// vector specialization -*- C++ -*- // Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996-1999 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_bvector.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _BVECTOR_H #define _BVECTOR_H 1 namespace _GLIBCXX_STD { typedef unsigned long _Bit_type; enum { _S_word_bit = int(CHAR_BIT * sizeof(_Bit_type)) }; struct _Bit_reference { _Bit_type * _M_p; _Bit_type _M_mask; _Bit_reference(_Bit_type * __x, _Bit_type __y) : _M_p(__x), _M_mask(__y) { } _Bit_reference() : _M_p(0), _M_mask(0) { } operator bool() const { return !!(*_M_p & _M_mask); } _Bit_reference& operator=(bool __x) { if (__x) *_M_p |= _M_mask; else *_M_p &= ~_M_mask; return *this; } _Bit_reference& operator=(const _Bit_reference& __x) { return *this = bool(__x); } bool operator==(const _Bit_reference& __x) const { return bool(*this) == bool(__x); } bool operator<(const _Bit_reference& __x) const { return !bool(*this) && bool(__x); } void flip() { *_M_p ^= _M_mask; } }; struct _Bit_iterator_base : public iterator { _Bit_type * _M_p; unsigned int _M_offset; _Bit_iterator_base(_Bit_type * __x, unsigned int __y) : _M_p(__x), _M_offset(__y) { } void _M_bump_up() { if (_M_offset++ == _S_word_bit - 1) { _M_offset = 0; ++_M_p; } } void _M_bump_down() { if (_M_offset-- == 0) { _M_offset = _S_word_bit - 1; --_M_p; } } void _M_incr(ptrdiff_t __i) { difference_type __n = __i + _M_offset; _M_p += __n / _S_word_bit; __n = __n % _S_word_bit; if (__n < 0) { _M_offset = static_cast(__n + _S_word_bit); --_M_p; } else _M_offset = static_cast(__n); } bool operator==(const _Bit_iterator_base& __i) const { return _M_p == __i._M_p && _M_offset == __i._M_offset; } bool operator<(const _Bit_iterator_base& __i) const { return _M_p < __i._M_p || (_M_p == __i._M_p && _M_offset < __i._M_offset); } bool operator!=(const _Bit_iterator_base& __i) const { return !(*this == __i); } bool operator>(const _Bit_iterator_base& __i) const { return __i < *this; } bool operator<=(const _Bit_iterator_base& __i) const { return !(__i < *this); } bool operator>=(const _Bit_iterator_base& __i) const { return !(*this < __i); } }; inline ptrdiff_t operator-(const _Bit_iterator_base& __x, const _Bit_iterator_base& __y) { return _S_word_bit * (__x._M_p - __y._M_p) + __x._M_offset - __y._M_offset; } struct _Bit_iterator : public _Bit_iterator_base { typedef _Bit_reference reference; typedef _Bit_reference* pointer; typedef _Bit_iterator iterator; _Bit_iterator() : _Bit_iterator_base(0, 0) { } _Bit_iterator(_Bit_type * __x, unsigned int __y) : _Bit_iterator_base(__x, __y) { } reference operator*() const { return reference(_M_p, 1UL << _M_offset); } iterator& operator++() { _M_bump_up(); return *this; } iterator operator++(int) { iterator __tmp = *this; _M_bump_up(); return __tmp; } iterator& operator--() { _M_bump_down(); return *this; } iterator operator--(int) { iterator __tmp = *this; _M_bump_down(); return __tmp; } iterator& operator+=(difference_type __i) { _M_incr(__i); return *this; } iterator& operator-=(difference_type __i) { *this += -__i; return *this; } iterator operator+(difference_type __i) const { iterator __tmp = *this; return __tmp += __i; } iterator operator-(difference_type __i) const { iterator __tmp = *this; return __tmp -= __i; } reference operator[](difference_type __i) { return *(*this + __i); } }; inline _Bit_iterator operator+(ptrdiff_t __n, const _Bit_iterator& __x) { return __x + __n; } struct _Bit_const_iterator : public _Bit_iterator_base { typedef bool reference; typedef bool const_reference; typedef const bool* pointer; typedef _Bit_const_iterator const_iterator; _Bit_const_iterator() : _Bit_iterator_base(0, 0) { } _Bit_const_iterator(_Bit_type * __x, unsigned int __y) : _Bit_iterator_base(__x, __y) { } _Bit_const_iterator(const _Bit_iterator& __x) : _Bit_iterator_base(__x._M_p, __x._M_offset) { } const_reference operator*() const { return _Bit_reference(_M_p, 1UL << _M_offset); } const_iterator& operator++() { _M_bump_up(); return *this; } const_iterator operator++(int) { const_iterator __tmp = *this; _M_bump_up(); return __tmp; } const_iterator& operator--() { _M_bump_down(); return *this; } const_iterator operator--(int) { const_iterator __tmp = *this; _M_bump_down(); return __tmp; } const_iterator& operator+=(difference_type __i) { _M_incr(__i); return *this; } const_iterator& operator-=(difference_type __i) { *this += -__i; return *this; } const_iterator operator+(difference_type __i) const { const_iterator __tmp = *this; return __tmp += __i; } const_iterator operator-(difference_type __i) const { const_iterator __tmp = *this; return __tmp -= __i; } const_reference operator[](difference_type __i) { return *(*this + __i); } }; inline _Bit_const_iterator operator+(ptrdiff_t __n, const _Bit_const_iterator& __x) { return __x + __n; } template class _Bvector_base { typedef typename _Alloc::template rebind<_Bit_type>::other _Bit_alloc_type; struct _Bvector_impl : public _Bit_alloc_type { _Bit_iterator _M_start; _Bit_iterator _M_finish; _Bit_type* _M_end_of_storage; _Bvector_impl(const _Bit_alloc_type& __a) : _Bit_alloc_type(__a), _M_start(), _M_finish(), _M_end_of_storage(0) { } }; public: typedef _Alloc allocator_type; allocator_type get_allocator() const { return *static_cast(&this->_M_impl); } _Bvector_base(const allocator_type& __a) : _M_impl(__a) { } ~_Bvector_base() { this->_M_deallocate(); } protected: _Bvector_impl _M_impl; _Bit_type* _M_allocate(size_t __n) { return _M_impl.allocate((__n + _S_word_bit - 1) / _S_word_bit); } void _M_deallocate() { if (_M_impl._M_start._M_p) _M_impl.deallocate(_M_impl._M_start._M_p, _M_impl._M_end_of_storage - _M_impl._M_start._M_p); } }; } // namespace std // Declare a partial specialization of vector. #include namespace _GLIBCXX_STD { /** * @brief A specialization of vector for booleans which offers fixed time * access to individual elements in any order. * * Note that vector does not actually meet the requirements for being * a container. This is because the reference and pointer types are not * really references and pointers to bool. See DR96 for details. @see * vector for function documentation. * * @ingroup Containers * @ingroup Sequences * * In some terminology a %vector can be described as a dynamic * C-style array, it offers fast and efficient access to individual * elements in any order and saves the user from worrying about * memory and size allocation. Subscripting ( @c [] ) access is * also provided as with C-style arrays. */ template class vector : public _Bvector_base<_Alloc> { public: typedef bool value_type; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Bit_reference reference; typedef bool const_reference; typedef _Bit_reference* pointer; typedef const bool* const_pointer; typedef _Bit_iterator iterator; typedef _Bit_const_iterator const_iterator; typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; typedef typename _Bvector_base<_Alloc>::allocator_type allocator_type; allocator_type get_allocator() const { return _Bvector_base<_Alloc>::get_allocator(); } protected: using _Bvector_base<_Alloc>::_M_allocate; using _Bvector_base<_Alloc>::_M_deallocate; protected: void _M_initialize(size_type __n) { _Bit_type* __q = this->_M_allocate(__n); this->_M_impl._M_end_of_storage = __q + (__n + _S_word_bit - 1) / _S_word_bit; this->_M_impl._M_start = iterator(__q, 0); this->_M_impl._M_finish = this->_M_impl._M_start + difference_type(__n); } void _M_insert_aux(iterator __position, bool __x) { if (this->_M_impl._M_finish._M_p != this->_M_impl._M_end_of_storage) { std::copy_backward(__position, this->_M_impl._M_finish, this->_M_impl._M_finish + 1); *__position = __x; ++this->_M_impl._M_finish; } else { const size_type __len = size() ? 2 * size() : static_cast(_S_word_bit); _Bit_type * __q = this->_M_allocate(__len); iterator __i = std::copy(begin(), __position, iterator(__q, 0)); *__i++ = __x; this->_M_impl._M_finish = std::copy(__position, end(), __i); this->_M_deallocate(); this->_M_impl._M_end_of_storage = __q + (__len + _S_word_bit - 1) / _S_word_bit; this->_M_impl._M_start = iterator(__q, 0); } } template void _M_initialize_range(_InputIterator __first, _InputIterator __last, input_iterator_tag) { this->_M_impl._M_start = iterator(); this->_M_impl._M_finish = iterator(); this->_M_impl._M_end_of_storage = 0; for ( ; __first != __last; ++__first) push_back(*__first); } template void _M_initialize_range(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { const size_type __n = std::distance(__first, __last); _M_initialize(__n); std::copy(__first, __last, this->_M_impl._M_start); } template void _M_insert_range(iterator __pos, _InputIterator __first, _InputIterator __last, input_iterator_tag) { for ( ; __first != __last; ++__first) { __pos = insert(__pos, *__first); ++__pos; } } template void _M_insert_range(iterator __position, _ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { if (__first != __last) { size_type __n = std::distance(__first, __last); if (capacity() - size() >= __n) { std::copy_backward(__position, end(), this->_M_impl._M_finish + difference_type(__n)); std::copy(__first, __last, __position); this->_M_impl._M_finish += difference_type(__n); } else { const size_type __len = size() + std::max(size(), __n); _Bit_type * __q = this->_M_allocate(__len); iterator __i = std::copy(begin(), __position, iterator(__q, 0)); __i = std::copy(__first, __last, __i); this->_M_impl._M_finish = std::copy(__position, end(), __i); this->_M_deallocate(); this->_M_impl._M_end_of_storage = __q + (__len + _S_word_bit - 1) / _S_word_bit; this->_M_impl._M_start = iterator(__q, 0); } } } public: iterator begin() { return this->_M_impl._M_start; } const_iterator begin() const { return this->_M_impl._M_start; } iterator end() { return this->_M_impl._M_finish; } const_iterator end() const { return this->_M_impl._M_finish; } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } size_type size() const { return size_type(end() - begin()); } size_type max_size() const { return size_type(-1); } size_type capacity() const { return size_type(const_iterator(this->_M_impl._M_end_of_storage, 0) - begin()); } bool empty() const { return begin() == end(); } reference operator[](size_type __n) { return *(begin() + difference_type(__n)); } const_reference operator[](size_type __n) const { return *(begin() + difference_type(__n)); } void _M_range_check(size_type __n) const { if (__n >= this->size()) __throw_out_of_range(__N("vector::_M_range_check")); } reference at(size_type __n) { _M_range_check(__n); return (*this)[__n]; } const_reference at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; } explicit vector(const allocator_type& __a = allocator_type()) : _Bvector_base<_Alloc>(__a) { } vector(size_type __n, bool __value, const allocator_type& __a = allocator_type()) : _Bvector_base<_Alloc>(__a) { _M_initialize(__n); std::fill(this->_M_impl._M_start._M_p, this->_M_impl._M_end_of_storage, __value ? ~0 : 0); } explicit vector(size_type __n) : _Bvector_base<_Alloc>(allocator_type()) { _M_initialize(__n); std::fill(this->_M_impl._M_start._M_p, this->_M_impl._M_end_of_storage, 0); } vector(const vector& __x) : _Bvector_base<_Alloc>(__x.get_allocator()) { _M_initialize(__x.size()); std::copy(__x.begin(), __x.end(), this->_M_impl._M_start); } // Check whether it's an integral type. If so, it's not an iterator. template void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) { _M_initialize(__n); std::fill(this->_M_impl._M_start._M_p, this->_M_impl._M_end_of_storage, __x ? ~0 : 0); } template void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { _M_initialize_range(__first, __last, std::__iterator_category(__first)); } template vector(_InputIterator __first, _InputIterator __last, const allocator_type& __a = allocator_type()) : _Bvector_base<_Alloc>(__a) { typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_initialize_dispatch(__first, __last, _Integral()); } ~vector() { } vector& operator=(const vector& __x) { if (&__x == this) return *this; if (__x.size() > capacity()) { this->_M_deallocate(); _M_initialize(__x.size()); } std::copy(__x.begin(), __x.end(), begin()); this->_M_impl._M_finish = begin() + difference_type(__x.size()); return *this; } // assign(), a generalized assignment member function. Two // versions: one that takes a count, and one that takes a range. // The range version is a member template, so we dispatch on whether // or not the type is an integer. void _M_fill_assign(size_t __n, bool __x) { if (__n > size()) { std::fill(this->_M_impl._M_start._M_p, this->_M_impl._M_end_of_storage, __x ? ~0 : 0); insert(end(), __n - size(), __x); } else { erase(begin() + __n, end()); std::fill(this->_M_impl._M_start._M_p, this->_M_impl._M_end_of_storage, __x ? ~0 : 0); } } void assign(size_t __n, bool __x) { _M_fill_assign(__n, __x); } template void assign(_InputIterator __first, _InputIterator __last) { typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_assign_dispatch(__first, __last, _Integral()); } template void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) { _M_fill_assign((size_t) __n, (bool) __val); } template void _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type) { _M_assign_aux(__first, __last, std::__iterator_category(__first)); } template void _M_assign_aux(_InputIterator __first, _InputIterator __last, input_iterator_tag) { iterator __cur = begin(); for ( ; __first != __last && __cur != end(); ++__cur, ++__first) *__cur = *__first; if (__first == __last) erase(__cur, end()); else insert(end(), __first, __last); } template void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { const size_type __len = std::distance(__first, __last); if (__len < size()) erase(std::copy(__first, __last, begin()), end()); else { _ForwardIterator __mid = __first; std::advance(__mid, size()); std::copy(__first, __mid, begin()); insert(end(), __mid, __last); } } void reserve(size_type __n) { if (__n > this->max_size()) __throw_length_error(__N("vector::reserve")); if (this->capacity() < __n) { _Bit_type* __q = this->_M_allocate(__n); this->_M_impl._M_finish = std::copy(begin(), end(), iterator(__q, 0)); this->_M_deallocate(); this->_M_impl._M_start = iterator(__q, 0); this->_M_impl._M_end_of_storage = __q + (__n + _S_word_bit - 1) / _S_word_bit; } } reference front() { return *begin(); } const_reference front() const { return *begin(); } reference back() { return *(end() - 1); } const_reference back() const { return *(end() - 1); } void push_back(bool __x) { if (this->_M_impl._M_finish._M_p != this->_M_impl._M_end_of_storage) *this->_M_impl._M_finish++ = __x; else _M_insert_aux(end(), __x); } void swap(vector& __x) { std::swap(this->_M_impl._M_start, __x._M_impl._M_start); std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); std::swap(this->_M_impl._M_end_of_storage, __x._M_impl._M_end_of_storage); } // [23.2.5]/1, third-to-last entry in synopsis listing static void swap(reference __x, reference __y) { bool __tmp = __x; __x = __y; __y = __tmp; } iterator insert(iterator __position, bool __x = bool()) { const difference_type __n = __position - begin(); if (this->_M_impl._M_finish._M_p != this->_M_impl._M_end_of_storage && __position == end()) *this->_M_impl._M_finish++ = __x; else _M_insert_aux(__position, __x); return begin() + __n; } // Check whether it's an integral type. If so, it's not an iterator. template void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x, __true_type) { _M_fill_insert(__pos, __n, __x); } template void _M_insert_dispatch(iterator __pos, _InputIterator __first, _InputIterator __last, __false_type) { _M_insert_range(__pos, __first, __last, std::__iterator_category(__first)); } template void insert(iterator __position, _InputIterator __first, _InputIterator __last) { typedef typename _Is_integer<_InputIterator>::_Integral _Integral; _M_insert_dispatch(__position, __first, __last, _Integral()); } void _M_fill_insert(iterator __position, size_type __n, bool __x) { if (__n == 0) return; if (capacity() - size() >= __n) { std::copy_backward(__position, end(), this->_M_impl._M_finish + difference_type(__n)); std::fill(__position, __position + difference_type(__n), __x); this->_M_impl._M_finish += difference_type(__n); } else { const size_type __len = size() + std::max(size(), __n); _Bit_type * __q = this->_M_allocate(__len); iterator __i = std::copy(begin(), __position, iterator(__q, 0)); std::fill_n(__i, __n, __x); this->_M_impl._M_finish = std::copy(__position, end(), __i + difference_type(__n)); this->_M_deallocate(); this->_M_impl._M_end_of_storage = __q + (__len + _S_word_bit - 1) / _S_word_bit; this->_M_impl._M_start = iterator(__q, 0); } } void insert(iterator __position, size_type __n, bool __x) { _M_fill_insert(__position, __n, __x); } void pop_back() { --this->_M_impl._M_finish; } iterator erase(iterator __position) { if (__position + 1 != end()) std::copy(__position + 1, end(), __position); --this->_M_impl._M_finish; return __position; } iterator erase(iterator __first, iterator __last) { this->_M_impl._M_finish = std::copy(__last, end(), __first); return __first; } void resize(size_type __new_size, bool __x = bool()) { if (__new_size < size()) erase(begin() + difference_type(__new_size), end()); else insert(end(), __new_size - size(), __x); } void flip() { for (_Bit_type * __p = this->_M_impl._M_start._M_p; __p != this->_M_impl._M_end_of_storage; ++__p) *__p = ~*__p; } void clear() { erase(begin(), end()); } }; } // namespace std #endif