// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Page heap. // // See malloc.h for overview. // // When a MSpan is in the heap free list, state == MSpanFree // and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span. // // When a MSpan is allocated, state == MSpanInUse // and heapmap(i) == span for all s->start <= i < s->start+s->npages. #include "runtime.h" #include "malloc.h" static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32); static bool MHeap_Grow(MHeap*, uintptr); static void MHeap_FreeLocked(MHeap*, MSpan*); static MSpan *MHeap_AllocLarge(MHeap*, uintptr); static MSpan *BestFit(MSpan*, uintptr, MSpan*); static void RecordSpan(void *vh, byte *p) { MHeap *h; MSpan *s; h = vh; s = (MSpan*)p; s->allnext = h->allspans; h->allspans = s; } // Initialize the heap; fetch memory using alloc. void runtime_MHeap_Init(MHeap *h, void *(*alloc)(uintptr)) { uint32 i; runtime_initlock(h); runtime_FixAlloc_Init(&h->spanalloc, sizeof(MSpan), alloc, RecordSpan, h); runtime_FixAlloc_Init(&h->cachealloc, sizeof(MCache), alloc, nil, nil); // h->mapcache needs no init for(i=0; ifree); i++) runtime_MSpanList_Init(&h->free[i]); runtime_MSpanList_Init(&h->large); for(i=0; icentral); i++) runtime_MCentral_Init(&h->central[i], i); } // Allocate a new span of npage pages from the heap // and record its size class in the HeapMap and HeapMapCache. MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct) { MSpan *s; runtime_lock(h); mstats.heap_alloc += m->mcache->local_alloc; m->mcache->local_alloc = 0; mstats.heap_objects += m->mcache->local_objects; m->mcache->local_objects = 0; s = MHeap_AllocLocked(h, npage, sizeclass); if(s != nil) { mstats.heap_inuse += npage<free); n++) { if(!runtime_MSpanList_IsEmpty(&h->free[n])) { s = h->free[n].next; goto HaveSpan; } } // Best fit in list of large spans. if((s = MHeap_AllocLarge(h, npage)) == nil) { if(!MHeap_Grow(h, npage)) return nil; if((s = MHeap_AllocLarge(h, npage)) == nil) return nil; } HaveSpan: // Mark span in use. if(s->state != MSpanFree) runtime_throw("MHeap_AllocLocked - MSpan not free"); if(s->npages < npage) runtime_throw("MHeap_AllocLocked - bad npages"); runtime_MSpanList_Remove(s); s->state = MSpanInUse; if(s->npages > npage) { // Trim extra and put it back in the heap. t = runtime_FixAlloc_Alloc(&h->spanalloc); mstats.mspan_inuse = h->spanalloc.inuse; mstats.mspan_sys = h->spanalloc.sys; runtime_MSpan_Init(t, s->start + npage, s->npages - npage); s->npages = npage; p = t->start; if(sizeof(void*) == 8) p -= ((uintptr)h->arena_start>>PageShift); if(p > 0) h->map[p-1] = s; h->map[p] = t; h->map[p+t->npages-1] = t; *(uintptr*)(t->start<start<state = MSpanInUse; MHeap_FreeLocked(h, t); } if(*(uintptr*)(s->start<start<npages<sizeclass = sizeclass; p = s->start; if(sizeof(void*) == 8) p -= ((uintptr)h->arena_start>>PageShift); for(n=0; nmap[p+n] = s; return s; } // Allocate a span of exactly npage pages from the list of large spans. static MSpan* MHeap_AllocLarge(MHeap *h, uintptr npage) { return BestFit(&h->large, npage, nil); } // Search list for smallest span with >= npage pages. // If there are multiple smallest spans, take the one // with the earliest starting address. static MSpan* BestFit(MSpan *list, uintptr npage, MSpan *best) { MSpan *s; for(s=list->next; s != list; s=s->next) { if(s->npages < npage) continue; if(best == nil || s->npages < best->npages || (s->npages == best->npages && s->start < best->start)) best = s; } return best; } // Try to add at least npage pages of memory to the heap, // returning whether it worked. static bool MHeap_Grow(MHeap *h, uintptr npage) { uintptr ask; void *v; MSpan *s; PageID p; // Ask for a big chunk, to reduce the number of mappings // the operating system needs to track; also amortizes // the overhead of an operating system mapping. // Allocate a multiple of 64kB (16 pages). npage = (npage+15)&~15; ask = npage< (npage<spanalloc); mstats.mspan_inuse = h->spanalloc.inuse; mstats.mspan_sys = h->spanalloc.sys; runtime_MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift); p = s->start; if(sizeof(void*) == 8) p -= ((uintptr)h->arena_start>>PageShift); h->map[p] = s; h->map[p + s->npages - 1] = s; s->state = MSpanInUse; MHeap_FreeLocked(h, s); return true; } // Look up the span at the given address. // Address is guaranteed to be in map // and is guaranteed to be start or end of span. MSpan* runtime_MHeap_Lookup(MHeap *h, void *v) { uintptr p; p = (uintptr)v; if(sizeof(void*) == 8) p -= (uintptr)h->arena_start; return h->map[p >> PageShift]; } // Look up the span at the given address. // Address is *not* guaranteed to be in map // and may be anywhere in the span. // Map entries for the middle of a span are only // valid for allocated spans. Free spans may have // other garbage in their middles, so we have to // check for that. MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v) { MSpan *s; PageID p, q; if((byte*)v < h->arena_start || (byte*)v >= h->arena_used) return nil; p = (uintptr)v>>PageShift; q = p; if(sizeof(void*) == 8) q -= (uintptr)h->arena_start >> PageShift; s = h->map[q]; if(s == nil || p < s->start || p - s->start >= s->npages) return nil; if(s->state != MSpanInUse) return nil; return s; } // Free the span back into the heap. void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct) { runtime_lock(h); mstats.heap_alloc += m->mcache->local_alloc; m->mcache->local_alloc = 0; mstats.heap_objects += m->mcache->local_objects; m->mcache->local_objects = 0; mstats.heap_inuse -= s->npages<npages<state != MSpanInUse || s->ref != 0) { // runtime_printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d\n", s, s->start<state, s->ref); runtime_throw("MHeap_FreeLocked - invalid free"); } s->state = MSpanFree; runtime_MSpanList_Remove(s); sp = (uintptr*)(s->start<start; if(sizeof(void*) == 8) p -= (uintptr)h->arena_start >> PageShift; if(p > 0 && (t = h->map[p-1]) != nil && t->state != MSpanInUse) { tp = (uintptr*)(t->start<start = t->start; s->npages += t->npages; p -= t->npages; h->map[p] = s; runtime_MSpanList_Remove(t); t->state = MSpanDead; runtime_FixAlloc_Free(&h->spanalloc, t); mstats.mspan_inuse = h->spanalloc.inuse; mstats.mspan_sys = h->spanalloc.sys; } if(p+s->npages < nelem(h->map) && (t = h->map[p+s->npages]) != nil && t->state != MSpanInUse) { tp = (uintptr*)(t->start<npages += t->npages; h->map[p + s->npages - 1] = s; runtime_MSpanList_Remove(t); t->state = MSpanDead; runtime_FixAlloc_Free(&h->spanalloc, t); mstats.mspan_inuse = h->spanalloc.inuse; mstats.mspan_sys = h->spanalloc.sys; } // Insert s into appropriate list. if(s->npages < nelem(h->free)) runtime_MSpanList_Insert(&h->free[s->npages], s); else runtime_MSpanList_Insert(&h->large, s); // TODO(rsc): IncrementalScavenge() to return memory to OS. } // Initialize a new span with the given start and npages. void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages) { span->next = nil; span->prev = nil; span->start = start; span->npages = npages; span->freelist = nil; span->ref = 0; span->sizeclass = 0; span->state = 0; } // Initialize an empty doubly-linked list. void runtime_MSpanList_Init(MSpan *list) { list->state = MSpanListHead; list->next = list; list->prev = list; } void runtime_MSpanList_Remove(MSpan *span) { if(span->prev == nil && span->next == nil) return; span->prev->next = span->next; span->next->prev = span->prev; span->prev = nil; span->next = nil; } bool runtime_MSpanList_IsEmpty(MSpan *list) { return list->next == list; } void runtime_MSpanList_Insert(MSpan *list, MSpan *span) { if(span->next != nil || span->prev != nil) { // runtime_printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev); runtime_throw("MSpanList_Insert"); } span->next = list->next; span->prev = list; span->next->prev = span; span->prev->next = span; }