// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector. #include "runtime.h" #include "malloc.h" enum { Debug = 0, UseCas = 1, PtrSize = sizeof(void*), // Four bits per word (see #defines below). wordsPerBitmapWord = sizeof(void*)*8/4, bitShift = sizeof(void*)*8/4, }; // Bits in per-word bitmap. // #defines because enum might not be able to hold the values. // // Each word in the bitmap describes wordsPerBitmapWord words // of heap memory. There are 4 bitmap bits dedicated to each heap word, // so on a 64-bit system there is one bitmap word per 16 heap words. // The bits in the word are packed together by type first, then by // heap location, so each 64-bit bitmap word consists of, from top to bottom, // the 16 bitSpecial bits for the corresponding heap words, then the 16 bitMarked bits, // then the 16 bitNoPointers/bitBlockBoundary bits, then the 16 bitAllocated bits. // This layout makes it easier to iterate over the bits of a given type. // // The bitmap starts at mheap.arena_start and extends *backward* from // there. On a 64-bit system the off'th word in the arena is tracked by // the off/16+1'th word before mheap.arena_start. (On a 32-bit system, // the only difference is that the divisor is 8.) // // To pull out the bits corresponding to a given pointer p, we use: // // off = p - (uintptr*)mheap.arena_start; // word offset // b = (uintptr*)mheap.arena_start - off/wordsPerBitmapWord - 1; // shift = off % wordsPerBitmapWord // bits = *b >> shift; // /* then test bits & bitAllocated, bits & bitMarked, etc. */ // #define bitAllocated ((uintptr)1<<(bitShift*0)) #define bitNoPointers ((uintptr)1<<(bitShift*1)) /* when bitAllocated is set */ #define bitMarked ((uintptr)1<<(bitShift*2)) /* when bitAllocated is set */ #define bitSpecial ((uintptr)1<<(bitShift*3)) /* when bitAllocated is set - has finalizer or being profiled */ #define bitBlockBoundary ((uintptr)1<<(bitShift*1)) /* when bitAllocated is NOT set */ #define bitMask (bitBlockBoundary | bitAllocated | bitMarked | bitSpecial) static uint64 nlookup; static uint64 nsizelookup; static uint64 naddrlookup; static int32 gctrace; typedef struct Workbuf Workbuf; struct Workbuf { Workbuf *next; uintptr nw; byte *w[2048-2]; }; static bool finstarted; static pthread_mutex_t finqlock = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t finqcond = PTHREAD_COND_INITIALIZER; static Finalizer *finq; static int32 fingwait; static void runfinq(void*); static Workbuf* getempty(Workbuf*); static Workbuf* getfull(Workbuf*); // scanblock scans a block of n bytes starting at pointer b for references // to other objects, scanning any it finds recursively until there are no // unscanned objects left. Instead of using an explicit recursion, it keeps // a work list in the Workbuf* structures and loops in the main function // body. Keeping an explicit work list is easier on the stack allocator and // more efficient. static void scanblock(byte *b, int64 n) { byte *obj, *arena_start, *p; void **vp; uintptr size, *bitp, bits, shift, i, j, x, xbits, off; MSpan *s; PageID k; void **bw, **w, **ew; Workbuf *wbuf; if((int64)(uintptr)n != n || n < 0) { // runtime_printf("scanblock %p %lld\n", b, (long long)n); runtime_throw("scanblock"); } // Memory arena parameters. arena_start = runtime_mheap.arena_start; wbuf = nil; // current work buffer ew = nil; // end of work buffer bw = nil; // beginning of work buffer w = nil; // current pointer into work buffer // Align b to a word boundary. off = (uintptr)b & (PtrSize-1); if(off != 0) { b += PtrSize - off; n -= PtrSize - off; } for(;;) { // Each iteration scans the block b of length n, queueing pointers in // the work buffer. if(Debug > 1) runtime_printf("scanblock %p %lld\n", b, (long long) n); vp = (void**)b; n /= PtrSize; for(i=0; i<(uintptr)n; i++) { obj = (byte*)vp[i]; // Words outside the arena cannot be pointers. if((byte*)obj < arena_start || (byte*)obj >= runtime_mheap.arena_used) continue; // obj may be a pointer to a live object. // Try to find the beginning of the object. // Round down to word boundary. obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); // Find bits for this word. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Pointing at the beginning of a block? if((bits & (bitAllocated|bitBlockBoundary)) != 0) goto found; // Pointing just past the beginning? // Scan backward a little to find a block boundary. for(j=shift; j-->0; ) { if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { obj = (byte*)obj - (shift-j)*PtrSize; shift = j; bits = xbits>>shift; goto found; } } // Otherwise consult span table to find beginning. // (Manually inlined copy of MHeap_LookupMaybe.) nlookup++; naddrlookup++; k = (uintptr)obj>>PageShift; x = k; if(sizeof(void*) == 8) x -= (uintptr)arena_start>>PageShift; s = runtime_mheap.map[x]; if(s == nil || k < s->start || k - s->start >= s->npages || s->state != MSpanInUse) continue; p = (byte*)((uintptr)s->start<sizeclass == 0) { obj = p; } else { if((byte*)obj >= (byte*)s->limit) continue; size = runtime_class_to_size[s->sizeclass]; int32 i = ((byte*)obj - p)/size; obj = p+i*size; } // Now that we know the object header, reload bits. off = (uintptr*)obj - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; found: // Now we have bits, bitp, and shift correct for // obj pointing at the base of the object. // If not allocated or already marked, done. if((bits & bitAllocated) == 0 || (bits & bitMarked) != 0) continue; *bitp |= bitMarked<= ew) { wbuf = getempty(wbuf); bw = (void**)wbuf->w; w = bw; ew = bw + nelem(wbuf->w); } *w++ = obj; } // Done scanning [b, b+n). Prepare for the next iteration of // the loop by setting b and n to the parameters for the next block. // Fetch b from the work buffers. if(w <= bw) { // Emptied our buffer: refill. wbuf = getfull(wbuf); if(wbuf == nil) break; bw = (void**)wbuf->w; ew = (void**)(wbuf->w + nelem(wbuf->w)); w = bw+wbuf->nw; } b = *--w; // Figure out n = size of b. Start by loading bits for b. off = (uintptr*)b - (uintptr*)arena_start; bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; xbits = *bitp; bits = xbits >> shift; // Might be small; look for nearby block boundary. // A block boundary is marked by either bitBlockBoundary // or bitAllocated being set (see notes near their definition). enum { boundary = bitBlockBoundary|bitAllocated }; // Look for a block boundary both after and before b // in the same bitmap word. // // A block boundary j words after b is indicated by // bits>>j & boundary // assuming shift+j < bitShift. (If shift+j >= bitShift then // we'll be bleeding other bit types like bitMarked into our test.) // Instead of inserting the conditional shift+j < bitShift into the loop, // we can let j range from 1 to bitShift as long as we first // apply a mask to keep only the bits corresponding // to shift+j < bitShift aka j < bitShift-shift. bits &= (boundary<<(bitShift-shift)) - boundary; // A block boundary j words before b is indicated by // xbits>>(shift-j) & boundary // (assuming shift >= j). There is no cleverness here // avoid the test, because when j gets too large the shift // turns negative, which is undefined in C. for(j=1; j>j)&boundary) != 0 || (shift>=j && ((xbits>>(shift-j))&boundary) != 0)) { n = j*PtrSize; goto scan; } } // Fall back to asking span about size class. // (Manually inlined copy of MHeap_Lookup.) nlookup++; nsizelookup++; x = (uintptr)b>>PageShift; if(sizeof(void*) == 8) x -= (uintptr)arena_start>>PageShift; s = runtime_mheap.map[x]; if(s->sizeclass == 0) n = s->npages<sizeclass]; scan:; } } static struct { Workbuf *full; Workbuf *empty; byte *chunk; uintptr nchunk; } work; // Get an empty work buffer off the work.empty list, // allocating new buffers as needed. static Workbuf* getempty(Workbuf *b) { if(b != nil) { b->nw = nelem(b->w); b->next = work.full; work.full = b; } b = work.empty; if(b != nil) { work.empty = b->next; return b; } if(work.nchunk < sizeof *b) { work.nchunk = 1<<20; work.chunk = runtime_SysAlloc(work.nchunk); } b = (Workbuf*)work.chunk; work.chunk += sizeof *b; work.nchunk -= sizeof *b; return b; } // Get a full work buffer off the work.full list, or return nil. static Workbuf* getfull(Workbuf *b) { if(b != nil) { b->nw = 0; b->next = work.empty; work.empty = b; } b = work.full; if(b != nil) work.full = b->next; return b; } // Scanstack calls scanblock on each of gp's stack segments. static void markfin(void *v) { uintptr size; size = 0; if(!runtime_mlookup(v, (byte**)&v, &size, nil) || !runtime_blockspecial(v)) runtime_throw("mark - finalizer inconsistency"); // do not mark the finalizer block itself. just mark the things it points at. scanblock(v, size); } struct root_list { struct root_list *next; struct root { void *decl; size_t size; } roots[]; }; static struct root_list* roots; void __go_register_gc_roots (struct root_list* r) { // FIXME: This needs locking if multiple goroutines can call // dlopen simultaneously. r->next = roots; roots = r; } // Mark static void mark(void) { struct root_list *pl; for(pl = roots; pl != nil; pl = pl->next) { struct root* pr = &pl->roots[0]; while(1) { void *decl = pr->decl; if(decl == nil) break; scanblock(decl, pr->size); pr++; } } scanblock((byte*)&m0, sizeof m0); scanblock((byte*)&finq, sizeof finq); runtime_MProf_Mark(scanblock); // mark stacks __go_scanstacks(scanblock); // mark things pointed at by objects with finalizers runtime_walkfintab(markfin, scanblock); } // Sweep frees or calls finalizers for blocks not marked in the mark phase. // It clears the mark bits in preparation for the next GC round. static void sweep(void) { MSpan *s; int32 cl, n, npages; uintptr size; byte *p; MCache *c; Finalizer *f; for(s = runtime_mheap.allspans; s != nil; s = s->allnext) { if(s->state != MSpanInUse) continue; p = (byte*)(s->start << PageShift); cl = s->sizeclass; if(cl == 0) { size = s->npages< 0; n--, p += size) { uintptr off, *bitp, shift, bits; off = (uintptr*)p - (uintptr*)runtime_mheap.arena_start; bitp = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *bitp>>shift; if((bits & bitAllocated) == 0) continue; if((bits & bitMarked) != 0) { *bitp &= ~(bitMarked<arg = p; f->next = finq; finq = f; continue; } runtime_MProf_Free(p, size); } // Mark freed; restore block boundary bit. *bitp = (*bitp & ~(bitMask<sizeclass == 0) { // Free large span. runtime_unmarkspan(p, 1<mcache; if(size > sizeof(uintptr)) ((uintptr*)p)[1] = 1; // mark as "needs to be zeroed" mstats.by_size[s->sizeclass].nfree++; runtime_MCache_Free(c, p, s->sizeclass, size); } mstats.alloc -= size; mstats.nfree++; } } } static pthread_mutex_t gcsema = PTHREAD_MUTEX_INITIALIZER; // Initialized from $GOGC. GOGC=off means no gc. // // Next gc is after we've allocated an extra amount of // memory proportional to the amount already in use. // If gcpercent=100 and we're using 4M, we'll gc again // when we get to 8M. This keeps the gc cost in linear // proportion to the allocation cost. Adjusting gcpercent // just changes the linear constant (and also the amount of // extra memory used). static int32 gcpercent = -2; void runtime_gc(int32 force __attribute__ ((unused))) { int64 t0, t1, t2, t3; uint64 heap0, heap1, obj0, obj1; char *p; Finalizer *fp; // The gc is turned off (via enablegc) until // the bootstrap has completed. // Also, malloc gets called in the guts // of a number of libraries that might be // holding locks. To avoid priority inversion // problems, don't bother trying to run gc // while holding a lock. The next mallocgc // without a lock will do the gc instead. if(!mstats.enablegc || m->locks > 0 /* || runtime_panicking */) return; if(gcpercent == -2) { // first time through p = runtime_getenv("GOGC"); if(p == nil || p[0] == '\0') gcpercent = 100; else if(runtime_strcmp(p, "off") == 0) gcpercent = -1; else gcpercent = runtime_atoi(p); p = runtime_getenv("GOGCTRACE"); if(p != nil) gctrace = runtime_atoi(p); } if(gcpercent < 0) return; pthread_mutex_lock(&finqlock); pthread_mutex_lock(&gcsema); if(!force && mstats.heap_alloc < mstats.next_gc) { pthread_mutex_unlock(&gcsema); pthread_mutex_unlock(&finqlock); return; } t0 = runtime_nanotime(); nlookup = 0; nsizelookup = 0; naddrlookup = 0; m->gcing = 1; runtime_stoptheworld(); if(runtime_mheap.Lock.key != 0) runtime_throw("runtime_mheap locked during gc"); __go_cachestats(); heap0 = mstats.heap_alloc; obj0 = mstats.nmalloc - mstats.nfree; mark(); t1 = runtime_nanotime(); sweep(); t2 = runtime_nanotime(); __go_stealcache(); mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100; m->gcing = 0; m->locks++; // disable gc during the mallocs in newproc heap1 = mstats.heap_alloc; obj1 = mstats.nmalloc - mstats.nfree; t3 = runtime_nanotime(); mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t3 - t0; mstats.pause_total_ns += t3 - t0; mstats.numgc++; if(mstats.debuggc) runtime_printf("pause %llu\n", (unsigned long long)t3-t0); if(gctrace) { runtime_printf("gc%d: %llu+%llu+%llu ms %llu -> %llu MB %llu -> %llu (%llu-%llu) objects %llu pointer lookups (%llu size, %llu addr)\n", mstats.numgc, (unsigned long long)(t1-t0)/1000000, (unsigned long long)(t2-t1)/1000000, (unsigned long long)(t3-t2)/1000000, (unsigned long long)heap0>>20, (unsigned long long)heap1>>20, (unsigned long long)obj0, (unsigned long long)obj1, (unsigned long long)mstats.nmalloc, (unsigned long long)mstats.nfree, (unsigned long long)nlookup, (unsigned long long)nsizelookup, (unsigned long long)naddrlookup); } pthread_mutex_unlock(&gcsema); runtime_starttheworld(); // finqlock is still held. fp = finq; if(fp != nil) { // kick off or wake up goroutine to run queued finalizers if(!finstarted) { __go_go(runfinq, nil); finstarted = 1; } else if(fingwait) { fingwait = 0; pthread_cond_signal(&finqcond); } } m->locks--; pthread_mutex_unlock(&finqlock); if(gctrace > 1 && !force) runtime_gc(1); } static void runfinq(void* dummy) { Finalizer *f, *next; USED(dummy); for(;;) { pthread_mutex_lock(&finqlock); f = finq; finq = nil; if(f == nil) { fingwait = 1; pthread_cond_wait(&finqcond, &finqlock); pthread_mutex_unlock(&finqlock); continue; } pthread_mutex_unlock(&finqlock); for(; f; f=next) { void *params[1]; next = f->next; params[0] = &f->arg; reflect_call(f->ft, (void*)f->fn, 0, 0, params, nil); f->fn = nil; f->arg = nil; f->next = nil; runtime_free(f); } runtime_gc(1); // trigger another gc to clean up the finalized objects, if possible } } #define runtime_gomaxprocs 2 // mark the block at v of size n as allocated. // If noptr is true, mark it as having no pointers. void runtime_markallocated(void *v, uintptr n, bool noptr) { uintptr *b, obits, bits, off, shift; // if(0) // runtime_printf("markallocated %p+%p\n", v, n); if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) runtime_throw("markallocated: bad pointer"); off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { obits = *b; bits = (obits & ~(bitMask< 1: use atomic op if(runtime_casp((void**)b, (void*)obits, (void*)bits)) break; } } } // mark the block at v of size n as freed. void runtime_markfreed(void *v, uintptr n) { uintptr *b, obits, bits, off, shift; // if(0) // runtime_printf("markallocated %p+%p\n", v, n); if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) runtime_throw("markallocated: bad pointer"); off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; for(;;) { obits = *b; bits = (obits & ~(bitMask< 1: use atomic op if(runtime_casp((void**)b, (void*)obits, (void*)bits)) break; } } } // check that the block at v of size n is marked freed. void runtime_checkfreed(void *v, uintptr n) { uintptr *b, bits, off, shift; if(!runtime_checking) return; if((byte*)v+n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) return; // not allocated, so okay off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; // word offset b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; bits = *b>>shift; if((bits & bitAllocated) != 0) { runtime_printf("checkfreed %p+%p: off=%p have=%p\n", v, (void*)n, (void*)off, (void*)(bits & bitMask)); runtime_throw("checkfreed: not freed"); } } // mark the span of memory at v as having n blocks of the given size. // if leftover is true, there is left over space at the end of the span. void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover) { uintptr *b, off, shift; byte *p; if((byte*)v+size*n > (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) runtime_throw("markspan: bad pointer"); p = v; if(leftover) // mark a boundary just past end of last block too n++; for(; n-- > 0; p += size) { // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. off = (uintptr*)p - (uintptr*)runtime_mheap.arena_start; // word offset b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; *b = (*b & ~(bitMask< (byte*)runtime_mheap.arena_used || (byte*)v < runtime_mheap.arena_start) runtime_throw("markspan: bad pointer"); p = v; off = p - (uintptr*)runtime_mheap.arena_start; // word offset if(off % wordsPerBitmapWord != 0) runtime_throw("markspan: unaligned pointer"); b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; n /= PtrSize; if(n%wordsPerBitmapWord != 0) runtime_throw("unmarkspan: unaligned length"); // Okay to use non-atomic ops here, because we control // the entire span, and each bitmap word has bits for only // one span, so no other goroutines are changing these // bitmap words. n /= wordsPerBitmapWord; while(n-- > 0) *b-- = 0; } bool runtime_blockspecial(void *v) { uintptr *b, off, shift; off = (uintptr*)v - (uintptr*)runtime_mheap.arena_start; b = (uintptr*)runtime_mheap.arena_start - off/wordsPerBitmapWord - 1; shift = off % wordsPerBitmapWord; return (*b & (bitSpecial< 1: use atomic op if(runtime_casp((void**)b, (void*)obits, (void*)bits)) break; } } } void runtime_MHeap_MapBits(MHeap *h) { // Caller has added extra mappings to the arena. // Add extra mappings of bitmap words as needed. // We allocate extra bitmap pieces in chunks of bitmapChunk. enum { bitmapChunk = 8192 }; uintptr n; n = (h->arena_used - h->arena_start) / wordsPerBitmapWord; n = (n+bitmapChunk-1) & ~(bitmapChunk-1); if(h->bitmap_mapped >= n) return; runtime_SysMap(h->arena_start - n, n - h->bitmap_mapped); h->bitmap_mapped = n; } void __go_enable_gc() { mstats.enablegc = 1; }