs for enum values. */ #include "config.h" #include "system.h" #include "tree.h" #include "rtl.h" #include "flags.h" #include "cp-tree.h" #include "decl.h" #include "lex.h" #include "output.h" #include "except.h" #include "expr.h" #include "defaults.h" #include "toplev.h" static tree get_sentry PROTO((tree)); static void mark_vtable_entries PROTO((tree)); static void import_export_template PROTO((tree)); static void grok_function_init PROTO((tree, tree)); static int finish_vtable_vardecl PROTO((tree, tree)); static int prune_vtable_vardecl PROTO((tree, tree)); static void finish_sigtable_vardecl PROTO((tree, tree)); static int is_namespace_ancestor PROTO((tree, tree)); static tree namespace_ancestor PROTO((tree, tree)); static void add_using_namespace PROTO((tree, tree, int)); static tree ambiguous_decl PROTO((tree, tree, tree)); static tree build_anon_union_vars PROTO((tree, tree*, int, int)); extern int current_class_depth; /* A list of virtual function tables we must make sure to write out. */ tree pending_vtables; /* A list of static class variables. This is needed, because a static class variable can be declared inside the class without an initializer, and then initialized, staticly, outside the class. */ tree pending_statics; /* A list of functions which were declared inline, but which we may need to emit outline anyway. */ static tree saved_inlines; /* Used to help generate temporary names which are unique within a function. Reset to 0 by start_function. */ int temp_name_counter; /* Same, but not reset. Local temp variables and global temp variables can have the same name. */ static int global_temp_name_counter; /* Flag used when debugging spew.c */ extern int spew_debug; /* Nonzero if we're done parsing and into end-of-file activities. */ int at_eof; /* Functions called along with real static constructors and destructors. */ tree static_ctors, static_dtors; /* The current open namespace, and ::. */ tree current_namespace; tree global_namespace; /* The stack for namespaces of current declarations. */ static tree decl_namespace_list; /* C (and C++) language-specific option variables. */ /* Nonzero means allow type mismatches in conditional expressions; just make their values `void'. */ int flag_cond_mismatch; /* Nonzero means give `double' the same size as `float'. */ int flag_short_double; /* Nonzero means don't recognize the keyword `asm'. */ int flag_no_asm; /* Nonzero means don't recognize any extension keywords. */ int flag_no_gnu_keywords; /* Nonzero means don't recognize the non-ANSI builtin functions. */ int flag_no_builtin; /* Nonzero means don't recognize the non-ANSI builtin functions. -ansi sets this. */ int flag_no_nonansi_builtin; /* Nonzero means do some things the same way PCC does. Only provided so the compiler will link. */ int flag_traditional; /* Nonzero means to treat bitfields as unsigned unless they say `signed'. */ int flag_signed_bitfields = 1; /* Nonzero means handle `#ident' directives. 0 means ignore them. */ int flag_no_ident; /* Nonzero means enable obscure ANSI features and disable GNU extensions that might cause ANSI-compliant code to be miscompiled. */ int flag_ansi; /* Nonzero means do emit exported implementations of functions even if they can be inlined. */ int flag_implement_inlines = 1; /* Nonzero means do emit exported implementations of templates, instead of multiple static copies in each file that needs a definition. */ int flag_external_templates; /* Nonzero means that the decision to emit or not emit the implementation of a template depends on where the template is instantiated, rather than where it is defined. */ int flag_alt_external_templates; /* Nonzero means that implicit instantiations will be emitted if needed. */ int flag_implicit_templates = 1; /* Nonzero means warn about implicit declarations. */ int warn_implicit = 1; /* Nonzero means warn when all ctors or dtors are private, and the class has no friends. */ int warn_ctor_dtor_privacy = 1; /* True if we want to implement vtables using "thunks". The default is off. */ #ifndef DEFAULT_VTABLE_THUNKS #define DEFAULT_VTABLE_THUNKS 0 #endif int flag_vtable_thunks = DEFAULT_VTABLE_THUNKS; /* True if we want to deal with repository information. */ int flag_use_repository; /* Nonzero means give string constants the type `const char *' to get extra warnings from them. These warnings will be too numerous to be useful, except in thoroughly ANSIfied programs. */ int warn_write_strings; /* Nonzero means warn about pointer casts that can drop a type qualifier from the pointer target type. */ int warn_cast_qual; /* Nonzero means warn that dbx info for template class methods isn't fully supported yet. */ int warn_template_debugging; /* Nonzero means warn about sizeof(function) or addition/subtraction of function pointers. */ int warn_pointer_arith = 1; /* Nonzero means warn for any function def without prototype decl. */ int warn_missing_prototypes; /* Nonzero means warn about multiple (redundant) decls for the same single variable or function. */ int warn_redundant_decls; /* Warn if initializer is not completely bracketed. */ int warn_missing_braces; /* Warn about comparison of signed and unsigned values. */ int warn_sign_compare; /* Warn about *printf or *scanf format/argument anomalies. */ int warn_format; /* Warn about a subscript that has type char. */ int warn_char_subscripts; /* Warn if a type conversion is done that might have confusing results. */ int warn_conversion; /* Warn if adding () is suggested. */ int warn_parentheses; /* Non-zero means warn in function declared in derived class has the same name as a virtual in the base class, but fails to match the type signature of any virtual function in the base class. */ int warn_overloaded_virtual; /* Non-zero means warn when declaring a class that has a non virtual destructor, when it really ought to have a virtual one. */ int warn_nonvdtor; /* Non-zero means warn when a function is declared extern and later inline. */ int warn_extern_inline; /* Non-zero means warn when the compiler will reorder code. */ int warn_reorder; /* Non-zero means warn when synthesis behavior differs from Cfront's. */ int warn_synth; /* Non-zero means warn when we convert a pointer to member function into a pointer to (void or function). */ int warn_pmf2ptr = 1; /* Nonzero means warn about violation of some Effective C++ style rules. */ int warn_ecpp; /* Nonzero means warn where overload resolution chooses a promotion from unsigned to signed over a conversion to an unsigned of the same size. */ int warn_sign_promo; /* Nonzero means warn when an old-style cast is used. */ int warn_old_style_cast; /* Warn about #pragma directives that are not recognised. */ int warn_unknown_pragmas = 0; /* Tri state variable. */ /* Nonzero means `$' can be in an identifier. */ #ifndef DOLLARS_IN_IDENTIFIERS #define DOLLARS_IN_IDENTIFIERS 1 #endif int dollars_in_ident = DOLLARS_IN_IDENTIFIERS; /* Nonzero for -fno-strict-prototype switch: do not consider empty argument prototype to mean function takes no arguments. */ int flag_strict_prototype = 2; int strict_prototype = 1; int strict_prototypes_lang_c, strict_prototypes_lang_cplusplus = 1; /* Nonzero means that labels can be used as first-class objects */ int flag_labels_ok; /* Non-zero means to collect statistics which might be expensive and to print them when we are done. */ int flag_detailed_statistics; /* C++ specific flags. */ /* Nonzero for -fall-virtual: make every member function (except constructors) lay down in the virtual function table. Calls can then either go through the virtual function table or not, depending. */ int flag_all_virtual; /* Zero means that `this' is a *const. This gives nice behavior in the 2.0 world. 1 gives 1.2-compatible behavior. 2 gives Spring behavior. -2 means we're constructing an object and it has fixed type. */ int flag_this_is_variable; /* Nonzero means memoize our member lookups. */ int flag_memoize_lookups; int flag_save_memoized_contexts; /* 3 means write out only virtuals function tables `defined' in this implementation file. 2 means write out only specific virtual function tables and give them (C) public access. 1 means write out virtual function tables and give them (C) public access. 0 means write out virtual function tables and give them (C) static access (default). -1 means declare virtual function tables extern. */ int write_virtuals; /* Nonzero means we should attempt to elide constructors when possible. FIXME: This flag is obsolete, and should be torn out along with the old overloading code. */ int flag_elide_constructors; /* Nonzero means recognize and handle signature language constructs. */ int flag_handle_signatures; /* Nonzero means that member functions defined in class scope are inline by default. */ int flag_default_inline = 1; /* Controls whether enums and ints freely convert. 1 means with complete freedom. 0 means enums can convert to ints, but not vice-versa. */ int flag_int_enum_equivalence; /* Controls whether compiler generates 'type descriptor' that give run-time type information. */ int flag_rtti = 1; /* Nonzero if we wish to output cross-referencing information for the GNU class browser. */ extern int flag_gnu_xref; /* Nonzero if compiler can make `reasonable' assumptions about references and objects. For example, the compiler must be conservative about the following and not assume that `a' is nonnull: obj &a = g (); a.f (2); In general, it is `reasonable' to assume that for many programs, and better code can be generated in that case. */ int flag_assume_nonnull_objects = 1; /* Nonzero if we want to support huge (> 2^(sizeof(short)*8-1) bytes) objects. */ int flag_huge_objects; /* Nonzero if we want to conserve space in the .o files. We do this by putting uninitialized data and runtime initialized data into .common instead of .data at the expense of not flagging multiple definitions. */ int flag_conserve_space; /* Nonzero if we want to obey access control semantics. */ int flag_access_control = 1; /* Nonzero if we want to understand the operator names, i.e. 'bitand'. */ int flag_operator_names; /* Nonzero if we want to check the return value of new and avoid calling constructors if it is a null pointer. */ int flag_check_new; /* Nonzero if we want the new ANSI rules for pushing a new scope for `for' initialization variables. 0: Old rules, set by -fno-for-scope. 2: New ANSI rules, set by -ffor-scope. 1: Try to implement new ANSI rules, but with backup compatibility (and warnings). This is the default, for now. */ int flag_new_for_scope = 1; /* Nonzero if we want to emit defined symbols with common-like linkage as weak symbols where possible, in order to conform to C++ semantics. Otherwise, emit them as local symbols. */ int flag_weak = 1; /* Nonzero to enable experimental ABI changes. */ int flag_new_abi; /* Nonzero to not ignore namespace std. */ int flag_honor_std; /* Maximum template instantiation depth. Must be at least 17 for ANSI compliance. */ int max_tinst_depth = 17; /* The name-mangling scheme to use. Must be 1 or greater to support template functions with identical types, but different template arguments. */ int name_mangling_version = 2; /* Nonzero means that guiding declarations are allowed. */ int flag_guiding_decls; /* Nonzero if squashed mangling is to be performed. This uses the B and K codes to reference previously seen class types and class qualifiers. */ int flag_do_squangling; /* Table of language-dependent -f options. STRING is the option name. VARIABLE is the address of the variable. ON_VALUE is the value to store in VARIABLE if `-fSTRING' is seen as an option. (If `-fno-STRING' is seen as an option, the opposite value is stored.) */ static struct { char *string; int *variable; int on_value;} lang_f_options[] = { {"signed-char", &flag_signed_char, 1}, {"unsigned-char", &flag_signed_char, 0}, {"signed-bitfields", &flag_signed_bitfields, 1}, {"unsigned-bitfields", &flag_signed_bitfields, 0}, {"short-enums", &flag_short_enums, 1}, {"short-double", &flag_short_double, 1}, {"cond-mismatch", &flag_cond_mismatch, 1}, {"squangle", &flag_do_squangling, 1}, {"asm", &flag_no_asm, 0}, {"builtin", &flag_no_builtin, 0}, {"ident", &flag_no_ident, 0}, {"labels-ok", &flag_labels_ok, 1}, {"stats", &flag_detailed_statistics, 1}, {"this-is-variable", &flag_this_is_variable, 1}, {"strict-prototype", &flag_strict_prototype, 1}, {"all-virtual", &flag_all_virtual, 1}, {"memoize-lookups", &flag_memoize_lookups, 1}, {"elide-constructors", &flag_elide_constructors, 1}, {"handle-exceptions", &flag_exceptions, 1}, {"handle-signatures", &flag_handle_signatures, 1}, {"default-inline", &flag_default_inline, 1}, {"dollars-in-identifiers", &dollars_in_ident, 1}, {"enum-int-equiv", &flag_int_enum_equivalence, 1}, {"honor-std", &flag_honor_std, 1}, {"rtti", &flag_rtti, 1}, {"xref", &flag_gnu_xref, 1}, {"nonnull-objects", &flag_assume_nonnull_objects, 1}, {"implement-inlines", &flag_implement_inlines, 1}, {"external-templates", &flag_external_templates, 1}, {"implicit-templates", &flag_implicit_templates, 1}, {"huge-objects", &flag_huge_objects, 1}, {"conserve-space", &flag_conserve_space, 1}, {"vtable-thunks", &flag_vtable_thunks, 1}, {"access-control", &flag_access_control, 1}, {"nonansi-builtins", &flag_no_nonansi_builtin, 0}, {"gnu-keywords", &flag_no_gnu_keywords, 0}, {"operator-names", &flag_operator_names, 1}, {"check-new", &flag_check_new, 1}, {"repo", &flag_use_repository, 1}, {"for-scope", &flag_new_for_scope, 2}, {"weak", &flag_weak, 1} }; /* Decode the string P as a language-specific option. Return 1 if it is recognized (and handle it); return 0 if not recognized. */ int lang_decode_option (p) char *p; { if (!strcmp (p, "-ftraditional") || !strcmp (p, "-traditional")) flag_writable_strings = 1, flag_this_is_variable = 1, flag_new_for_scope = 0; /* The +e options are for cfront compatibility. They come in as `-+eN', to kludge around gcc.c's argument handling. */ else if (p[0] == '-' && p[1] == '+' && p[2] == 'e') { int old_write_virtuals = write_virtuals; if (p[3] == '1') write_virtuals = 1; else if (p[3] == '0') write_virtuals = -1; else if (p[3] == '2') write_virtuals = 2; else error ("invalid +e option"); if (old_write_virtuals != 0 && write_virtuals != old_write_virtuals) error ("conflicting +e options given"); } else if (p[0] == '-' && p[1] == 'f') { /* Some kind of -f option. P's value is the option sans `-f'. Search for it in the table of options. */ int found = 0; size_t j; p += 2; /* Try special -f options. */ if (!strcmp (p, "handle-exceptions") || !strcmp (p, "no-handle-exceptions")) warning ("-fhandle-exceptions has been renamed to -fexceptions (and is now on by default)"); if (!strcmp (p, "save-memoized")) { flag_memoize_lookups = 1; flag_save_memoized_contexts = 1; found = 1; } else if (!strcmp (p, "no-save-memoized")) { flag_memoize_lookups = 0; flag_save_memoized_contexts = 0; found = 1; } else if (! strcmp (p, "alt-external-templates")) { flag_external_templates = 1; flag_alt_external_templates = 1; found = 1; } else if (! strcmp (p, "no-alt-external-templates")) { flag_alt_external_templates = 0; found = 1; } else if (!strcmp (p, "repo")) { flag_use_repository = 1; flag_implicit_templates = 0; found = 1; } else if (!strcmp (p, "guiding-decls")) { flag_guiding_decls = 1; name_mangling_version = 0; found = 1; } else if (!strcmp (p, "no-guiding-decls")) { flag_guiding_decls = 0; found = 1; } else if (!strcmp (p, "ansi-overloading")) found = 1; else if (!strcmp (p, "no-ansi-overloading")) { error ("-fno-ansi-overloading is no longer supported"); found = 1; } else if (!strcmp (p, "new-abi")) { flag_new_abi = 1; flag_do_squangling = 1; flag_honor_std = 1; flag_vtable_thunks = 1; } else if (!strcmp (p, "no-new-abi")) { flag_new_abi = 0; flag_do_squangling = 0; flag_honor_std = 0; } else if (!strncmp (p, "template-depth-", 15)) { char *endp = p + 15; while (*endp) { if (*endp >= '0' && *endp <= '9') endp++; else { error ("Invalid option `%s'", p - 2); goto template_depth_lose; } } max_tinst_depth = atoi (p + 15); template_depth_lose: ; } else if (!strncmp (p, "name-mangling-version-", 22)) { char *endp = p + 22; while (*endp) { if (*endp >= '0' && *endp <= '9') endp++; else { error ("Invalid option `%s'", p - 2); goto mangling_version_lose; } } name_mangling_version = atoi (p + 22); mangling_version_lose: ; } else for (j = 0; !found && j < sizeof (lang_f_options) / sizeof (lang_f_options[0]); j++) { if (!strcmp (p, lang_f_options[j].string)) { *lang_f_options[j].variable = lang_f_options[j].on_value; /* A goto here would be cleaner, but breaks the vax pcc. */ found = 1; } if (p[0] == 'n' && p[1] == 'o' && p[2] == '-' && ! strcmp (p+3, lang_f_options[j].string)) { *lang_f_options[j].variable = ! lang_f_options[j].on_value; found = 1; } } return found; } else if (p[0] == '-' && p[1] == 'W') { int setting = 1; /* The -W options control the warning behavior of the compiler. */ p += 2; if (p[0] == 'n' && p[1] == 'o' && p[2] == '-') setting = 0, p += 3; if (!strcmp (p, "implicit")) warn_implicit = setting; else if (!strcmp (p, "return-type")) warn_return_type = setting; else if (!strcmp (p, "ctor-dtor-privacy")) warn_ctor_dtor_privacy = setting; else if (!strcmp (p, "write-strings")) warn_write_strings = setting; else if (!strcmp (p, "cast-qual")) warn_cast_qual = setting; else if (!strcmp (p, "char-subscripts")) warn_char_subscripts = setting; else if (!strcmp (p, "pointer-arith")) warn_pointer_arith = setting; else if (!strcmp (p, "missing-prototypes")) warn_missing_prototypes = setting; else if (!strcmp (p, "redundant-decls")) warn_redundant_decls = setting; else if (!strcmp (p, "missing-braces")) warn_missing_braces = setting; else if (!strcmp (p, "sign-compare")) warn_sign_compare = setting; else if (!strcmp (p, "format")) warn_format = setting; else if (!strcmp (p, "conversion")) warn_conversion = setting; else if (!strcmp (p, "parentheses")) warn_parentheses = setting; else if (!strcmp (p, "non-virtual-dtor")) warn_nonvdtor = setting; else if (!strcmp (p, "extern-inline")) warn_extern_inline = setting; else if (!strcmp (p, "reorder")) warn_reorder = setting; else if (!strcmp (p, "synth")) warn_synth = setting; else if (!strcmp (p, "pmf-conversions")) warn_pmf2ptr = setting; else if (!strcmp (p, "effc++")) warn_ecpp = setting; else if (!strcmp (p, "sign-promo")) warn_sign_promo = setting; else if (!strcmp (p, "old-style-cast")) warn_old_style_cast = setting; else if (!strcmp (p, "unknown-pragmas")) /* Set to greater than 1, so that even unknown pragmas in system headers will be warned about. */ warn_unknown_pragmas = setting * 2; else if (!strcmp (p, "comment")) ; /* cpp handles this one. */ else if (!strcmp (p, "comments")) ; /* cpp handles this one. */ else if (!strcmp (p, "trigraphs")) ; /* cpp handles this one. */ else if (!strcmp (p, "import")) ; /* cpp handles this one. */ else if (!strcmp (p, "all")) { warn_return_type = setting; warn_unused = setting; warn_implicit = setting; warn_ctor_dtor_privacy = setting; warn_switch = setting; warn_format = setting; warn_parentheses = setting; warn_missing_braces = setting; warn_sign_compare = setting; warn_extern_inline = setting; warn_nonvdtor = setting; /* We save the value of warn_uninitialized, since if they put -Wuninitialized on the command line, we need to generate a warning about not using it without also specifying -O. */ if (warn_uninitialized != 1) warn_uninitialized = (setting ? 2 : 0); warn_template_debugging = setting; warn_reorder = setting; warn_sign_promo = setting; /* Only warn about unknown pragmas that are not in system headers. */ warn_unknown_pragmas = 1; } else if (!strcmp (p, "overloaded-virtual")) warn_overloaded_virtual = setting; else return 0; } else if (!strcmp (p, "-ansi")) flag_no_nonansi_builtin = 1, flag_ansi = 1, flag_no_gnu_keywords = 1, flag_operator_names = 1; #ifdef SPEW_DEBUG /* Undocumented, only ever used when you're invoking cc1plus by hand, since it's probably safe to assume no sane person would ever want to use this under normal circumstances. */ else if (!strcmp (p, "-spew-debug")) spew_debug = 1; #endif else return 0; return 1; } /* Incorporate `const' and `volatile' qualifiers for member functions. FUNCTION is a TYPE_DECL or a FUNCTION_DECL. QUALS is a list of qualifiers. */ tree grok_method_quals (ctype, function, quals) tree ctype, function, quals; { tree fntype = TREE_TYPE (function); tree raises = TYPE_RAISES_EXCEPTIONS (fntype); do { extern tree ridpointers[]; if (TREE_VALUE (quals) == ridpointers[(int)RID_CONST]) { if (TYPE_READONLY (ctype)) error ("duplicate `%s' %s", IDENTIFIER_POINTER (TREE_VALUE (quals)), (TREE_CODE (function) == FUNCTION_DECL ? "for member function" : "in type declaration")); ctype = build_type_variant (ctype, 1, TYPE_VOLATILE (ctype)); build_pointer_type (ctype); } else if (TREE_VALUE (quals) == ridpointers[(int)RID_VOLATILE]) { if (TYPE_VOLATILE (ctype)) error ("duplicate `%s' %s", IDENTIFIER_POINTER (TREE_VALUE (quals)), (TREE_CODE (function) == FUNCTION_DECL ? "for member function" : "in type declaration")); ctype = build_type_variant (ctype, TYPE_READONLY (ctype), 1); build_pointer_type (ctype); } else my_friendly_abort (20); quals = TREE_CHAIN (quals); } while (quals); fntype = build_cplus_method_type (ctype, TREE_TYPE (fntype), (TREE_CODE (fntype) == METHOD_TYPE ? TREE_CHAIN (TYPE_ARG_TYPES (fntype)) : TYPE_ARG_TYPES (fntype))); if (raises) fntype = build_exception_variant (fntype, raises); TREE_TYPE (function) = fntype; return ctype; } /* Warn when -fexternal-templates is used and #pragma interface/implementation is not used all the times it should be, inform the user. */ void warn_if_unknown_interface (decl) tree decl; { static int already_warned = 0; if (already_warned++) return; if (flag_alt_external_templates) { struct tinst_level *til = tinst_for_decl (); int sl = lineno; char *sf = input_filename; if (til) { lineno = til->line; input_filename = til->file; } cp_warning ("template `%#D' instantiated in file without #pragma interface", decl); lineno = sl; input_filename = sf; } else cp_warning_at ("template `%#D' defined in file without #pragma interface", decl); } /* A subroutine of the parser, to handle a component list. */ tree grok_x_components (specs, components) tree specs, components; { register tree t, x, tcode; /* We just got some friends. They have been recorded elsewhere. */ if (components == void_type_node) return NULL_TREE; if (components == NULL_TREE) { t = groktypename (build_decl_list (specs, NULL_TREE)); if (t == NULL_TREE) { error ("error in component specification"); return NULL_TREE; } switch (TREE_CODE (t)) { case VAR_DECL: /* Static anonymous unions come out as VAR_DECLs. */ if (TREE_CODE (TREE_TYPE (t)) == UNION_TYPE && ANON_AGGRNAME_P (TYPE_IDENTIFIER (TREE_TYPE (t)))) return t; /* We return SPECS here, because in the parser it was ending up with not doing anything to $$, which is what SPECS represents. */ return specs; break; case RECORD_TYPE: /* This code may be needed for UNION_TYPEs as well. */ tcode = record_type_node; if (CLASSTYPE_DECLARED_CLASS (t)) tcode = class_type_node; else if (IS_SIGNATURE (t)) tcode = signature_type_node; if (CLASSTYPE_IS_TEMPLATE (t)) /* In this case, the TYPE_IDENTIFIER will be something like S, rather than S, so to get the correct name we look at the template. */ x = DECL_NAME (CLASSTYPE_TI_TEMPLATE (t)); else x = TYPE_IDENTIFIER (t); t = xref_tag (tcode, x, NULL_TREE, 0); return NULL_TREE; break; case UNION_TYPE: case ENUMERAL_TYPE: if (TREE_CODE (t) == UNION_TYPE) tcode = union_type_node; else tcode = enum_type_node; t = xref_tag (tcode, TYPE_IDENTIFIER (t), NULL_TREE, 0); if (TREE_CODE (t) == UNION_TYPE && ANON_AGGRNAME_P (TYPE_IDENTIFIER (t))) { /* See also shadow_tag. */ struct pending_inline **p; tree *q; x = build_lang_field_decl (FIELD_DECL, NULL_TREE, t); /* Wipe out memory of synthesized methods */ TYPE_HAS_CONSTRUCTOR (t) = 0; TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 0; TYPE_HAS_INIT_REF (t) = 0; TYPE_HAS_CONST_INIT_REF (t) = 0; TYPE_HAS_ASSIGN_REF (t) = 0; TYPE_HAS_ASSIGNMENT (t) = 0; TYPE_HAS_CONST_ASSIGN_REF (t) = 0; q = &TYPE_METHODS (t); while (*q) { if (DECL_ARTIFICIAL (*q)) *q = TREE_CHAIN (*q); else q = &TREE_CHAIN (*q); } if (TYPE_METHODS (t)) error ("an anonymous union cannot have function members"); p = &pending_inlines; for (; *p; *p = (*p)->next) if (DECL_CONTEXT ((*p)->fndecl) != t) break; } else if (TREE_CODE (t) == ENUMERAL_TYPE) x = grok_enum_decls (NULL_TREE); else x = NULL_TREE; return x; break; default: if (t != void_type_node) error ("empty component declaration"); return NULL_TREE; } } else /* There may or may not be any enum decls to grok, but grok_enum_decls will just return components, if there aren't any. We used to try to figure out whether or not there were any enum decls based on the type of components, but that's too hard; it might be something like `enum { a } *p;'. */ return grok_enum_decls (components); } /* Classes overload their constituent function names automatically. When a function name is declared in a record structure, its name is changed to it overloaded name. Since names for constructors and destructors can conflict, we place a leading '$' for destructors. CNAME is the name of the class we are grokking for. FUNCTION is a FUNCTION_DECL. It was created by `grokdeclarator'. FLAGS contains bits saying what's special about today's arguments. 1 == DESTRUCTOR. 2 == OPERATOR. If FUNCTION is a destructor, then we must add the `auto-delete' field as a second parameter. There is some hair associated with the fact that we must "declare" this variable in the manner consistent with the way the rest of the arguments were declared. QUALS are the qualifiers for the this pointer. */ void grokclassfn (ctype, cname, function, flags, quals) tree ctype, cname, function; enum overload_flags flags; tree quals; { tree fn_name = DECL_NAME (function); tree arg_types; tree parm; tree qualtype; tree fntype = TREE_TYPE (function); tree raises = TYPE_RAISES_EXCEPTIONS (fntype); if (fn_name == NULL_TREE) { error ("name missing for member function"); fn_name = get_identifier (""); DECL_NAME (function) = fn_name; } if (quals) qualtype = grok_method_quals (ctype, function, quals); else qualtype = ctype; arg_types = TYPE_ARG_TYPES (TREE_TYPE (function)); if (TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE) { /* Must add the class instance variable up front. */ /* Right now we just make this a pointer. But later we may wish to make it special. */ tree type = TREE_VALUE (arg_types); int constp = 1; if ((flag_this_is_variable > 0) && (flags == DTOR_FLAG || DECL_CONSTRUCTOR_P (function))) constp = 0; if (DECL_CONSTRUCTOR_P (function)) { if (TYPE_USES_VIRTUAL_BASECLASSES (ctype)) { DECL_CONSTRUCTOR_FOR_VBASE_P (function) = 1; /* In this case we need "in-charge" flag saying whether this constructor is responsible for initialization of virtual baseclasses or not. */ parm = build_decl (PARM_DECL, in_charge_identifier, integer_type_node); /* Mark the artificial `__in_chrg' parameter as "artificial". */ SET_DECL_ARTIFICIAL (parm); DECL_ARG_TYPE (parm) = integer_type_node; TREE_READONLY (parm) = 1; TREE_CHAIN (parm) = last_function_parms; last_function_parms = parm; } } parm = build_decl (PARM_DECL, this_identifier, type); /* Mark the artificial `this' parameter as "artificial". */ SET_DECL_ARTIFICIAL (parm); DECL_ARG_TYPE (parm) = type; /* We can make this a register, so long as we don't accidentally complain if someone tries to take its address. */ DECL_REGISTER (parm) = 1; if (constp) TREE_READONLY (parm) = 1; TREE_CHAIN (parm) = last_function_parms; last_function_parms = parm; } if (flags == DTOR_FLAG) { char *buf, *dbuf; int len = sizeof (DESTRUCTOR_DECL_PREFIX)-1; arg_types = hash_tree_chain (integer_type_node, void_list_node); TREE_SIDE_EFFECTS (arg_types) = 1; /* Build the overload name. It will look like `7Example'. */ if (IDENTIFIER_TYPE_VALUE (cname)) dbuf = build_overload_name (IDENTIFIER_TYPE_VALUE (cname), 1, 1); else if (IDENTIFIER_LOCAL_VALUE (cname)) dbuf = build_overload_name (TREE_TYPE (IDENTIFIER_LOCAL_VALUE (cname)), 1, 1); else /* Using ctype fixes the `X::Y::~Y()' crash. The cname has no type when it's defined out of the class definition, since poplevel_class wipes it out. This used to be internal error 346. */ dbuf = build_overload_name (ctype, 1, 1); buf = (char *) alloca (strlen (dbuf) + sizeof (DESTRUCTOR_DECL_PREFIX)); bcopy (DESTRUCTOR_DECL_PREFIX, buf, len); buf[len] = '\0'; strcat (buf, dbuf); DECL_ASSEMBLER_NAME (function) = get_identifier (buf); parm = build_decl (PARM_DECL, in_charge_identifier, integer_type_node); /* Mark the artificial `__in_chrg' parameter as "artificial". */ SET_DECL_ARTIFICIAL (parm); TREE_READONLY (parm) = 1; DECL_ARG_TYPE (parm) = integer_type_node; /* This is the same chain as DECL_ARGUMENTS (...). */ TREE_CHAIN (last_function_parms) = parm; fntype = build_cplus_method_type (qualtype, void_type_node, arg_types); if (raises) { fntype = build_exception_variant (fntype, raises); } TREE_TYPE (function) = fntype; TYPE_HAS_DESTRUCTOR (ctype) = 1; } else { tree these_arg_types; if (DECL_CONSTRUCTOR_FOR_VBASE_P (function)) { arg_types = hash_tree_chain (integer_type_node, TREE_CHAIN (arg_types)); fntype = build_cplus_method_type (qualtype, TREE_TYPE (TREE_TYPE (function)), arg_types); if (raises) { fntype = build_exception_variant (fntype, raises); } TREE_TYPE (function) = fntype; arg_types = TYPE_ARG_TYPES (TREE_TYPE (function)); } these_arg_types = arg_types; if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE) /* Only true for static member functions. */ these_arg_types = hash_tree_chain (build_pointer_type (qualtype), arg_types); DECL_ASSEMBLER_NAME (function) = build_decl_overload (fn_name, these_arg_types, 1 + DECL_CONSTRUCTOR_P (function)); } DECL_ARGUMENTS (function) = last_function_parms; /* First approximations. */ DECL_CONTEXT (function) = ctype; DECL_CLASS_CONTEXT (function) = ctype; } /* Work on the expr used by alignof (this is only called by the parser). */ tree grok_alignof (expr) tree expr; { tree best, t; int bestalign; if (processing_template_decl) return build_min (ALIGNOF_EXPR, sizetype, expr); if (TREE_CODE (expr) == COMPONENT_REF && DECL_BIT_FIELD (TREE_OPERAND (expr, 1))) error ("`__alignof__' applied to a bit-field"); if (TREE_CODE (expr) == INDIRECT_REF) { best = t = TREE_OPERAND (expr, 0); bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t))); while (TREE_CODE (t) == NOP_EXPR && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE) { int thisalign; t = TREE_OPERAND (t, 0); thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t))); if (thisalign > bestalign) best = t, bestalign = thisalign; } return c_alignof (TREE_TYPE (TREE_TYPE (best))); } else { /* ANSI says arrays and fns are converted inside comma. But we can't convert them in build_compound_expr because that would break commas in lvalues. So do the conversion here if operand was a comma. */ if (TREE_CODE (expr) == COMPOUND_EXPR && (TREE_CODE (TREE_TYPE (expr)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (expr)) == FUNCTION_TYPE)) expr = default_conversion (expr); return c_alignof (TREE_TYPE (expr)); } } /* Create an ARRAY_REF, checking for the user doing things backwards along the way. */ tree grok_array_decl (array_expr, index_exp) tree array_expr, index_exp; { tree type = TREE_TYPE (array_expr); tree p1, p2, i1, i2; if (type == error_mark_node || index_exp == error_mark_node) return error_mark_node; if (processing_template_decl) return build_min (ARRAY_REF, type ? TREE_TYPE (type) : NULL_TREE, array_expr, index_exp); if (type == NULL_TREE) { /* Something has gone very wrong. Assume we are mistakenly reducing an expression instead of a declaration. */ error ("parser may be lost: is there a '{' missing somewhere?"); return NULL_TREE; } if (TREE_CODE (type) == OFFSET_TYPE || TREE_CODE (type) == REFERENCE_TYPE) type = TREE_TYPE (type); /* If they have an `operator[]', use that. */ if (IS_AGGR_TYPE (type) || IS_AGGR_TYPE (TREE_TYPE (index_exp))) return build_opfncall (ARRAY_REF, LOOKUP_NORMAL, array_expr, index_exp, NULL_TREE); /* Otherwise, create an ARRAY_REF for a pointer or array type. */ if (TREE_CODE (type) == ARRAY_TYPE) p1 = array_expr; else p1 = build_expr_type_conversion (WANT_POINTER, array_expr, 0); if (TREE_CODE (TREE_TYPE (index_exp)) == ARRAY_TYPE) p2 = index_exp; else p2 = build_expr_type_conversion (WANT_POINTER, index_exp, 0); i1 = build_expr_type_conversion (WANT_INT | WANT_ENUM, array_expr, 0); i2 = build_expr_type_conversion (WANT_INT | WANT_ENUM, index_exp, 0); if ((p1 && i2) && (i1 && p2)) error ("ambiguous conversion for array subscript"); if (p1 && i2) array_expr = p1, index_exp = i2; else if (i1 && p2) array_expr = p2, index_exp = i1; else { cp_error ("invalid types `%T[%T]' for array subscript", type, TREE_TYPE (index_exp)); return error_mark_node; } if (array_expr == error_mark_node || index_exp == error_mark_node) error ("ambiguous conversion for array subscript"); return build_array_ref (array_expr, index_exp); } /* Given the cast expression EXP, checking out its validity. Either return an error_mark_node if there was an unavoidable error, return a cast to void for trying to delete a pointer w/ the value 0, or return the call to delete. If DOING_VEC is 1, we handle things differently for doing an array delete. If DOING_VEC is 2, they gave us the array size as an argument to delete. Implements ARM $5.3.4. This is called from the parser. */ tree delete_sanity (exp, size, doing_vec, use_global_delete) tree exp, size; int doing_vec, use_global_delete; { tree t; tree type; enum tree_code code; /* For a regular vector delete (aka, no size argument) we will pass this down as a NULL_TREE into build_vec_delete. */ tree maxindex = NULL_TREE; if (exp == error_mark_node) return exp; if (processing_template_decl) { t = build_min (DELETE_EXPR, void_type_node, exp, size); DELETE_EXPR_USE_GLOBAL (t) = use_global_delete; DELETE_EXPR_USE_VEC (t) = doing_vec; return t; } t = exp; if (TREE_CODE (t) == OFFSET_REF) t = resolve_offset_ref (t); t = stabilize_reference (convert_from_reference (t)); type = TREE_TYPE (t); code = TREE_CODE (type); switch (doing_vec) { case 2: maxindex = build_binary_op (MINUS_EXPR, size, integer_one_node, 1); pedwarn ("anachronistic use of array size in vector delete"); /* Fall through. */ case 1: break; default: if (code != POINTER_TYPE) { cp_error ("type `%#T' argument given to `delete', expected pointer", type); return error_mark_node; } /* Deleting a pointer with the value zero is valid and has no effect. */ if (integer_zerop (t)) return build1 (NOP_EXPR, void_type_node, t); } if (code == POINTER_TYPE) { #if 0 /* As of Valley Forge, you can delete a pointer to const. */ if (TREE_READONLY (TREE_TYPE (type))) { error ("`const *' cannot be deleted"); return error_mark_node; } #endif /* You can't delete functions. */ if (TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE) { error ("cannot delete a function"); return error_mark_node; } } #if 0 /* If the type has no destructor, then we should build a regular delete, instead of a vector delete. Otherwise, we would end up passing a bogus offset into __builtin_delete, which is not expecting it. */ if (doing_vec && TREE_CODE (type) == POINTER_TYPE && !TYPE_HAS_DESTRUCTOR (TREE_TYPE (type))) { doing_vec = 0; use_global_delete = 1; } #endif if (doing_vec) return build_vec_delete (t, maxindex, integer_one_node, integer_two_node, use_global_delete); else { if (IS_AGGR_TYPE (TREE_TYPE (type)) && TYPE_GETS_REG_DELETE (TREE_TYPE (type))) { /* Only do access checking here; we'll be calling op delete from the destructor. */ tree tmp = build_op_delete_call (DELETE_EXPR, t, size_zero_node, LOOKUP_NORMAL); if (tmp == error_mark_node) return error_mark_node; } return build_delete (type, t, integer_three_node, LOOKUP_NORMAL, use_global_delete); } } /* Report an error if the indicated template declaration is not the sort of thing that should be a member template. */ void check_member_template (tmpl) tree tmpl; { tree decl; my_friendly_assert (TREE_CODE (tmpl) == TEMPLATE_DECL, 0); decl = DECL_TEMPLATE_RESULT (tmpl); if (TREE_CODE (decl) == FUNCTION_DECL || (TREE_CODE (decl) == TYPE_DECL && IS_AGGR_TYPE (TREE_TYPE (decl)))) { if (current_function_decl) /* 14.5.2.2 [temp.mem] A local class shall not have member templates. */ cp_error ("declaration of member template `%#D' in local class", decl); if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl)) { /* 14.5.2.3 [temp.mem] A member function template shall not be virtual. */ cp_error ("invalid use of `virtual' in template declaration of `%#D'", decl); DECL_VIRTUAL_P (decl) = 0; } /* The debug-information generating code doesn't know what to do with member templates. */ DECL_IGNORED_P (tmpl) = 1; } else cp_error ("template declaration of `%#D'", decl); } /* Sanity check: report error if this function FUNCTION is not really a member of the class (CTYPE) it is supposed to belong to. CNAME is the same here as it is for grokclassfn above. */ tree check_classfn (ctype, function) tree ctype, function; { tree fn_name = DECL_NAME (function); tree fndecl, fndecls; tree method_vec = CLASSTYPE_METHOD_VEC (complete_type (ctype)); tree *methods = 0; tree *end = 0; tree templates = NULL_TREE; if (method_vec != 0) { methods = &TREE_VEC_ELT (method_vec, 0); end = TREE_VEC_END (method_vec); /* First suss out ctors and dtors. */ if (*methods && fn_name == DECL_NAME (OVL_CURRENT (*methods)) && DECL_CONSTRUCTOR_P (function)) goto got_it; if (*++methods && fn_name == DECL_NAME (OVL_CURRENT (*methods)) && DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (function))) goto got_it; while (++methods != end) { fndecl = *methods; if (fn_name == DECL_NAME (OVL_CURRENT (*methods))) { got_it: for (fndecls = *methods; fndecls != NULL_TREE; fndecls = OVL_NEXT (fndecls)) { fndecl = OVL_CURRENT (fndecls); /* The DECL_ASSEMBLER_NAME for a TEMPLATE_DECL is not mangled, so the check below does not work correctly in that case. */ if (TREE_CODE (function) != TEMPLATE_DECL && TREE_CODE (fndecl) != TEMPLATE_DECL && (DECL_ASSEMBLER_NAME (function) == DECL_ASSEMBLER_NAME (fndecl))) return fndecl; /* We cannot simply call decls_match because this doesn't work for static member functions that are pretending to be methods, and because the name may have been changed by asm("new_name"). */ if (DECL_NAME (function) == DECL_NAME (fndecl)) { tree p1 = TYPE_ARG_TYPES (TREE_TYPE (function)); tree p2 = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); /* Get rid of the this parameter on functions that become static. */ if (DECL_STATIC_FUNCTION_P (fndecl) && TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE) p1 = TREE_CHAIN (p1); if (comptypes (TREE_TYPE (TREE_TYPE (function)), TREE_TYPE (TREE_TYPE (fndecl)), 1) && compparms (p1, p2, 3) && (DECL_TEMPLATE_SPECIALIZATION (function) == DECL_TEMPLATE_SPECIALIZATION (fndecl)) && (!DECL_TEMPLATE_SPECIALIZATION (function) || (DECL_TI_TEMPLATE (function) == DECL_TI_TEMPLATE (fndecl)))) return fndecl; if (is_member_template (fndecl)) /* This function might be an instantiation or specialization of fndecl. */ templates = scratch_tree_cons (NULL_TREE, fndecl, templates); } } break; /* loser */ } else if (TREE_CODE (fndecl) == TEMPLATE_DECL && IDENTIFIER_TYPENAME_P (DECL_NAME (fndecl)) && IDENTIFIER_TYPENAME_P (fn_name)) /* The method in the class is a member template conversion operator. We are declaring another conversion operator. It is possible that even though the names don't match, there is some specialization occurring. */ templates = scratch_tree_cons (NULL_TREE, fndecl, templates); } } if (templates) /* This function might be an instantiation or a specialization. We should verify that this is possible. If it is, we must somehow add the new declaration to the method vector for the class. Perhaps we should use add_method? For now, we simply return NULL_TREE, which lets the caller know that this function is new, but we don't print an error message. */ return NULL_TREE; if (methods != end) { tree fndecl = *methods; cp_error ("prototype for `%#D' does not match any in class `%T'", function, ctype); cp_error_at ("candidate%s: %+#D", OVL_NEXT (fndecl) ? "s are" : " is", OVL_CURRENT (fndecl)); while (fndecl = OVL_NEXT (fndecl), fndecl) cp_error_at (" %#D", OVL_CURRENT(fndecl)); } else { methods = 0; cp_error ("no `%#D' member function declared in class `%T'", function, ctype); } /* If we did not find the method in the class, add it to avoid spurious errors. */ add_method (ctype, methods, function); return NULL_TREE; } /* Process the specs, declarator (NULL if omitted) and width (NULL if omitted) of a structure component, returning a FIELD_DECL node. QUALS is a list of type qualifiers for this decl (such as for declaring const member functions). This is done during the parsing of the struct declaration. The FIELD_DECL nodes are chained together and the lot of them are ultimately passed to `build_struct' to make the RECORD_TYPE node. C++: If class A defines that certain functions in class B are friends, then the way I have set things up, it is B who is interested in permission granted by A. However, it is in A's context that these declarations are parsed. By returning a void_type_node, class A does not attempt to incorporate the declarations of the friends within its structure. DO NOT MAKE ANY CHANGES TO THIS CODE WITHOUT MAKING CORRESPONDING CHANGES TO CODE IN `start_method'. */ tree grokfield (declarator, declspecs, init, asmspec_tree, attrlist) tree declarator, declspecs, init, asmspec_tree, attrlist; { register tree value; char *asmspec = 0; int flags = LOOKUP_ONLYCONVERTING; /* Convert () initializers to = initializers. */ if (init == NULL_TREE && declarator != NULL_TREE && TREE_CODE (declarator) == CALL_EXPR && TREE_OPERAND (declarator, 0) && (TREE_CODE (TREE_OPERAND (declarator, 0)) == IDENTIFIER_NODE || TREE_CODE (TREE_OPERAND (declarator, 0)) == SCOPE_REF) && parmlist_is_exprlist (TREE_OPERAND (declarator, 1))) { init = TREE_OPERAND (declarator, 1); declarator = TREE_OPERAND (declarator, 0); flags = 0; } if (declspecs == NULL_TREE && TREE_CODE (declarator) == SCOPE_REF && TREE_CODE (TREE_OPERAND (declarator, 1)) == IDENTIFIER_NODE) { /* Access declaration */ if (! IS_AGGR_TYPE_CODE (TREE_CODE (TREE_OPERAND (declarator, 0)))) ; else if (TREE_COMPLEXITY (declarator) == current_class_depth) pop_nested_class (1); return do_class_using_decl (declarator); } if (init && TREE_CODE (init) == TREE_LIST && TREE_VALUE (init) == error_mark_node && TREE_CHAIN (init) == NULL_TREE) init = NULL_TREE; value = grokdeclarator (declarator, declspecs, FIELD, init != 0, NULL_TREE); if (! value) return value; /* friend or constructor went bad. */ /* Pass friendly classes back. */ if (TREE_CODE (value) == VOID_TYPE) return void_type_node; if (DECL_NAME (value) != NULL_TREE && IDENTIFIER_POINTER (DECL_NAME (value))[0] == '_' && ! strcmp (IDENTIFIER_POINTER (DECL_NAME (value)), "_vptr")) cp_error ("member `%D' conflicts with virtual function table field name", value); /* Stash away type declarations. */ if (TREE_CODE (value) == TYPE_DECL) { DECL_NONLOCAL (value) = 1; DECL_CONTEXT (value) = current_class_type; DECL_CLASS_CONTEXT (value) = current_class_type; CLASSTYPE_LOCAL_TYPEDECLS (current_class_type) = 1; /* Now that we've updated the context, we need to remangle the name for this TYPE_DECL. */ DECL_ASSEMBLER_NAME (value) = DECL_NAME (value); DECL_ASSEMBLER_NAME (value) = get_identifier (build_overload_name (TREE_TYPE (value), 1, 1)); pushdecl_class_level (value); return value; } if (IS_SIGNATURE (current_class_type) && TREE_CODE (value) != FUNCTION_DECL) { error ("field declaration not allowed in signature"); return void_type_node; } if (DECL_IN_AGGR_P (value)) { cp_error ("`%D' is already defined in the class %T", value, DECL_CONTEXT (value)); return void_type_node; } if (asmspec_tree) asmspec = TREE_STRING_POINTER (asmspec_tree); if (init) { if (IS_SIGNATURE (current_class_type) && TREE_CODE (value) == FUNCTION_DECL) { error ("function declarations cannot have initializers in signature"); init = NULL_TREE; } else if (TREE_CODE (value) == FUNCTION_DECL) { grok_function_init (value, init); init = NULL_TREE; } else if (pedantic && TREE_CODE (value) != VAR_DECL) /* Already complained in grokdeclarator. */ init = NULL_TREE; else { /* We allow initializers to become parameters to base initializers. */ if (TREE_CODE (init) == TREE_LIST) { if (TREE_CHAIN (init) == NULL_TREE) init = TREE_VALUE (init); else init = digest_init (TREE_TYPE (value), init, (tree *)0); } if (TREE_CODE (init) == CONST_DECL) init = DECL_INITIAL (init); else if (TREE_READONLY_DECL_P (init)) init = decl_constant_value (init); else if (TREE_CODE (init) == CONSTRUCTOR) init = digest_init (TREE_TYPE (value), init, (tree *)0); my_friendly_assert (TREE_PERMANENT (init), 192); if (init == error_mark_node) /* We must make this look different than `error_mark_node' because `decl_const_value' would mis-interpret it as only meaning that this VAR_DECL is defined. */ init = build1 (NOP_EXPR, TREE_TYPE (value), init); else if (processing_template_decl) ; else if (! TREE_CONSTANT (init)) { /* We can allow references to things that are effectively static, since references are initialized with the address. */ if (TREE_CODE (TREE_TYPE (value)) != REFERENCE_TYPE || (TREE_STATIC (init) == 0 && (TREE_CODE_CLASS (TREE_CODE (init)) != 'd' || DECL_EXTERNAL (init) == 0))) { error ("field initializer is not constant"); init = error_mark_node; } } } } /* The corresponding pop_obstacks is in cp_finish_decl. */ push_obstacks_nochange (); if (processing_template_decl && ! current_function_decl && (TREE_CODE (value) == VAR_DECL || TREE_CODE (value) == FUNCTION_DECL)) value = push_template_decl (value); if (attrlist) cplus_decl_attributes (value, TREE_PURPOSE (attrlist), TREE_VALUE (attrlist)); if (TREE_CODE (value) == VAR_DECL) { my_friendly_assert (TREE_PUBLIC (value), 0); /* We cannot call pushdecl here, because that would fill in the value of our TREE_CHAIN. Instead, we modify cp_finish_decl to do the right thing, namely, to put this decl out straight away. */ /* current_class_type can be NULL_TREE in case of error. */ if (asmspec == 0 && current_class_type) { TREE_PUBLIC (value) = 1; DECL_INITIAL (value) = error_mark_node; DECL_ASSEMBLER_NAME (value) = build_static_name (current_class_type, DECL_NAME (value)); } if (! processing_template_decl) pending_statics = perm_tree_cons (NULL_TREE, value, pending_statics); /* Static consts need not be initialized in the class definition. */ if (init != NULL_TREE && TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (value))) { static int explanation = 0; error ("initializer invalid for static member with constructor"); if (explanation++ == 0) error ("(you really want to initialize it separately)"); init = 0; } /* Force the compiler to know when an uninitialized static const member is being used. */ if (TYPE_READONLY (value) && init == 0) TREE_USED (value) = 1; DECL_INITIAL (value) = init; DECL_IN_AGGR_P (value) = 1; DECL_CONTEXT (value) = current_class_type; DECL_CLASS_CONTEXT (value) = current_class_type; cp_finish_decl (value, init, asmspec_tree, 1, flags); pushdecl_class_level (value); return value; } if (TREE_CODE (value) == FIELD_DECL) { if (asmspec) { /* This must override the asm specifier which was placed by grokclassfn. Lay this out fresh. */ DECL_RTL (value) = NULL_RTX; DECL_ASSEMBLER_NAME (value) = get_identifier (asmspec); } if (DECL_INITIAL (value) == error_mark_node) init = error_mark_node; cp_finish_decl (value, init, asmspec_tree, 1, flags); DECL_INITIAL (value) = init; DECL_IN_AGGR_P (value) = 1; return value; } if (TREE_CODE (value) == FUNCTION_DECL) { check_default_args (value); if (asmspec) { /* This must override the asm specifier which was placed by grokclassfn. Lay this out fresh. */ DECL_RTL (value) = NULL_RTX; DECL_ASSEMBLER_NAME (value) = get_identifier (asmspec); } cp_finish_decl (value, init, asmspec_tree, 1, flags); /* Pass friends back this way. */ if (DECL_FRIEND_P (value)) return void_type_node; #if 0 /* Just because a fn is declared doesn't mean we'll try to define it. */ if (current_function_decl && ! IS_SIGNATURE (current_class_type)) cp_error ("method `%#D' of local class must be defined in class body", value); #endif DECL_IN_AGGR_P (value) = 1; return value; } my_friendly_abort (21); /* NOTREACHED */ return NULL_TREE; } /* Like `grokfield', but for bitfields. WIDTH is non-NULL for bit fields only, and is an INTEGER_CST node. */ tree grokbitfield (declarator, declspecs, width) tree declarator, declspecs, width; { register tree value = grokdeclarator (declarator, declspecs, BITFIELD, 0, NULL_TREE); if (! value) return NULL_TREE; /* friends went bad. */ /* Pass friendly classes back. */ if (TREE_CODE (value) == VOID_TYPE) return void_type_node; if (TREE_CODE (value) == TYPE_DECL) { cp_error ("cannot declare `%D' to be a bitfield type", value); return NULL_TREE; } if (IS_SIGNATURE (current_class_type)) { error ("field declaration not allowed in signature"); return void_type_node; } if (DECL_IN_AGGR_P (value)) { cp_error ("`%D' is already defined in the class %T", value, DECL_CONTEXT (value)); return void_type_node; } GNU_xref_member (current_class_name, value); if (TREE_STATIC (value)) { cp_error ("static member `%D' cannot be a bitfield", value); return NULL_TREE; } cp_finish_decl (value, NULL_TREE, NULL_TREE, 0, 0); if (width != error_mark_node) { constant_expression_warning (width); DECL_INITIAL (value) = width; DECL_BIT_FIELD (value) = 1; } DECL_IN_AGGR_P (value) = 1; return value; } tree grokoptypename (declspecs, declarator) tree declspecs, declarator; { tree t = grokdeclarator (declarator, declspecs, TYPENAME, 0, NULL_TREE); return build_typename_overload (t); } /* When a function is declared with an initializer, do the right thing. Currently, there are two possibilities: class B { public: // initialization possibility #1. virtual void f () = 0; int g (); }; class D1 : B { public: int d1; // error, no f (); }; class D2 : B { public: int d2; void f (); }; class D3 : B { public: int d3; // initialization possibility #2 void f () = B::f; }; */ int copy_assignment_arg_p (parmtype, virtualp) tree parmtype; int virtualp; { if (current_class_type == NULL_TREE) return 0; if (TREE_CODE (parmtype) == REFERENCE_TYPE) parmtype = TREE_TYPE (parmtype); if ((TYPE_MAIN_VARIANT (parmtype) == current_class_type) #if 0 /* Non-standard hack to support old Booch components. */ || (! virtualp && DERIVED_FROM_P (parmtype, current_class_type)) #endif ) return 1; return 0; } static void grok_function_init (decl, init) tree decl; tree init; { /* An initializer for a function tells how this function should be inherited. */ tree type = TREE_TYPE (decl); if (TREE_CODE (type) == FUNCTION_TYPE) cp_error ("initializer specified for non-member function `%D'", decl); #if 0 /* We'll check for this in finish_struct_1. */ else if (DECL_VINDEX (decl) == NULL_TREE) cp_error ("initializer specified for non-virtual method `%D'", decl); #endif else if (integer_zerop (init)) { #if 0 /* Mark this function as being "defined". */ DECL_INITIAL (decl) = error_mark_node; /* pure virtual destructors must be defined. */ /* pure virtual needs to be defined (as abort) only when put in vtbl. For wellformed call, it should be itself. pr4737 */ if (!DESTRUCTOR_NAME_P (DECL_ASSEMBLER_NAME (decl))) { extern tree abort_fndecl; /* Give this node rtl from `abort'. */ DECL_RTL (decl) = DECL_RTL (abort_fndecl); } #endif DECL_ABSTRACT_VIRTUAL_P (decl) = 1; if (DECL_NAME (decl) == ansi_opname [(int) MODIFY_EXPR]) { tree parmtype = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (decl)))); if (copy_assignment_arg_p (parmtype, 1)) TYPE_HAS_ABSTRACT_ASSIGN_REF (current_class_type) = 1; } } else cp_error ("invalid initializer for virtual method `%D'", decl); } void cplus_decl_attributes (decl, attributes, prefix_attributes) tree decl, attributes, prefix_attributes; { if (decl == NULL_TREE || decl == void_type_node) return; if (TREE_CODE (decl) == TEMPLATE_DECL) decl = DECL_TEMPLATE_RESULT (decl); decl_attributes (decl, attributes, prefix_attributes); if (TREE_CODE (decl) == TYPE_DECL) SET_IDENTIFIER_TYPE_VALUE (DECL_NAME (decl), TREE_TYPE (decl)); } /* CONSTRUCTOR_NAME: Return the name for the constructor (or destructor) for the specified class. Argument can be RECORD_TYPE, TYPE_DECL, or IDENTIFIER_NODE. When given a template, this routine doesn't lose the specialization. */ tree constructor_name_full (thing) tree thing; { if (TREE_CODE (thing) == TEMPLATE_TYPE_PARM || TREE_CODE (thing) == TEMPLATE_TEMPLATE_PARM || TREE_CODE (thing) == TYPENAME_TYPE) thing = TYPE_NAME (thing); else if (IS_AGGR_TYPE_CODE (TREE_CODE (thing))) { if (TYPE_WAS_ANONYMOUS (thing) && TYPE_HAS_CONSTRUCTOR (thing)) thing = DECL_NAME (OVL_CURRENT (TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (thing), 0))); else thing = TYPE_NAME (thing); } if (TREE_CODE (thing) == TYPE_DECL || (TREE_CODE (thing) == TEMPLATE_DECL && TREE_CODE (DECL_TEMPLATE_RESULT (thing)) == TYPE_DECL)) thing = DECL_NAME (thing); my_friendly_assert (TREE_CODE (thing) == IDENTIFIER_NODE, 197); return thing; } /* CONSTRUCTOR_NAME: Return the name for the constructor (or destructor) for the specified class. Argument can be RECORD_TYPE, TYPE_DECL, or IDENTIFIER_NODE. When given a template, return the plain unspecialized name. */ tree constructor_name (thing) tree thing; { tree t; thing = constructor_name_full (thing); t = IDENTIFIER_TEMPLATE (thing); if (!t) return thing; return t; } /* Cache the value of this class's main virtual function table pointer in a register variable. This will save one indirection if a more than one virtual function call is made this function. */ void setup_vtbl_ptr () { extern tree base_init_expr; if (base_init_expr == 0 && DECL_CONSTRUCTOR_P (current_function_decl)) { if (processing_template_decl) add_tree (build_min_nt (CTOR_INITIALIZER, current_member_init_list, current_base_init_list)); else emit_base_init (current_class_type, 0); } } /* Record the existence of an addressable inline function. */ void mark_inline_for_output (decl) tree decl; { decl = DECL_MAIN_VARIANT (decl); if (DECL_SAVED_INLINE (decl)) return; my_friendly_assert (TREE_PERMANENT (decl), 363); DECL_SAVED_INLINE (decl) = 1; #if 0 if (DECL_PENDING_INLINE_INFO (decl) != 0 && ! DECL_PENDING_INLINE_INFO (decl)->deja_vu) { struct pending_inline *t = pending_inlines; my_friendly_assert (DECL_SAVED_INSNS (decl) == 0, 198); while (t) { if (t == DECL_PENDING_INLINE_INFO (decl)) break; t = t->next; } if (t == 0) { t = DECL_PENDING_INLINE_INFO (decl); t->next = pending_inlines; pending_inlines = t; } DECL_PENDING_INLINE_INFO (decl) = 0; } #endif saved_inlines = perm_tree_cons (NULL_TREE, decl, saved_inlines); } void clear_temp_name () { temp_name_counter = 0; } /* Hand off a unique name which can be used for variable we don't really want to know about anyway, for example, the anonymous variables which are needed to make references work. Declare this thing so we can use it. The variable created will be of type TYPE. STATICP is nonzero if this variable should be static. */ tree get_temp_name (type, staticp) tree type; int staticp; { char buf[sizeof (AUTO_TEMP_FORMAT) + 20]; tree decl; int toplev = toplevel_bindings_p (); push_obstacks_nochange (); if (toplev || staticp) { end_temporary_allocation (); sprintf (buf, AUTO_TEMP_FORMAT, global_temp_name_counter++); decl = pushdecl_top_level (build_decl (VAR_DECL, get_identifier (buf), type)); } else { sprintf (buf, AUTO_TEMP_FORMAT, temp_name_counter++); decl = pushdecl (build_decl (VAR_DECL, get_identifier (buf), type)); } TREE_USED (decl) = 1; TREE_STATIC (decl) = staticp; DECL_ARTIFICIAL (decl) = 1; /* If this is a local variable, then lay out its rtl now. Otherwise, callers of this function are responsible for dealing with this variable's rtl. */ if (! toplev) { expand_decl (decl); expand_decl_init (decl); } pop_obstacks (); return decl; } /* Get a variable which we can use for multiple assignments. It is not entered into current_binding_level, because that breaks things when it comes time to do final cleanups (which take place "outside" the binding contour of the function). */ tree get_temp_regvar (type, init) tree type, init; { tree decl; decl = build_decl (VAR_DECL, NULL_TREE, type); TREE_USED (decl) = 1; DECL_REGISTER (decl) = 1; DECL_ARTIFICIAL (decl) = 1; DECL_RTL (decl) = assign_temp (type, 2, 0, 1); /* We can expand these without fear, since they cannot need constructors or destructors. */ expand_expr (build_modify_expr (decl, INIT_EXPR, init), NULL_RTX, VOIDmode, 0); return decl; } /* Hunts through the global anonymous union ANON_DECL, building appropriate VAR_DECLs. Stores cleanups on the list of ELEMS, and returns a VAR_DECL whose size is the same as the size of the ANON_DECL, if one is available. */ tree build_anon_union_vars (anon_decl, elems, static_p, external_p) tree anon_decl; tree* elems; int static_p; int external_p; { tree type = TREE_TYPE (anon_decl); tree main_decl = NULL_TREE; tree field; for (field = TYPE_FIELDS (type); field != NULL_TREE; field = TREE_CHAIN (field)) { tree decl; if (TREE_CODE (field) != FIELD_DECL) continue; if (TREE_PRIVATE (field)) cp_pedwarn_at ("private member `%#D' in anonymous union", field); else if (TREE_PROTECTED (field)) cp_pedwarn_at ("protected member `%#D' in anonymous union", field); if (DECL_NAME (field) == NULL_TREE && TREE_CODE (TREE_TYPE (field)) == UNION_TYPE) decl = build_anon_union_vars (field, elems, static_p, external_p); else { decl = build_decl (VAR_DECL, DECL_NAME (field), TREE_TYPE (field)); /* tell `pushdecl' that this is not tentative. */ DECL_INITIAL (decl) = error_mark_node; TREE_PUBLIC (decl) = 0; TREE_STATIC (decl) = static_p; DECL_EXTERNAL (decl) = external_p; decl = pushdecl (decl); DECL_INITIAL (decl) = NULL_TREE; } /* Only write out one anon union element--choose the one that can hold them all. */ if (main_decl == NULL_TREE && simple_cst_equal (DECL_SIZE (decl), DECL_SIZE (anon_decl)) == 1) main_decl = decl; else /* ??? This causes there to be no debug info written out about this decl. */ TREE_ASM_WRITTEN (decl) = 1; if (DECL_NAME (field) == NULL_TREE && TREE_CODE (TREE_TYPE (field)) == UNION_TYPE) /* The remainder of the processing was already done in the recursive call. */ continue; /* If there's a cleanup to do, it belongs in the TREE_PURPOSE of the following TREE_LIST. */ *elems = scratch_tree_cons (NULL_TREE, decl, *elems); TREE_TYPE (*elems) = type; } return main_decl; } /* Finish off the processing of a UNION_TYPE structure. If there are static members, then all members are static, and must be laid out together. If the union is an anonymous union, we arrange for that as well. PUBLIC_P is nonzero if this union is not declared static. */ void finish_anon_union (anon_union_decl) tree anon_union_decl; { tree type = TREE_TYPE (anon_union_decl); tree elems = NULL_TREE; tree main_decl; int public_p = TREE_PUBLIC (anon_union_decl); int static_p = TREE_STATIC (anon_union_decl); int external_p = DECL_EXTERNAL (anon_union_decl); if (TYPE_FIELDS (type) == NULL_TREE) return; if (public_p) { error ("global anonymous unions must be declared static"); return; } main_decl = build_anon_union_vars (anon_union_decl, &elems, static_p, external_p); if (static_p) { if (main_decl) { make_decl_rtl (main_decl, 0, toplevel_bindings_p ()); DECL_RTL (anon_union_decl) = DECL_RTL (main_decl); } else { warning ("anonymous union with no members"); return; } } /* The following call assumes that there are never any cleanups for anonymous unions--a reasonable assumption. */ expand_anon_union_decl (anon_union_decl, NULL_TREE, elems); } /* Finish processing a builtin type TYPE. It's name is NAME, its fields are in the array FIELDS. LEN is the number of elements in FIELDS minus one, or put another way, it is the maximum subscript used in FIELDS. It is given the same alignment as ALIGN_TYPE. */ void finish_builtin_type (type, name, fields, len, align_type) tree type; char *name; tree fields[]; int len; tree align_type; { register int i; TYPE_FIELDS (type) = fields[0]; for (i = 0; i < len; i++) { layout_type (TREE_TYPE (fields[i])); DECL_FIELD_CONTEXT (fields[i]) = type; TREE_CHAIN (fields[i]) = fields[i+1]; } DECL_FIELD_CONTEXT (fields[i]) = type; DECL_CLASS_CONTEXT (fields[i]) = type; TYPE_ALIGN (type) = TYPE_ALIGN (align_type); layout_type (type); #if 0 /* not yet, should get fixed properly later */ TYPE_NAME (type) = make_type_decl (get_identifier (name), type); #else TYPE_NAME (type) = build_decl (TYPE_DECL, get_identifier (name), type); #endif TYPE_STUB_DECL (type) = TYPE_NAME (type); layout_decl (TYPE_NAME (type), 0); } /* Auxiliary functions to make type signatures for `operator new' and `operator delete' correspond to what compiler will be expecting. */ tree coerce_new_type (type) tree type; { int e1 = 0, e2 = 0; if (TREE_CODE (type) == METHOD_TYPE) type = build_function_type (TREE_TYPE (type), TREE_CHAIN (TYPE_ARG_TYPES (type))); if (TREE_TYPE (type) != ptr_type_node) e1 = 1, error ("`operator new' must return type `void *'"); /* Technically the type must be `size_t', but we may not know what that is. */ if (TYPE_ARG_TYPES (type) == NULL_TREE) e1 = 1, error ("`operator new' takes type `size_t' parameter"); else if (TREE_CODE (TREE_VALUE (TYPE_ARG_TYPES (type))) != INTEGER_TYPE || TYPE_PRECISION (TREE_VALUE (TYPE_ARG_TYPES (type))) != TYPE_PRECISION (sizetype)) e2 = 1, error ("`operator new' takes type `size_t' as first parameter"); if (e2) type = build_function_type (ptr_type_node, tree_cons (NULL_TREE, sizetype, TREE_CHAIN (TYPE_ARG_TYPES (type)))); else if (e1) type = build_function_type (ptr_type_node, TYPE_ARG_TYPES (type)); return type; } tree coerce_delete_type (type) tree type; { int e1 = 0, e2 = 0; #if 0 e3 = 0; #endif tree arg_types = TYPE_ARG_TYPES (type); if (TREE_CODE (type) == METHOD_TYPE) { type = build_function_type (TREE_TYPE (type), TREE_CHAIN (arg_types)); arg_types = TREE_CHAIN (arg_types); } if (TREE_TYPE (type) != void_type_node) e1 = 1, error ("`operator delete' must return type `void'"); if (arg_types == NULL_TREE || TREE_VALUE (arg_types) != ptr_type_node) e2 = 1, error ("`operator delete' takes type `void *' as first parameter"); #if 0 if (arg_types && TREE_CHAIN (arg_types) && TREE_CHAIN (arg_types) != void_list_node) { /* Again, technically this argument must be `size_t', but again we may not know what that is. */ tree t2 = TREE_VALUE (TREE_CHAIN (arg_types)); if (TREE_CODE (t2) != INTEGER_TYPE || TYPE_PRECISION (t2) != TYPE_PRECISION (sizetype)) e3 = 1, error ("second argument to `operator delete' must be of type `size_t'"); else if (TREE_CHAIN (TREE_CHAIN (arg_types)) != void_list_node) { e3 = 1; if (TREE_CHAIN (TREE_CHAIN (arg_types))) error ("too many arguments in declaration of `operator delete'"); else error ("`...' invalid in specification of `operator delete'"); } } if (e3) arg_types = tree_cons (NULL_TREE, ptr_type_node, build_tree_list (NULL_TREE, sizetype)); else if (e3 |= e2) { if (arg_types == NULL_TREE) arg_types = tree_cons (NULL_TREE, ptr_type_node, void_list_node); else arg_types = tree_cons (NULL_TREE, ptr_type_node, TREE_CHAIN (arg_types)); } else e3 |= e1; #endif if (e2) arg_types = tree_cons (NULL_TREE, ptr_type_node, arg_types ? TREE_CHAIN (arg_types): NULL_TREE); if (e2 || e1) type = build_function_type (void_type_node, arg_types); return type; } extern tree abort_fndecl; static void mark_vtable_entries (decl) tree decl; { tree entries = CONSTRUCTOR_ELTS (DECL_INITIAL (decl)); if (flag_rtti) { tree fnaddr = (flag_vtable_thunks ? TREE_VALUE (TREE_CHAIN (entries)) : FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (entries))); tree fn = TREE_OPERAND (fnaddr, 0); TREE_ADDRESSABLE (fn) = 1; mark_used (fn); } skip_rtti_stuff (&entries); for (; entries; entries = TREE_CHAIN (entries)) { tree fnaddr = (flag_vtable_thunks ? TREE_VALUE (entries) : FNADDR_FROM_VTABLE_ENTRY (TREE_VALUE (entries))); tree fn = TREE_OPERAND (fnaddr, 0); TREE_ADDRESSABLE (fn) = 1; if (DECL_LANG_SPECIFIC (fn) && DECL_ABSTRACT_VIRTUAL_P (fn)) { TREE_OPERAND (fnaddr, 0) = fn = copy_node (fn); DECL_RTL (fn) = DECL_RTL (abort_fndecl); mark_used (abort_fndecl); } if (TREE_CODE (fn) == THUNK_DECL && DECL_EXTERNAL (fn)) { DECL_EXTERNAL (fn) = 0; emit_thunk (fn); } mark_used (fn); } } /* Set DECL up to have the closest approximation of "initialized common" linkage available. */ void comdat_linkage (decl) tree decl; { if (flag_weak) make_decl_one_only (decl); else TREE_PUBLIC (decl) = 0; if (DECL_LANG_SPECIFIC (decl)) DECL_COMDAT (decl) = 1; } /* For win32 we also want to put explicit instantiations in linkonce sections, so that they will be merged with implicit instantiations; otherwise we get duplicate symbol errors. */ void maybe_make_one_only (decl) tree decl; { /* This is not necessary on targets that support weak symbols, because the implicit instantiations will defer to the explicit one. */ if (! supports_one_only () || SUPPORTS_WEAK) return; /* We can't set DECL_COMDAT on functions, or finish_file will think we can get away with not emitting them if they aren't used. We can't use make_decl_one_only for variables, because their DECL_INITIAL may not have been set properly yet. */ if (TREE_CODE (decl) == FUNCTION_DECL) make_decl_one_only (decl); else comdat_linkage (decl); } /* Set TREE_PUBLIC and/or DECL_EXTERN on the vtable DECL, based on TYPE and other static flags. Note that anything public is tagged TREE_PUBLIC, whether it's public in this file or in another one. */ void import_export_vtable (decl, type, final) tree decl, type; int final; { if (DECL_INTERFACE_KNOWN (decl)) return; /* +e0 or +e1 */ if (write_virtuals < 2 && write_virtuals != 0) { TREE_PUBLIC (decl) = 1; if (write_virtuals < 0) DECL_EXTERNAL (decl) = 1; DECL_INTERFACE_KNOWN (decl) = 1; } else if (CLASSTYPE_INTERFACE_KNOWN (type)) { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = ! CLASSTYPE_VTABLE_NEEDS_WRITING (type); DECL_INTERFACE_KNOWN (decl) = 1; /* For WIN32 we also want to put explicit instantiations in linkonce sections. */ if (CLASSTYPE_EXPLICIT_INSTANTIATION (type)) maybe_make_one_only (decl); } else { /* We can only wait to decide if we have real non-inline virtual functions in our class, or if we come from a template. */ int found = CLASSTYPE_TEMPLATE_INSTANTIATION (type); #ifndef MULTIPLE_SYMBOL_SPACES if (! found && ! final) { tree method; for (method = TYPE_METHODS (type); method != NULL_TREE; method = TREE_CHAIN (method)) if (DECL_VINDEX (method) != NULL_TREE && ! DECL_THIS_INLINE (method) && ! DECL_ABSTRACT_VIRTUAL_P (method)) { found = 1; break; } } #endif if (final || ! found) { comdat_linkage (decl); DECL_EXTERNAL (decl) = 0; } else { TREE_PUBLIC (decl) = 1; DECL_EXTERNAL (decl) = 1; } } } static void import_export_template (type) tree type; { if (CLASSTYPE_IMPLICIT_INSTANTIATION (type) && ! flag_implicit_templates && CLASSTYPE_INTERFACE_UNKNOWN (type)) { SET_CLASSTYPE_INTERFACE_KNOWN (type); CLASSTYPE_INTERFACE_ONLY (type) = 1; CLASSTYPE_VTABLE_NEEDS_WRITING (type) = 0; } } int finish_prevtable_vardecl (prev, vars) tree prev, vars; { tree ctype = DECL_CONTEXT (vars); import_export_template (ctype); #ifndef MULTIPLE_SYMBOL_SPACES if (CLASSTYPE_INTERFACE_UNKNOWN (ctype) && TYPE_VIRTUAL_P (ctype) && ! CLASSTYPE_TEMPLATE_INSTANTIATION (ctype)) { tree method; for (method = TYPE_METHODS (ctype); method != NULL_TREE; method = TREE_CHAIN (method)) { if (DECL_VINDEX (method) != NULL_TREE && !DECL_THIS_INLINE (method) && !DECL_ABSTRACT_VIRTUAL_P (method)) { SET_CLASSTYPE_INTERFACE_KNOWN (ctype); CLASSTYPE_VTABLE_NEEDS_WRITING (ctype) = ! DECL_REALLY_EXTERN (method); CLASSTYPE_INTERFACE_ONLY (ctype) = DECL_REALLY_EXTERN (method); break; } } } #endif import_export_vtable (vars, ctype, 1); return 1; } static int finish_vtable_vardecl (prev, vars) tree prev, vars; { if (write_virtuals >= 0 && ! DECL_EXTERNAL (vars) && ((TREE_PUBLIC (vars) && ! DECL_WEAK (vars) && ! DECL_ONE_ONLY (vars)) || CLASSTYPE_EXPLICIT_INSTANTIATION (DECL_CONTEXT (vars)) || TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (vars)) || (hack_decl_function_context (vars) && TREE_USED (vars))) && ! TREE_ASM_WRITTEN (vars)) { /* Write it out. */ mark_vtable_entries (vars); if (TREE_TYPE (DECL_INITIAL (vars)) == 0) store_init_value (vars, DECL_INITIAL (vars)); if (write_symbols == DWARF_DEBUG || write_symbols == DWARF2_DEBUG) { /* Mark the VAR_DECL node representing the vtable itself as a "gratuitous" one, thereby forcing dwarfout.c to ignore it. It is rather important that such things be ignored because any effort to actually generate DWARF for them will run into trouble when/if we encounter code like: #pragma interface struct S { virtual void member (); }; because the artificial declaration of the vtable itself (as manufactured by the g++ front end) will say that the vtable is a static member of `S' but only *after* the debug output for the definition of `S' has already been output. This causes grief because the DWARF entry for the definition of the vtable will try to refer back to an earlier *declaration* of the vtable as a static member of `S' and there won't be one. We might be able to arrange to have the "vtable static member" attached to the member list for `S' before the debug info for `S' get written (which would solve the problem) but that would require more intrusive changes to the g++ front end. */ DECL_IGNORED_P (vars) = 1; } rest_of_decl_compilation (vars, NULL_PTR, 1, 1); return 1; } else if (! TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (vars))) /* We don't know what to do with this one yet. */ return 0; /* We know that PREV must be non-zero here. */ TREE_CHAIN (prev) = TREE_CHAIN (vars); return 0; } static int prune_vtable_vardecl (prev, vars) tree prev, vars; { /* We know that PREV must be non-zero here. */ TREE_CHAIN (prev) = TREE_CHAIN (vars); return 1; } int walk_vtables (typedecl_fn, vardecl_fn) register void (*typedecl_fn) PROTO ((tree, tree)); register int (*vardecl_fn) PROTO ((tree, tree)); { tree prev, vars; int flag = 0; for (prev = 0, vars = getdecls (); vars; vars = TREE_CHAIN (vars)) { register tree type = TREE_TYPE (vars); if (TREE_CODE (vars) == VAR_DECL && DECL_VIRTUAL_P (vars)) { if (vardecl_fn) flag |= (*vardecl_fn) (prev, vars); if (prev && TREE_CHAIN (prev) != vars) continue; } else if (TREE_CODE (vars) == TYPE_DECL && type != error_mark_node && TYPE_LANG_SPECIFIC (type) && CLASSTYPE_VSIZE (type)) { if (typedecl_fn) (*typedecl_fn) (prev, vars); } prev = vars; } return flag; } static void finish_sigtable_vardecl (prev, vars) tree prev, vars; { /* We don't need to mark sigtable entries as addressable here as is done for vtables. Since sigtables, unlike vtables, are always written out, that was already done in build_signature_table_constructor. */ rest_of_decl_compilation (vars, NULL_PTR, 1, 1); /* We know that PREV must be non-zero here. */ TREE_CHAIN (prev) = TREE_CHAIN (vars); } void walk_sigtables (typedecl_fn, vardecl_fn) register void (*typedecl_fn) PROTO((tree, tree)); register void (*vardecl_fn) PROTO((tree, tree)); { tree prev, vars; for (prev = 0, vars = getdecls (); vars; vars = TREE_CHAIN (vars)) { register tree type = TREE_TYPE (vars); if (TREE_CODE (vars) == TYPE_DECL && type != error_mark_node && IS_SIGNATURE (type)) { if (typedecl_fn) (*typedecl_fn) (prev, vars); } else if (TREE_CODE (vars) == VAR_DECL && TREE_TYPE (vars) != error_mark_node && IS_SIGNATURE (TREE_TYPE (vars))) { if (vardecl_fn) (*vardecl_fn) (prev, vars); } else prev = vars; } } /* Determines the proper settings of TREE_PUBLIC and DECL_EXTERNAL for an inline function or template instantiation at end-of-file. */ void import_export_decl (decl) tree decl; { if (DECL_INTERFACE_KNOWN (decl)) return; if (DECL_TEMPLATE_INSTANTIATION (decl)) { DECL_NOT_REALLY_EXTERN (decl) = 1; if (DECL_IMPLICIT_INSTANTIATION (decl) && (flag_implicit_templates || DECL_THIS_INLINE (decl))) { if (!TREE_PUBLIC (decl)) /* Templates are allowed to have internal linkage. See [basic.link]. */ ; else if (TREE_CODE (decl) == FUNCTION_DECL) comdat_linkage (decl); else DECL_COMDAT (decl) = 1; } else DECL_NOT_REALLY_EXTERN (decl) = 0; } else if (DECL_FUNCTION_MEMBER_P (decl)) { tree ctype = DECL_CLASS_CONTEXT (decl); if (CLASSTYPE_INTERFACE_KNOWN (ctype) && (! DECL_ARTIFICIAL (decl) || DECL_VINDEX (decl))) { DECL_NOT_REALLY_EXTERN (decl) = ! (CLASSTYPE_INTERFACE_ONLY (ctype) || (DECL_THIS_INLINE (decl) && ! flag_implement_inlines)); } else comdat_linkage (decl); } /* tinfo function */ else if (DECL_ARTIFICIAL (decl) && DECL_MUTABLE_P (decl)) { tree ctype = TREE_TYPE (DECL_NAME (decl)); if (IS_AGGR_TYPE (ctype) && CLASSTYPE_INTERFACE_KNOWN (ctype) && TYPE_VIRTUAL_P (ctype)) { /* If the type is a cv-qualified variant of a type, then we must emit the tinfo function in this translation unit since it will not be emitted when the vtable for the type is output (which is when the unqualified version is generated). */ DECL_NOT_REALLY_EXTERN (decl) = TYPE_READONLY (ctype) || TYPE_VOLATILE (ctype) || ! (CLASSTYPE_INTERFACE_ONLY (ctype) || (DECL_THIS_INLINE (decl) && ! flag_implement_inlines)); /* For WIN32 we also want to put explicit instantiations in linkonce sections. */ if (CLASSTYPE_EXPLICIT_INSTANTIATION (ctype)) maybe_make_one_only (decl); } else if (TYPE_BUILT_IN (ctype) && ctype == TYPE_MAIN_VARIANT (ctype)) DECL_NOT_REALLY_EXTERN (decl) = 0; else comdat_linkage (decl); } else comdat_linkage (decl); DECL_INTERFACE_KNOWN (decl) = 1; } tree build_cleanup (decl) tree decl; { tree temp; tree type = TREE_TYPE (decl); if (TREE_CODE (type) == ARRAY_TYPE) temp = decl; else { mark_addressable (decl); temp = build1 (ADDR_EXPR, build_pointer_type (type), decl); } temp = build_delete (TREE_TYPE (temp), temp, integer_two_node, LOOKUP_NORMAL|LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0); return temp; } extern int parse_time, varconst_time; extern tree pending_templates; extern tree maybe_templates; static tree get_sentry (base) tree base; { tree sname = get_id_2 ("__sn", base); /* For struct X foo __attribute__((weak)), there is a counter __snfoo. Since base is already an assembler name, sname should be globally unique */ tree sentry = IDENTIFIER_GLOBAL_VALUE (sname); if (! sentry) { push_obstacks_nochange (); end_temporary_allocation (); sentry = build_decl (VAR_DECL, sname, integer_type_node); TREE_PUBLIC (sentry) = 1; DECL_ARTIFICIAL (sentry) = 1; TREE_STATIC (sentry) = 1; TREE_USED (sentry) = 1; DECL_COMMON (sentry) = 1; pushdecl_top_level (sentry); cp_finish_decl (sentry, NULL_TREE, NULL_TREE, 0, 0); pop_obstacks (); } return sentry; } /* Start the process of running a particular set of global constructors or destructors. Subroutine of do_[cd]tors. */ static void start_objects (method_type) int method_type; { tree fnname; /* Make ctor or dtor function. METHOD_TYPE may be 'I' or 'D'. */ fnname = get_file_function_name (method_type); start_function (void_list_node, make_call_declarator (fnname, void_list_node, NULL_TREE, NULL_TREE), NULL_TREE, 0); store_parm_decls (); pushlevel (0); clear_last_expr (); push_momentary (); expand_start_bindings (0); } /* Finish the process of running a particular set of global constructors or destructors. Subroutine of do_[cd]tors. */ static void finish_objects (method_type) int method_type; { char *fnname; tree list = (method_type == 'I' ? static_ctors : static_dtors); if (! current_function_decl && list) start_objects (method_type); for (; list; list = TREE_CHAIN (list)) expand_expr_stmt (build_function_call (TREE_VALUE (list), NULL_TREE)); if (! current_function_decl) return; fnname = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); /* Finish up. */ expand_end_bindings (getdecls (), 1, 0); poplevel (1, 0, 0); pop_momentary (); finish_function (lineno, 0, 0); if (method_type == 'I') assemble_constructor (fnname); else assemble_destructor (fnname); } /* Generate a function to run a set of global destructors. Subroutine of finish_file. */ static void do_dtors () { tree vars = static_aggregates; for (; vars; vars = TREE_CHAIN (vars)) { tree decl = TREE_VALUE (vars); tree type = TREE_TYPE (decl); tree temp; if (TYPE_NEEDS_DESTRUCTOR (type) && ! TREE_STATIC (vars) && ! DECL_EXTERNAL (decl)) { int protect = (TREE_PUBLIC (decl) && (DECL_COMMON (decl) || DECL_ONE_ONLY (decl) || DECL_WEAK (decl))); if (! current_function_decl) start_objects ('D'); temp = build_cleanup (decl); if (protect) { tree sentry = get_sentry (DECL_ASSEMBLER_NAME (decl)); sentry = build_unary_op (PREDECREMENT_EXPR, sentry, 0); sentry = build_binary_op (EQ_EXPR, sentry, integer_zero_node, 1); expand_start_cond (sentry, 0); } expand_expr_stmt (temp); if (protect) expand_end_cond (); } } finish_objects ('D'); } /* Generate a function to run a set of global constructors. Subroutine of finish_file. */ static void do_ctors () { tree vars = static_aggregates; /* Reverse the list so it's in the right order for ctors. */ vars = nreverse (vars); for (; vars; vars = TREE_CHAIN (vars)) { tree decl = TREE_VALUE (vars); tree init = TREE_PURPOSE (vars); /* If this was a static attribute within some function's scope, then don't initialize it here. Also, don't bother with initializers that contain errors. */ if (TREE_STATIC (vars) || DECL_EXTERNAL (decl) || (init && TREE_CODE (init) == TREE_LIST && value_member (error_mark_node, init))) continue; if (TREE_CODE (decl) == VAR_DECL) { int protect = (TREE_PUBLIC (decl) && (DECL_COMMON (decl) || DECL_ONE_ONLY (decl) || DECL_WEAK (decl))); if (! current_function_decl) start_objects ('I'); /* Set these global variables so that GDB at least puts us near the declaration which required the initialization. */ input_filename = DECL_SOURCE_FILE (decl); lineno = DECL_SOURCE_LINE (decl); emit_note (input_filename, lineno); /* 9.5p5: The initializer of a static member of a class has the same access rights as a member function. */ if (member_p (decl)) { DECL_CLASS_CONTEXT (current_function_decl) = DECL_CONTEXT (decl); DECL_STATIC_FUNCTION_P (current_function_decl) = 1; } if (protect) { tree sentry = get_sentry (DECL_ASSEMBLER_NAME (decl)); sentry = build_unary_op (PREINCREMENT_EXPR, sentry, 0); sentry = build_binary_op (EQ_EXPR, sentry, integer_one_node, 1); expand_start_cond (sentry, 0); } expand_start_target_temps (); if (IS_AGGR_TYPE (TREE_TYPE (decl)) || TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE) expand_aggr_init (decl, init, 0, 0); else if (TREE_CODE (init) == TREE_VEC) { expand_expr (expand_vec_init (decl, TREE_VEC_ELT (init, 0), TREE_VEC_ELT (init, 1), TREE_VEC_ELT (init, 2), 0), const0_rtx, VOIDmode, EXPAND_NORMAL); } else expand_assignment (decl, init, 0, 0); /* The expression might have involved increments and decrements. */ emit_queue (); /* Cleanup any temporaries needed for the initial value. */ expand_end_target_temps (); if (protect) expand_end_cond (); DECL_CLASS_CONTEXT (current_function_decl) = NULL_TREE; DECL_STATIC_FUNCTION_P (current_function_decl) = 0; } else if (decl == error_mark_node) /* OK */; else my_friendly_abort (22); } finish_objects ('I'); } /* This routine is called from the last rule in yyparse (). Its job is to create all the code needed to initialize and destroy the global aggregates. We do the destruction first, since that way we only need to reverse the decls once. */ void finish_file () { extern int lineno; int start_time, this_time; tree fnname; tree vars; int needs_cleaning = 0, needs_messing_up = 0; at_eof = 1; /* Bad parse errors. Just forget about it. */ if (! global_bindings_p () || current_class_type) return; start_time = get_run_time (); /* Otherwise, GDB can get confused, because in only knows about source for LINENO-1 lines. */ lineno -= 1; interface_unknown = 1; interface_only = 0; for (fnname = pending_templates; fnname; fnname = TREE_CHAIN (fnname)) { tree decl = TREE_VALUE (fnname); if (TREE_CODE_CLASS (TREE_CODE (decl)) == 't') { instantiate_class_template (decl); if (CLASSTYPE_TEMPLATE_INSTANTIATION (decl)) for (vars = TYPE_METHODS (decl); vars; vars = TREE_CHAIN (vars)) if (! DECL_ARTIFICIAL (vars)) instantiate_decl (vars); } else instantiate_decl (decl); } for (fnname = maybe_templates; fnname; fnname = TREE_CHAIN (fnname)) { tree args, fn, decl = TREE_VALUE (fnname); if (DECL_INITIAL (decl)) continue; fn = TREE_PURPOSE (fnname); args = get_bindings (fn, decl, NULL_TREE); fn = instantiate_template (fn, args); instantiate_decl (fn); } cat_namespace_levels(); /* Push into C language context, because that's all we'll need here. */ push_lang_context (lang_name_c); #if 1 /* The reason for pushing garbage onto the global_binding_level is to ensure that we can slice out _DECLs which pertain to virtual function tables. If the last thing pushed onto the global_binding_level was a virtual function table, then slicing it out would slice away all the decls (i.e., we lose the head of the chain). There are several ways of getting the same effect, from changing the way that iterators over the chain treat the elements that pertain to virtual function tables, moving the implementation of this code to decl.c (where we can manipulate global_binding_level directly), popping the garbage after pushing it and slicing away the vtable stuff, or just leaving it alone. */ /* Make last thing in global scope not be a virtual function table. */ #if 0 /* not yet, should get fixed properly later */ vars = make_type_decl (get_identifier (" @%$#@!"), integer_type_node); #else vars = build_decl (TYPE_DECL, get_identifier (" @%$#@!"), integer_type_node); #endif DECL_IGNORED_P (vars) = 1; SET_DECL_ARTIFICIAL (vars); pushdecl (vars); #endif /* Walk to mark the inline functions we need, then output them so that we can pick up any other tdecls that those routines need. */ walk_vtables ((void (*) PROTO ((tree, tree))) 0, finish_prevtable_vardecl); for (vars = static_aggregates; vars; vars = TREE_CHAIN (vars)) if (! TREE_ASM_WRITTEN (TREE_VALUE (vars))) rest_of_decl_compilation (TREE_VALUE (vars), 0, 1, 1); vars = static_aggregates; if (static_ctors || vars) needs_messing_up = 1; if (static_dtors || vars) needs_cleaning = 1; /* The aggregates are listed in reverse declaration order, for cleaning. */ if (needs_cleaning) { do_dtors (); } /* do_ctors will reverse the lists for messing up. */ if (needs_messing_up) { do_ctors (); } permanent_allocation (1); /* Done with C language context needs. */ pop_lang_context (); /* Now write out any static class variables (which may have since learned how to be initialized). */ while (pending_statics) { tree decl = TREE_VALUE (pending_statics); /* Output DWARF debug information. */ #ifdef DWARF_DEBUGGING_INFO if (write_symbols == DWARF_DEBUG) dwarfout_file_scope_decl (decl, 1); #endif #ifdef DWARF2_DEBUGGING_INFO if (write_symbols == DWARF2_DEBUG) dwarf2out_decl (decl); #endif DECL_DEFER_OUTPUT (decl) = 0; rest_of_decl_compilation (decl, IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)), 1, 1); pending_statics = TREE_CHAIN (pending_statics); } this_time = get_run_time (); parse_time -= this_time - start_time; varconst_time += this_time - start_time; start_time = get_run_time (); if (flag_handle_signatures) walk_sigtables ((void (*) PROTO ((tree, tree))) 0, finish_sigtable_vardecl); for (fnname = saved_inlines; fnname; fnname = TREE_CHAIN (fnname)) { tree decl = TREE_VALUE (fnname); import_export_decl (decl); } /* Now write out inline functions which had their addresses taken and which were not declared virtual and which were not declared `extern inline'. */ { int reconsider = 1; /* More may be referenced; check again */ while (reconsider) { tree *p = &saved_inlines; reconsider = 0; /* We need to do this each time so that newly completed template types don't wind up at the front of the list. Sigh. */ vars = build_decl (TYPE_DECL, make_anon_name (), integer_type_node); DECL_IGNORED_P (vars) = 1; SET_DECL_ARTIFICIAL (vars); pushdecl (vars); reconsider |= walk_vtables ((void (*) PROTO((tree, tree))) 0, finish_vtable_vardecl); while (*p) { tree decl = TREE_VALUE (*p); if (DECL_ARTIFICIAL (decl) && ! DECL_INITIAL (decl) && TREE_USED (decl) && (! DECL_REALLY_EXTERN (decl) || DECL_INLINE (decl))) { if (DECL_MUTABLE_P (decl)) synthesize_tinfo_fn (decl); else synthesize_method (decl); reconsider = 1; } /* Catch new template instantiations. */ if (decl != TREE_VALUE (*p)) continue; if (TREE_ASM_WRITTEN (decl) || (DECL_SAVED_INSNS (decl) == 0 && ! DECL_ARTIFICIAL (decl))) *p = TREE_CHAIN (*p); else if (DECL_INITIAL (decl) == 0) p = &TREE_CHAIN (*p); else if ((TREE_PUBLIC (decl) && ! DECL_COMDAT (decl)) || TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl)) || flag_keep_inline_functions) { if (DECL_NOT_REALLY_EXTERN (decl)) { DECL_EXTERNAL (decl) = 0; reconsider = 1; /* We can't inline this function after it's been emitted. We want a variant of output_inline_function that doesn't prevent subsequent integration... */ DECL_INLINE (decl) = 0; output_inline_function (decl); permanent_allocation (1); } *p = TREE_CHAIN (*p); } else p = &TREE_CHAIN (*p); } } /* It's possible that some of the remaining inlines will still be needed. For example, a static inline whose address is used in the initializer for a file-scope static variable will be needed. Code in compile_file will handle this, but we mustn't pretend that there are no definitions for the inlines, or it won't be able to. FIXME: This won't catch member functions. We should really unify this stuff with the compile_file stuff. */ for (vars = saved_inlines; vars != NULL_TREE; vars = TREE_CHAIN (vars)) { tree decl = TREE_VALUE (vars); if (DECL_NOT_REALLY_EXTERN (decl) && !DECL_COMDAT (decl) && DECL_INITIAL (decl) != NULL_TREE) DECL_EXTERNAL (decl) = 0; } } /* Now delete from the chain of variables all virtual function tables. We output them all ourselves, because each will be treated specially. */ walk_vtables ((void (*) PROTO((tree, tree))) 0, prune_vtable_vardecl); if (write_virtuals == 2) { /* Now complain about an virtual function tables promised but not delivered. */ while (pending_vtables) { if (TREE_PURPOSE (pending_vtables) == NULL_TREE) error ("virtual function table for `%s' not defined", IDENTIFIER_POINTER (TREE_VALUE (pending_vtables))); pending_vtables = TREE_CHAIN (pending_vtables); } } finish_repo (); this_time = get_run_time (); parse_time -= this_time - start_time; varconst_time += this_time - start_time; if (flag_detailed_statistics) { dump_tree_statistics (); dump_time_statistics (); } } /* This is something of the form 'A()()()()()+1' that has turned out to be an expr. Since it was parsed like a type, we need to wade through and fix that. Unfortunately, since operator() is left-associative, we can't use tail recursion. In the above example, TYPE is `A', and DECL is `()()()()()'. Maybe this shouldn't be recursive, but how often will it actually be used? (jason) */ tree reparse_absdcl_as_expr (type, decl) tree type, decl; { /* do build_functional_cast (type, NULL_TREE) at bottom */ if (TREE_OPERAND (decl, 0) == NULL_TREE) return build_functional_cast (type, NULL_TREE); /* recurse */ decl = reparse_decl_as_expr (type, TREE_OPERAND (decl, 0)); decl = build_x_function_call (decl, NULL_TREE, current_class_ref); if (TREE_CODE (decl) == CALL_EXPR && TREE_TYPE (decl) != void_type_node) decl = require_complete_type (decl); return decl; } /* This is something of the form `int ((int)(int)(int)1)' that has turned out to be an expr. Since it was parsed like a type, we need to wade through and fix that. Since casts are right-associative, we are reversing the order, so we don't have to recurse. In the above example, DECL is the `(int)(int)(int)', and EXPR is the `1'. */ tree reparse_absdcl_as_casts (decl, expr) tree decl, expr; { tree type; if (TREE_CODE (expr) == CONSTRUCTOR && TREE_TYPE (expr) == 0) { type = groktypename (TREE_VALUE (TREE_OPERAND (decl, 1))); decl = TREE_OPERAND (decl, 0); if (IS_SIGNATURE (type)) { error ("cast specifies signature type"); return error_mark_node; } expr = digest_init (type, expr, (tree *) 0); if (TREE_CODE (type) == ARRAY_TYPE && TYPE_SIZE (type) == 0) { int failure = complete_array_type (type, expr, 1); if (failure) my_friendly_abort (78); } } while (decl) { type = groktypename (TREE_VALUE (TREE_OPERAND (decl, 1))); decl = TREE_OPERAND (decl, 0); expr = build_c_cast (type, expr); } if (warn_old_style_cast) warning ("use of old-style cast"); return expr; } /* Given plain tree nodes for an expression, build up the full semantics. */ tree build_expr_from_tree (t) tree t; { if (t == NULL_TREE || t == error_mark_node) return t; switch (TREE_CODE (t)) { case IDENTIFIER_NODE: return do_identifier (t, 0); case LOOKUP_EXPR: if (LOOKUP_EXPR_GLOBAL (t)) return do_scoped_id (TREE_OPERAND (t, 0), 0); else return do_identifier (TREE_OPERAND (t, 0), 0); case TEMPLATE_ID_EXPR: return (lookup_template_function (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1)))); case INDIRECT_REF: return build_x_indirect_ref (build_expr_from_tree (TREE_OPERAND (t, 0)), "unary *"); case CAST_EXPR: return build_functional_cast (TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case REINTERPRET_CAST_EXPR: return build_reinterpret_cast (TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case CONST_CAST_EXPR: return build_const_cast (TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case DYNAMIC_CAST_EXPR: return build_dynamic_cast (TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case STATIC_CAST_EXPR: return build_static_cast (TREE_TYPE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case PREDECREMENT_EXPR: case PREINCREMENT_EXPR: case POSTDECREMENT_EXPR: case POSTINCREMENT_EXPR: case NEGATE_EXPR: case BIT_NOT_EXPR: case ABS_EXPR: case TRUTH_NOT_EXPR: case ADDR_EXPR: case CONVERT_EXPR: /* Unary + */ if (TREE_TYPE (t)) return t; return build_x_unary_op (TREE_CODE (t), build_expr_from_tree (TREE_OPERAND (t, 0))); case PLUS_EXPR: case MINUS_EXPR: case MULT_EXPR: case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: case ROUND_DIV_EXPR: case EXACT_DIV_EXPR: case BIT_AND_EXPR: case BIT_ANDTC_EXPR: case BIT_IOR_EXPR: case BIT_XOR_EXPR: case TRUNC_MOD_EXPR: case FLOOR_MOD_EXPR: case TRUTH_ANDIF_EXPR: case TRUTH_ORIF_EXPR: case TRUTH_AND_EXPR: case TRUTH_OR_EXPR: case RSHIFT_EXPR: case LSHIFT_EXPR: case RROTATE_EXPR: case LROTATE_EXPR: case EQ_EXPR: case NE_EXPR: case MAX_EXPR: case MIN_EXPR: case LE_EXPR: case GE_EXPR: case LT_EXPR: case GT_EXPR: case MEMBER_REF: return build_x_binary_op (TREE_CODE (t), build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1))); case DOTSTAR_EXPR: return build_m_component_ref (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1))); case SCOPE_REF: return build_offset_ref (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)); case ARRAY_REF: if (TREE_OPERAND (t, 0) == NULL_TREE) /* new-type-id */ return build_parse_node (ARRAY_REF, NULL_TREE, build_expr_from_tree (TREE_OPERAND (t, 1))); return grok_array_decl (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1))); case SIZEOF_EXPR: case ALIGNOF_EXPR: { tree r = build_expr_from_tree (TREE_OPERAND (t, 0)); if (TREE_CODE_CLASS (TREE_CODE (r)) != 't') r = TREE_TYPE (r); return TREE_CODE (t) == SIZEOF_EXPR ? c_sizeof (r) : c_alignof (r); } case MODOP_EXPR: return build_x_modify_expr (build_expr_from_tree (TREE_OPERAND (t, 0)), TREE_CODE (TREE_OPERAND (t, 1)), build_expr_from_tree (TREE_OPERAND (t, 2))); case ARROW_EXPR: return build_x_arrow (build_expr_from_tree (TREE_OPERAND (t, 0))); case NEW_EXPR: return build_new (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1)), build_expr_from_tree (TREE_OPERAND (t, 2)), NEW_EXPR_USE_GLOBAL (t)); case DELETE_EXPR: return delete_sanity (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1)), DELETE_EXPR_USE_VEC (t), DELETE_EXPR_USE_GLOBAL (t)); case COMPOUND_EXPR: if (TREE_OPERAND (t, 1) == NULL_TREE) return build_x_compound_expr (build_expr_from_tree (TREE_OPERAND (t, 0))); else my_friendly_abort (42); case METHOD_CALL_EXPR: if (TREE_CODE (TREE_OPERAND (t, 0)) == SCOPE_REF) { tree ref = TREE_OPERAND (t, 0); return build_scoped_method_call (build_expr_from_tree (TREE_OPERAND (t, 1)), build_expr_from_tree (TREE_OPERAND (ref, 0)), TREE_OPERAND (ref, 1), build_expr_from_tree (TREE_OPERAND (t, 2))); } return build_method_call (build_expr_from_tree (TREE_OPERAND (t, 1)), TREE_OPERAND (t, 0), build_expr_from_tree (TREE_OPERAND (t, 2)), NULL_TREE, LOOKUP_NORMAL); case CALL_EXPR: if (TREE_CODE (TREE_OPERAND (t, 0)) == SCOPE_REF) { tree ref = TREE_OPERAND (t, 0); return build_member_call (build_expr_from_tree (TREE_OPERAND (ref, 0)), TREE_OPERAND (ref, 1), build_expr_from_tree (TREE_OPERAND (t, 1))); } else { tree name = TREE_OPERAND (t, 0); if (TREE_CODE (name) == TEMPLATE_ID_EXPR || ! really_overloaded_fn (name)) name = build_expr_from_tree (name); return build_x_function_call (name, build_expr_from_tree (TREE_OPERAND (t, 1)), current_class_ref); } case COND_EXPR: return build_x_conditional_expr (build_expr_from_tree (TREE_OPERAND (t, 0)), build_expr_from_tree (TREE_OPERAND (t, 1)), build_expr_from_tree (TREE_OPERAND (t, 2))); case TREE_LIST: { tree purpose, value, chain; if (t == void_list_node) return t; purpose = TREE_PURPOSE (t); if (purpose) purpose = build_expr_from_tree (purpose); value = TREE_VALUE (t); if (value) value = build_expr_from_tree (value); chain = TREE_CHAIN (t); if (chain && chain != void_type_node) chain = build_expr_from_tree (chain); return expr_tree_cons (purpose, value, chain); } case COMPONENT_REF: return build_x_component_ref (build_expr_from_tree (TREE_OPERAND (t, 0)), TREE_OPERAND (t, 1), NULL_TREE, 1); case THROW_EXPR: return build_throw (build_expr_from_tree (TREE_OPERAND (t, 0))); case CONSTRUCTOR: { tree r; /* digest_init will do the wrong thing if we let it. */ if (TREE_TYPE (t) && TYPE_PTRMEMFUNC_P (TREE_TYPE (t))) return t; r = build_nt (CONSTRUCTOR, NULL_TREE, build_expr_from_tree (CONSTRUCTOR_ELTS (t))); if (TREE_TYPE (t)) return digest_init (TREE_TYPE (t), r, 0); return r; } case TYPEID_EXPR: if (TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (t, 0))) == 't') return get_typeid (TREE_OPERAND (t, 0)); return build_x_typeid (build_expr_from_tree (TREE_OPERAND (t, 0))); case VAR_DECL: return convert_from_reference (t); default: return t; } } /* This is something of the form `int (*a)++' that has turned out to be an expr. It was only converted into parse nodes, so we need to go through and build up the semantics. Most of the work is done by build_expr_from_tree, above. In the above example, TYPE is `int' and DECL is `*a'. */ tree reparse_decl_as_expr (type, decl) tree type, decl; { decl = build_expr_from_tree (decl); if (type) return build_functional_cast (type, build_expr_list (NULL_TREE, decl)); else return decl; } /* This is something of the form `int (*a)' that has turned out to be a decl. It was only converted into parse nodes, so we need to do the checking that make_{pointer,reference}_declarator do. */ tree finish_decl_parsing (decl) tree decl; { extern int current_class_depth; switch (TREE_CODE (decl)) { case IDENTIFIER_NODE: return decl; case INDIRECT_REF: return make_pointer_declarator (NULL_TREE, finish_decl_parsing (TREE_OPERAND (decl, 0))); case ADDR_EXPR: return make_reference_declarator (NULL_TREE, finish_decl_parsing (TREE_OPERAND (decl, 0))); case BIT_NOT_EXPR: TREE_OPERAND (decl, 0) = finish_decl_parsing (TREE_OPERAND (decl, 0)); return decl; case SCOPE_REF: push_nested_class (TREE_TYPE (TREE_OPERAND (decl, 0)), 3); TREE_COMPLEXITY (decl) = current_class_depth; return decl; case ARRAY_REF: TREE_OPERAND (decl, 0) = finish_decl_parsing (TREE_OPERAND (decl, 0)); return decl; default: my_friendly_abort (5); return NULL_TREE; } } tree check_cp_case_value (value) tree value; { if (value == NULL_TREE) return value; /* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */ STRIP_TYPE_NOPS (value); if (TREE_READONLY_DECL_P (value)) { value = decl_constant_value (value); STRIP_TYPE_NOPS (value); } value = fold (value); if (TREE_CODE (value) != INTEGER_CST && value != error_mark_node) { cp_error ("case label `%E' does not reduce to an integer constant", value); value = error_mark_node; } else /* Promote char or short to int. */ value = default_conversion (value); constant_expression_warning (value); return value; } /* Return 1 if root encloses child. */ static int is_namespace_ancestor (root, child) tree root, child; { if (root == child) return 1; if (root == global_namespace) return 1; if (child == global_namespace) return 0; return is_namespace_ancestor (root, DECL_CONTEXT (child)); } /* Return the namespace that is the common ancestor of two given namespaces. */ static tree namespace_ancestor (ns1, ns2) tree ns1, ns2; { if (is_namespace_ancestor (ns1, ns2)) return ns1; return namespace_ancestor (DECL_CONTEXT (ns1), ns2); } /* Insert used into the using list of user. Set indirect_flag if this directive is not directly from the source. Also find the common ancestor and let our users know about the new namespace */ static void add_using_namespace (user, used, indirect) tree user; tree used; int indirect; { tree iter; /* Using oneself is a no-op. */ if (user == used) return; my_friendly_assert (TREE_CODE (user) == NAMESPACE_DECL, 380); my_friendly_assert (TREE_CODE (used) == NAMESPACE_DECL, 380); /* Check if we already have this. */ if (purpose_member (used, DECL_NAMESPACE_USING (user)) != NULL_TREE) return; /* Add used to the user's using list. */ DECL_NAMESPACE_USING (user) = perm_tree_cons (used, namespace_ancestor (user, used), DECL_NAMESPACE_USING (user)); TREE_INDIRECT_USING (DECL_NAMESPACE_USING (user)) = indirect; /* Add user to the used's users list. */ DECL_NAMESPACE_USERS (used) = perm_tree_cons (user, 0, DECL_NAMESPACE_USERS (used)); for (iter = DECL_NAMESPACE_USERS (user); iter; iter = TREE_CHAIN (iter)) /* indirect usage */ add_using_namespace (TREE_PURPOSE (iter), used, 1); } /* Combines two sets of overloaded functions into an OVERLOAD chain. The first list becomes the tail of the result. */ static tree merge_functions (s1, s2) tree s1; tree s2; { if (TREE_CODE (s2) == OVERLOAD) while (s2) { s1 = build_overload (OVL_FUNCTION (s2), s1); s2 = OVL_CHAIN (s2); } else s1 = build_overload (s2, s1); return s1; } /* This should return an error not all definitions define functions. It is not an error if we find two functions with exactly the same signature, only if these are selected in overload resolution. old is the current set of bindings, new the freshly-found binding. XXX Do we want to give *all* candidates in case of ambiguity? XXX In what way should I treat extern declarations? XXX I don't want to repeat the entire duplicate_decls here */ static tree ambiguous_decl (name, old, new) tree name; tree old; tree new; { my_friendly_assert (old != NULL_TREE, 393); /* Copy the value. */ if (!BINDING_VALUE (old)) BINDING_VALUE (old) = BINDING_VALUE (new); else if (BINDING_VALUE (new) && BINDING_VALUE (new) != BINDING_VALUE (old)) { if (is_overloaded_fn (BINDING_VALUE (old)) && is_overloaded_fn (BINDING_VALUE (new))) { BINDING_VALUE (old) = merge_functions (BINDING_VALUE (old), BINDING_VALUE (new)); } else { /* Some declarations are functions, some are not. */ cp_error ("ambiguous definition `%D' used", name); cp_error_at ("first definition here", BINDING_VALUE (old)); cp_error_at ("other definition here", BINDING_VALUE (new)); return error_mark_node; } } /* ... and copy the type. */ if (!BINDING_TYPE (old)) BINDING_TYPE (old) = BINDING_TYPE (new); else if(BINDING_TYPE (new) && BINDING_TYPE (old) != BINDING_TYPE (new)) { cp_error ("`%D' denotes an ambiguous type",name); cp_error_at ("first type here", BINDING_TYPE (old)); cp_error_at ("other type here", BINDING_TYPE (new)); } return old; } /* Add the bindings of name in used namespaces to val. The using list is defined by current, and the lookup goes to scope. Returns zero on errors. */ int lookup_using_namespace (name, val, current, scope) tree name, val, current, scope; { tree iter; tree val1; /* Iterate over all namespaces from current to scope. */ while (val != error_mark_node) { /* Iterate over all used namespaces in current, searching for using directives of scope. */ for (iter = DECL_NAMESPACE_USING (current); iter; iter = TREE_CHAIN (iter)) if (TREE_VALUE (iter) == scope) { val1 = binding_for_name (name, TREE_PURPOSE (iter)); /* Resolve ambiguities. */ val = ambiguous_decl (name, val, val1); } if (current == scope) break; current = DECL_CONTEXT (current); } return val != error_mark_node; } /* [namespace.qual] Excepts the name to lookup and its qualifying scope. Returns the name/type pair found into the CPLUS_BINDING result, or 0 on error. */ int qualified_lookup_using_namespace (name, scope, result) tree name; tree scope; tree result; { /* Maintain a list of namespaces visited... */ tree seen = NULL_TREE; /* ... and a list of namespace yet to see. */ tree todo = NULL_TREE; tree usings; while (scope && (result != error_mark_node)) { seen = temp_tree_cons (scope, NULL_TREE, seen); result = ambiguous_decl (name, result, binding_for_name (name, scope)); if (!BINDING_VALUE (result) && !BINDING_TYPE (result)) /* Consider using directives. */ for (usings = DECL_NAMESPACE_USING (scope); usings; usings = TREE_CHAIN (usings)) /* If this was a real directive, and we have not seen it. */ if (!TREE_INDIRECT_USING (usings) && !purpose_member (seen, TREE_PURPOSE (usings))) todo = temp_tree_cons (TREE_PURPOSE (usings), NULL_TREE, todo); if (todo) { scope = TREE_PURPOSE (todo); todo = TREE_CHAIN (todo); } else scope = NULL_TREE; /* If there never was a todo list. */ } return result != error_mark_node; } /* [namespace.memdef]/2 */ /* Set the context of a declaration to scope. Complain if we are not outside scope. */ void set_decl_namespace (decl, scope) tree decl; tree scope; { tree old; if (scope == std_node) scope = global_namespace; if (!is_namespace_ancestor (current_namespace, scope)) cp_error ("declaration of `%D' not in a namespace surrounding `%D'", decl, scope); DECL_CONTEXT (decl) = scope; if (scope != current_namespace) { /* See whether this has been declared in the namespace. */ old = namespace_binding (DECL_NAME (decl), scope); if (!old) /* No old declaration at all. */ goto complain; if (!is_overloaded_fn (decl)) /* Don't compare non-function decls with decls_match here, since it can't check for the correct constness at this point. pushdecl will find those errors later. */ return; /* Since decl is a function, old should contain a function decl. */ if (!is_overloaded_fn (old)) goto complain; for (; old; old = OVL_NEXT (old)) if (decls_match (decl, OVL_CURRENT (old))) return; } else return; complain: cp_error ("`%D' should have been declared inside `%D'", decl, scope); } /* Compute the namespace where a declaration is defined. */ tree decl_namespace (decl) tree decl; { while (DECL_CONTEXT (decl)) { decl = DECL_CONTEXT (decl); if (TREE_CODE (decl) == NAMESPACE_DECL) return decl; if (TREE_CODE_CLASS (TREE_CODE (decl)) == 't') decl = TYPE_STUB_DECL (decl); my_friendly_assert (TREE_CODE_CLASS (TREE_CODE (decl)) == 'd', 390); } /* We should always find the namespace. */ my_friendly_abort (390); return NULL_TREE; } /* Return the namespace where the current declaration is declared. */ tree current_decl_namespace () { tree result; /* If we have been pushed into a different namespace, use it. */ if (decl_namespace_list) return TREE_PURPOSE (decl_namespace_list); if (current_class_type) if (CLASSTYPE_USE_TEMPLATE (current_class_type)) result = decl_namespace (CLASSTYPE_TI_TEMPLATE (current_class_type)); else result = decl_namespace (TYPE_STUB_DECL (current_class_type)); else if (current_function_decl) if (DECL_USE_TEMPLATE (current_function_decl)) result = decl_namespace (DECL_TI_TEMPLATE (current_function_decl)); else result = decl_namespace (current_function_decl); else result = current_namespace; return result; } /* Temporarily set the namespace for the current declaration. */ void push_decl_namespace (decl) tree decl; { if (TREE_CODE (decl) != NAMESPACE_DECL) decl = decl_namespace (decl); decl_namespace_list = tree_cons (decl, NULL_TREE, decl_namespace_list); } void pop_decl_namespace () { decl_namespace_list = TREE_CHAIN (decl_namespace_list); } /* [basic.lookup.koenig] */ /* A non-zero return value in the functions below indicates an error. All nodes allocated in the procedure are on the scratch obstack. */ struct arg_lookup { tree name; tree namespaces; tree classes; tree functions; }; static int arg_assoc PROTO((struct arg_lookup*, tree)); static int arg_assoc_args PROTO((struct arg_lookup*, tree)); /* Add a function to the lookup structure. */ static int add_function (k, fn) struct arg_lookup *k; tree fn; { if (ovl_member (fn, k->functions)) return 0; k->functions = build_overload (fn, k->functions); return 0; } /* Add functions of a namespace to the lookup structure. */ static int arg_assoc_namespace (k, scope) struct arg_lookup *k; tree scope; { tree value; if (purpose_member (scope, k->namespaces)) return 0; k->namespaces = tree_cons (scope, NULL_TREE, k->namespaces); value = namespace_binding (k->name, scope); if (!value) return 0; if (!is_overloaded_fn (value)) { cp_error_at ("`%D' is not a function", value); cp_error ("in call to `%D'", k->name); return 1; } for (; value; value = OVL_NEXT (value)) if (add_function (k, OVL_CURRENT (value))) return 1; return 0; } /* Adds everything associated with class to the lookup structure. */ static int arg_assoc_class (k, type) struct arg_lookup* k; tree type; { tree list, friends, context; int i; if (purpose_member (type, k->classes)) return 0; k->classes = tree_cons (type, NULL_TREE, k->classes); context = decl_namespace (TYPE_MAIN_DECL (type)); if (arg_assoc_namespace (k, context)) return 1; /* Process baseclasses. */ for (i = 0; i < CLASSTYPE_N_BASECLASSES (type); i++) if (arg_assoc_class (k, TYPE_BINFO_BASETYPE (type, i))) return 1; /* Process friends. */ for (list = DECL_FRIENDLIST (TYPE_MAIN_DECL (type)); list; list = TREE_CHAIN (list)) if (k->name == TREE_PURPOSE (list)) for (friends = TREE_VALUE (list); friends; friends = TREE_CHAIN (friends)) /* Only interested in global functions with potentially hidden (i.e. unqualified) declarations. */ if (TREE_PURPOSE (list) == error_mark_node && TREE_VALUE (list) && decl_namespace (TREE_VALUE (list)) == context) if (add_function (k, TREE_VALUE (list))) return 1; return 0; } /* Adds everything associated with a given type. */ static int arg_assoc_type (k, type) struct arg_lookup *k; tree type; { switch (TREE_CODE (type)) { case VOID_TYPE: case INTEGER_TYPE: case REAL_TYPE: case COMPLEX_TYPE: case CHAR_TYPE: case BOOLEAN_TYPE: return 0; case RECORD_TYPE: if (TYPE_PTRMEMFUNC_P (type)) return arg_assoc_type (k, TYPE_PTRMEMFUNC_FN_TYPE (type)); return arg_assoc_class (k, type); case POINTER_TYPE: case REFERENCE_TYPE: case ARRAY_TYPE: return arg_assoc_type (k, TREE_TYPE (type)); case UNION_TYPE: case ENUMERAL_TYPE: return arg_assoc_namespace (k, decl_namespace (TYPE_MAIN_DECL (type))); case METHOD_TYPE: /* Associate the class of the method. */ if (arg_assoc_type (k, TYPE_METHOD_BASETYPE (type))) return 1; /* Fall through. */ case FUNCTION_TYPE: /* Associate the parameter types. */ if (arg_assoc_args (k, TYPE_ARG_TYPES (type))) return 1; /* Associate the return type. */ return arg_assoc_type (k, TREE_TYPE (type)); default: my_friendly_abort (390); } return 0; } /* Adds everything associated with arguments. */ static int arg_assoc_args (k, args) struct arg_lookup* k; tree args; { for (; args; args = TREE_CHAIN (args)) if (arg_assoc (k, TREE_VALUE (args))) return 1; return 0; } /* Adds everything associated with a given tree_node. */ static int arg_assoc (k, n) struct arg_lookup* k; tree n; { switch (TREE_CODE_CLASS (TREE_CODE (n))) { case 't': return arg_assoc_type (k, n); case 'c': case '1': case '2': case '<': case 'r': return arg_assoc_type (k, TREE_TYPE (n)); case 'e': switch (TREE_CODE (n)) { case ADDR_EXPR: /* special processing */ break; default: return arg_assoc_type (k, TREE_TYPE (n)); } default: break; } while (n) switch (TREE_CODE (n)) { case CONST_DECL: /* 'd' */ case VAR_DECL: case PARM_DECL: case RESULT_DECL: return arg_assoc_type (k, TREE_TYPE (n)); case ADDR_EXPR: /* 'e' */ /* We can't use the TREE_TYPE, as the type of an overloaded function will be useless here. */ n = TREE_OPERAND (n, 0); continue; case OVERLOAD: /* 'x' */ if (arg_assoc (k, OVL_CURRENT (n))) return 1; n = OVL_NEXT (n); continue; case TREE_LIST: /* 'x' */ /* XXX Overloaded member, should get an OVERLOAD directly, here. */ n = TREE_VALUE (n); continue; case FUNCTION_DECL: /* 'd' */ if (arg_assoc_args (k, FUNCTION_ARG_CHAIN (n))) return 1; if (DECL_FUNCTION_MEMBER_P (n)) if (arg_assoc_type (k, DECL_CLASS_CONTEXT (n))) return 1; return 0; default: cp_error ("sorry, Koenig lookup for `%s' of type `%T' failed", tree_code_name [(int)TREE_CODE (n)], TREE_TYPE (n)); my_friendly_abort (391); } return 0; } /* Performs Koenig lookup depending on arguments, where fns are the functions found in normal lookup. */ tree lookup_arg_dependent (name, fns, args) tree name; tree fns; tree args; { struct arg_lookup k; k.name = name; k.functions = fns; k.namespaces = NULL_TREE; k.classes = NULL_TREE; push_scratch_obstack (); arg_assoc_args (&k, args); pop_obstacks (); return k.functions; } /* Process a namespace-alias declaration. */ void do_namespace_alias (alias, namespace) tree alias, namespace; { tree binding; tree ns; if (TREE_CODE (namespace) == IDENTIFIER_NODE) ns = lookup_name (namespace, 1); else ns = namespace; if (TREE_CODE (ns) != NAMESPACE_DECL) { cp_error ("`%D' is not a namespace", namespace); return; } binding = binding_for_name (alias, current_namespace); if (BINDING_VALUE (binding) && BINDING_VALUE (binding) != namespace) { cp_error ("invalid namespace alias `%D'", alias); cp_error_at ("`%D' previously declared here", alias); } else { /* XXX the alias is not exactly identical to the name space, it must not be used in a using directive or namespace alias */ BINDING_VALUE (binding) = ns; } } /* Process a using-declaration not appearing in class or local scope. */ void do_toplevel_using_decl (decl) tree decl; { tree scope, name, binding, decls, newval, newtype; struct tree_binding _decls; if (TREE_CODE (decl) == SCOPE_REF && TREE_OPERAND (decl, 0) == std_node) return; if (TREE_CODE (decl) == SCOPE_REF) { scope = TREE_OPERAND (decl, 0); name = TREE_OPERAND (decl, 1); } else if (TREE_CODE (decl) == IDENTIFIER_NODE) { scope = global_namespace; name = decl; } else my_friendly_abort (382); if (TREE_CODE_CLASS (TREE_CODE (name)) == 'd') name = DECL_NAME (name); /* Make a USING_DECL. */ decl = push_using_decl (scope, name); if (!decl) return; binding = binding_for_name (name, current_namespace); decls = binding_init (&_decls); if (!qualified_lookup_using_namespace (name, scope, decls)) /* Lookup error */ return; if (!BINDING_VALUE (decls) && !BINDING_TYPE (decls)) { cp_error ("`%D' not declared", name); return; } newval = newtype = NULL_TREE; /* Check for using functions. */ if (BINDING_VALUE (decls) && is_overloaded_fn (BINDING_VALUE (decls))) { tree oldval = BINDING_VALUE (binding); tree tmp, tmp1; newval = oldval; for (tmp = BINDING_VALUE (decls); tmp; tmp = OVL_NEXT (tmp)) { /* Compare each new function with each old one. If the old function was also used, there is no conflict. */ for (tmp1 = oldval; tmp1; tmp1 = OVL_NEXT (tmp1)) if (OVL_CURRENT (tmp) == OVL_CURRENT (tmp1)) break; else if (OVL_USED (tmp1)) continue; else if (duplicate_decls (OVL_CURRENT (tmp), OVL_CURRENT (tmp1))) return; /* Duplicate use, ignore */ if (tmp1) continue; newval = build_overload (OVL_CURRENT (tmp), newval); if (TREE_CODE (newval) != OVERLOAD) newval = ovl_cons (newval, NULL_TREE); OVL_USED (newval) = 1; } } else { tree oldval = BINDING_VALUE (binding); newval = BINDING_VALUE (decls); if (oldval && oldval != newval && !duplicate_decls (newval, oldval)) newval = oldval; } newtype = BINDING_TYPE (decls); if (BINDING_TYPE (binding) && newtype && BINDING_TYPE (binding) != newtype) { cp_error ("using directive `%D' introduced ambiguous type `%T'", name, BINDING_TYPE (decls)); return; } /* Copy declarations found. */ if (newval) BINDING_VALUE (binding) = newval; if (newtype) BINDING_TYPE (binding) = newtype; return; } tree do_class_using_decl (decl) tree decl; { tree name, value; if (TREE_CODE (decl) != SCOPE_REF || TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (decl, 0))) != 't') { cp_error ("using-declaration for non-member at class scope"); return NULL_TREE; } name = TREE_OPERAND (decl, 1); if (TREE_CODE (name) == BIT_NOT_EXPR) { cp_error ("using-declaration for destructor"); return NULL_TREE; } value = build_lang_field_decl (USING_DECL, name, void_type_node); DECL_INITIAL (value) = TREE_OPERAND (decl, 0); return value; } /* Process a using-directive. */ void do_using_directive (namespace) tree namespace; { if (namespace == std_node) return; if (!toplevel_bindings_p ()) { sorry ("using directives inside functions"); return; } /* using A::B::C; */ if (TREE_CODE (namespace) == SCOPE_REF) namespace = TREE_OPERAND (namespace, 1); if (TREE_CODE (namespace) == IDENTIFIER_NODE) { /* Lookup in lexer did not find a namespace. */ cp_error ("namespace `%T' undeclared", namespace); return; } if (TREE_CODE (namespace) != NAMESPACE_DECL) { cp_error ("`%T' is not a namespace", namespace); return; } /* direct usage */ add_using_namespace (current_namespace, namespace, 0); } void check_default_args (x) tree x; { tree arg = TYPE_ARG_TYPES (TREE_TYPE (x)); int saw_def = 0, i = 0 - (TREE_CODE (TREE_TYPE (x)) == METHOD_TYPE); for (; arg && arg != void_list_node; arg = TREE_CHAIN (arg), ++i) { if (TREE_PURPOSE (arg)) saw_def = 1; else if (saw_def) { cp_error ("default argument missing for parameter %P of `%#D'", i, x); break; } } } void mark_used (decl) tree decl; { TREE_USED (decl) = 1; if (processing_template_decl) return; assemble_external (decl); /* Is it a synthesized method that needs to be synthesized? */ if (TREE_CODE (decl) == FUNCTION_DECL && DECL_CLASS_CONTEXT (decl) && DECL_ARTIFICIAL (decl) && ! DECL_INITIAL (decl) /* Kludge: don't synthesize for default args. */ && current_function_decl) synthesize_method (decl); if (DECL_LANG_SPECIFIC (decl) && DECL_TEMPLATE_INFO (decl)) instantiate_decl (decl); } /* Helper function for named_class_head_sans_basetype nonterminal. */ tree handle_class_head (aggr, scope, id) tree aggr, scope, id; { if (TREE_CODE (id) == TYPE_DECL) return id; if (scope) cp_error ("`%T' does not have a nested type named `%D'", scope, id); else cp_error ("no file-scope type named `%D'", id); id = xref_tag (aggr, make_anon_name (), NULL_TREE, 1); return TYPE_MAIN_DECL (id); }