/* Expand builtin functions. Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include "system.h" #include "machmode.h" #include "rtl.h" #include "tree.h" #include "obstack.h" #include "flags.h" #include "regs.h" #include "hard-reg-set.h" #include "except.h" #include "function.h" #include "insn-config.h" #include "expr.h" #include "optabs.h" #include "libfuncs.h" #include "recog.h" #include "output.h" #include "typeclass.h" #include "toplev.h" #include "predict.h" #include "tm_p.h" #include "target.h" #define CALLED_AS_BUILT_IN(NODE) \ (!strncmp (IDENTIFIER_POINTER (DECL_NAME (NODE)), "__builtin_", 10)) /* Register mappings for target machines without register windows. */ #ifndef INCOMING_REGNO #define INCOMING_REGNO(OUT) (OUT) #endif #ifndef OUTGOING_REGNO #define OUTGOING_REGNO(IN) (IN) #endif #ifndef PAD_VARARGS_DOWN #define PAD_VARARGS_DOWN BYTES_BIG_ENDIAN #endif /* Define the names of the builtin function types and codes. */ const char *const built_in_class_names[4] = {"NOT_BUILT_IN", "BUILT_IN_FRONTEND", "BUILT_IN_MD", "BUILT_IN_NORMAL"}; #define DEF_BUILTIN(X, N, C, T, LT, B, F, NA) STRINGX(X), const char *const built_in_names[(int) END_BUILTINS] = { #include "builtins.def" }; #undef DEF_BUILTIN /* Setup an array of _DECL trees, make sure each element is initialized to NULL_TREE. */ tree built_in_decls[(int) END_BUILTINS]; tree (*lang_type_promotes_to) PARAMS ((tree)); static int get_pointer_alignment PARAMS ((tree, unsigned int)); static tree c_strlen PARAMS ((tree)); static const char *c_getstr PARAMS ((tree)); static rtx c_readstr PARAMS ((const char *, enum machine_mode)); static int target_char_cast PARAMS ((tree, char *)); static rtx get_memory_rtx PARAMS ((tree)); static int apply_args_size PARAMS ((void)); static int apply_result_size PARAMS ((void)); #if defined (HAVE_untyped_call) || defined (HAVE_untyped_return) static rtx result_vector PARAMS ((int, rtx)); #endif static rtx expand_builtin_setjmp PARAMS ((tree, rtx)); static rtx expand_builtin_apply_args PARAMS ((void)); static rtx expand_builtin_apply_args_1 PARAMS ((void)); static rtx expand_builtin_apply PARAMS ((rtx, rtx, rtx)); static void expand_builtin_return PARAMS ((rtx)); static enum type_class type_to_class PARAMS ((tree)); static rtx expand_builtin_classify_type PARAMS ((tree)); static rtx expand_builtin_mathfn PARAMS ((tree, rtx, rtx)); static rtx expand_builtin_constant_p PARAMS ((tree)); static rtx expand_builtin_args_info PARAMS ((tree)); static rtx expand_builtin_next_arg PARAMS ((tree)); static rtx expand_builtin_va_start PARAMS ((int, tree)); static rtx expand_builtin_va_end PARAMS ((tree)); static rtx expand_builtin_va_copy PARAMS ((tree)); #ifdef HAVE_cmpstrsi static rtx expand_builtin_memcmp PARAMS ((tree, tree, rtx)); #endif static rtx expand_builtin_strcmp PARAMS ((tree, rtx, enum machine_mode)); static rtx expand_builtin_strncmp PARAMS ((tree, rtx, enum machine_mode)); static rtx builtin_memcpy_read_str PARAMS ((PTR, HOST_WIDE_INT, enum machine_mode)); static rtx expand_builtin_strcat PARAMS ((tree, rtx, enum machine_mode)); static rtx expand_builtin_strncat PARAMS ((tree, rtx, enum machine_mode)); static rtx expand_builtin_strspn PARAMS ((tree, rtx, enum machine_mode)); static rtx expand_builtin_strcspn PARAMS ((tree, rtx, enum machine_mode)); static rtx expand_builtin_memcpy PARAMS ((tree)); static rtx expand_builtin_strcpy PARAMS ((tree)); static rtx builtin_strncpy_read_str PARAMS ((PTR, HOST_WIDE_INT, enum machine_mode)); static rtx expand_builtin_strncpy PARAMS ((tree, rtx, enum machine_mode)); static rtx builtin_memset_read_str PARAMS ((PTR, HOST_WIDE_INT, enum machine_mode)); static rtx expand_builtin_memset PARAMS ((tree)); static rtx expand_builtin_bzero PARAMS ((tree)); static rtx expand_builtin_strlen PARAMS ((tree, rtx)); static rtx expand_builtin_strstr PARAMS ((tree, rtx, enum machine_mode)); static rtx expand_builtin_strpbrk PARAMS ((tree, rtx, enum machine_mode)); static rtx expand_builtin_strchr PARAMS ((tree, rtx, enum machine_mode)); static rtx expand_builtin_strrchr PARAMS ((tree, rtx, enum machine_mode)); static rtx expand_builtin_alloca PARAMS ((tree, rtx)); static rtx expand_builtin_ffs PARAMS ((tree, rtx, rtx)); static rtx expand_builtin_frame_address PARAMS ((tree)); static rtx expand_builtin_fputs PARAMS ((tree, int)); static tree stabilize_va_list PARAMS ((tree, int)); static rtx expand_builtin_expect PARAMS ((tree, rtx)); static tree fold_builtin_constant_p PARAMS ((tree)); static tree fold_builtin_classify_type PARAMS ((tree)); static tree build_function_call_expr PARAMS ((tree, tree)); static int validate_arglist PARAMS ((tree, ...)); /* Return the alignment in bits of EXP, a pointer valued expression. But don't return more than MAX_ALIGN no matter what. The alignment returned is, by default, the alignment of the thing that EXP points to. If it is not a POINTER_TYPE, 0 is returned. Otherwise, look at the expression to see if we can do better, i.e., if the expression is actually pointing at an object whose alignment is tighter. */ static int get_pointer_alignment (exp, max_align) tree exp; unsigned int max_align; { unsigned int align, inner; if (TREE_CODE (TREE_TYPE (exp)) != POINTER_TYPE) return 0; align = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))); align = MIN (align, max_align); while (1) { switch (TREE_CODE (exp)) { case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR: exp = TREE_OPERAND (exp, 0); if (TREE_CODE (TREE_TYPE (exp)) != POINTER_TYPE) return align; inner = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp))); align = MIN (inner, max_align); break; case PLUS_EXPR: /* If sum of pointer + int, restrict our maximum alignment to that imposed by the integer. If not, we can't do any better than ALIGN. */ if (! host_integerp (TREE_OPERAND (exp, 1), 1)) return align; while (((tree_low_cst (TREE_OPERAND (exp, 1), 1)) & (max_align / BITS_PER_UNIT - 1)) != 0) max_align >>= 1; exp = TREE_OPERAND (exp, 0); break; case ADDR_EXPR: /* See what we are pointing at and look at its alignment. */ exp = TREE_OPERAND (exp, 0); if (TREE_CODE (exp) == FUNCTION_DECL) align = FUNCTION_BOUNDARY; else if (DECL_P (exp)) align = DECL_ALIGN (exp); #ifdef CONSTANT_ALIGNMENT else if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c') align = CONSTANT_ALIGNMENT (exp, align); #endif return MIN (align, max_align); default: return align; } } } /* Compute the length of a C string. TREE_STRING_LENGTH is not the right way, because it could contain a zero byte in the middle. TREE_STRING_LENGTH is the size of the character array, not the string. The value returned is of type `ssizetype'. Unfortunately, string_constant can't access the values of const char arrays with initializers, so neither can we do so here. */ static tree c_strlen (src) tree src; { tree offset_node; HOST_WIDE_INT offset; int max; const char *ptr; src = string_constant (src, &offset_node); if (src == 0) return 0; max = TREE_STRING_LENGTH (src) - 1; ptr = TREE_STRING_POINTER (src); if (offset_node && TREE_CODE (offset_node) != INTEGER_CST) { /* If the string has an internal zero byte (e.g., "foo\0bar"), we can't compute the offset to the following null if we don't know where to start searching for it. */ int i; for (i = 0; i < max; i++) if (ptr[i] == 0) return 0; /* We don't know the starting offset, but we do know that the string has no internal zero bytes. We can assume that the offset falls within the bounds of the string; otherwise, the programmer deserves what he gets. Subtract the offset from the length of the string, and return that. This would perhaps not be valid if we were dealing with named arrays in addition to literal string constants. */ return size_diffop (size_int (max), offset_node); } /* We have a known offset into the string. Start searching there for a null character if we can represent it as a single HOST_WIDE_INT. */ if (offset_node == 0) offset = 0; else if (! host_integerp (offset_node, 0)) offset = -1; else offset = tree_low_cst (offset_node, 0); /* If the offset is known to be out of bounds, warn, and call strlen at runtime. */ if (offset < 0 || offset > max) { warning ("offset outside bounds of constant string"); return 0; } /* Use strlen to search for the first zero byte. Since any strings constructed with build_string will have nulls appended, we win even if we get handed something like (char[4])"abcd". Since OFFSET is our starting index into the string, no further calculation is needed. */ return ssize_int (strlen (ptr + offset)); } /* Return a char pointer for a C string if it is a string constant or sum of string constant and integer constant. */ static const char * c_getstr (src) tree src; { tree offset_node; src = string_constant (src, &offset_node); if (src == 0) return 0; if (offset_node == 0) return TREE_STRING_POINTER (src); else if (!host_integerp (offset_node, 1) || compare_tree_int (offset_node, TREE_STRING_LENGTH (src) - 1) > 0) return 0; return TREE_STRING_POINTER (src) + tree_low_cst (offset_node, 1); } /* Return a CONST_INT or CONST_DOUBLE corresponding to target reading GET_MODE_BITSIZE (MODE) bits from string constant STR. */ static rtx c_readstr (str, mode) const char *str; enum machine_mode mode; { HOST_WIDE_INT c[2]; HOST_WIDE_INT ch; unsigned int i, j; if (GET_MODE_CLASS (mode) != MODE_INT) abort (); c[0] = 0; c[1] = 0; ch = 1; for (i = 0; i < GET_MODE_SIZE (mode); i++) { j = i; if (WORDS_BIG_ENDIAN) j = GET_MODE_SIZE (mode) - i - 1; if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN && GET_MODE_SIZE (mode) > UNITS_PER_WORD) j = j + UNITS_PER_WORD - 2 * (j % UNITS_PER_WORD) - 1; j *= BITS_PER_UNIT; if (j > 2 * HOST_BITS_PER_WIDE_INT) abort (); if (ch) ch = (unsigned char) str[i]; c[j / HOST_BITS_PER_WIDE_INT] |= ch << (j % HOST_BITS_PER_WIDE_INT); } return immed_double_const (c[0], c[1], mode); } /* Cast a target constant CST to target CHAR and if that value fits into host char type, return zero and put that value into variable pointed by P. */ static int target_char_cast (cst, p) tree cst; char *p; { unsigned HOST_WIDE_INT val, hostval; if (!host_integerp (cst, 1) || CHAR_TYPE_SIZE > HOST_BITS_PER_WIDE_INT) return 1; val = tree_low_cst (cst, 1); if (CHAR_TYPE_SIZE < HOST_BITS_PER_WIDE_INT) val &= (((unsigned HOST_WIDE_INT) 1) << CHAR_TYPE_SIZE) - 1; hostval = val; if (HOST_BITS_PER_CHAR < HOST_BITS_PER_WIDE_INT) hostval &= (((unsigned HOST_WIDE_INT) 1) << HOST_BITS_PER_CHAR) - 1; if (val != hostval) return 1; *p = hostval; return 0; } /* Given TEM, a pointer to a stack frame, follow the dynamic chain COUNT times to get the address of either a higher stack frame, or a return address located within it (depending on FNDECL_CODE). */ rtx expand_builtin_return_addr (fndecl_code, count, tem) enum built_in_function fndecl_code; int count; rtx tem; { int i; /* Some machines need special handling before we can access arbitrary frames. For example, on the sparc, we must first flush all register windows to the stack. */ #ifdef SETUP_FRAME_ADDRESSES if (count > 0) SETUP_FRAME_ADDRESSES (); #endif /* On the sparc, the return address is not in the frame, it is in a register. There is no way to access it off of the current frame pointer, but it can be accessed off the previous frame pointer by reading the value from the register window save area. */ #ifdef RETURN_ADDR_IN_PREVIOUS_FRAME if (fndecl_code == BUILT_IN_RETURN_ADDRESS) count--; #endif /* Scan back COUNT frames to the specified frame. */ for (i = 0; i < count; i++) { /* Assume the dynamic chain pointer is in the word that the frame address points to, unless otherwise specified. */ #ifdef DYNAMIC_CHAIN_ADDRESS tem = DYNAMIC_CHAIN_ADDRESS (tem); #endif tem = memory_address (Pmode, tem); tem = gen_rtx_MEM (Pmode, tem); set_mem_alias_set (tem, get_frame_alias_set ()); tem = copy_to_reg (tem); } /* For __builtin_frame_address, return what we've got. */ if (fndecl_code == BUILT_IN_FRAME_ADDRESS) return tem; /* For __builtin_return_address, Get the return address from that frame. */ #ifdef RETURN_ADDR_RTX tem = RETURN_ADDR_RTX (count, tem); #else tem = memory_address (Pmode, plus_constant (tem, GET_MODE_SIZE (Pmode))); tem = gen_rtx_MEM (Pmode, tem); set_mem_alias_set (tem, get_frame_alias_set ()); #endif return tem; } /* Alias set used for setjmp buffer. */ static HOST_WIDE_INT setjmp_alias_set = -1; /* Construct the leading half of a __builtin_setjmp call. Control will return to RECEIVER_LABEL. This is used directly by sjlj exception handling code. */ void expand_builtin_setjmp_setup (buf_addr, receiver_label) rtx buf_addr; rtx receiver_label; { enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL); rtx stack_save; rtx mem; if (setjmp_alias_set == -1) setjmp_alias_set = new_alias_set (); #ifdef POINTERS_EXTEND_UNSIGNED buf_addr = convert_memory_address (Pmode, buf_addr); #endif buf_addr = force_reg (Pmode, force_operand (buf_addr, NULL_RTX)); emit_queue (); /* We store the frame pointer and the address of receiver_label in the buffer and use the rest of it for the stack save area, which is machine-dependent. */ #ifndef BUILTIN_SETJMP_FRAME_VALUE #define BUILTIN_SETJMP_FRAME_VALUE virtual_stack_vars_rtx #endif mem = gen_rtx_MEM (Pmode, buf_addr); set_mem_alias_set (mem, setjmp_alias_set); emit_move_insn (mem, BUILTIN_SETJMP_FRAME_VALUE); mem = gen_rtx_MEM (Pmode, plus_constant (buf_addr, GET_MODE_SIZE (Pmode))), set_mem_alias_set (mem, setjmp_alias_set); emit_move_insn (validize_mem (mem), force_reg (Pmode, gen_rtx_LABEL_REF (Pmode, receiver_label))); stack_save = gen_rtx_MEM (sa_mode, plus_constant (buf_addr, 2 * GET_MODE_SIZE (Pmode))); set_mem_alias_set (stack_save, setjmp_alias_set); emit_stack_save (SAVE_NONLOCAL, &stack_save, NULL_RTX); /* If there is further processing to do, do it. */ #ifdef HAVE_builtin_setjmp_setup if (HAVE_builtin_setjmp_setup) emit_insn (gen_builtin_setjmp_setup (buf_addr)); #endif /* Tell optimize_save_area_alloca that extra work is going to need to go on during alloca. */ current_function_calls_setjmp = 1; /* Set this so all the registers get saved in our frame; we need to be able to copy the saved values for any registers from frames we unwind. */ current_function_has_nonlocal_label = 1; } /* Construct the trailing part of a __builtin_setjmp call. This is used directly by sjlj exception handling code. */ void expand_builtin_setjmp_receiver (receiver_label) rtx receiver_label ATTRIBUTE_UNUSED; { /* Clobber the FP when we get here, so we have to make sure it's marked as used by this function. */ emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx)); /* Mark the static chain as clobbered here so life information doesn't get messed up for it. */ emit_insn (gen_rtx_CLOBBER (VOIDmode, static_chain_rtx)); /* Now put in the code to restore the frame pointer, and argument pointer, if needed. The code below is from expand_end_bindings in stmt.c; see detailed documentation there. */ #ifdef HAVE_nonlocal_goto if (! HAVE_nonlocal_goto) #endif emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx); #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM if (fixed_regs[ARG_POINTER_REGNUM]) { #ifdef ELIMINABLE_REGS size_t i; static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS; for (i = 0; i < ARRAY_SIZE (elim_regs); i++) if (elim_regs[i].from == ARG_POINTER_REGNUM && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM) break; if (i == ARRAY_SIZE (elim_regs)) #endif { /* Now restore our arg pointer from the address at which it was saved in our stack frame. */ emit_move_insn (virtual_incoming_args_rtx, copy_to_reg (get_arg_pointer_save_area (cfun))); } } #endif #ifdef HAVE_builtin_setjmp_receiver if (HAVE_builtin_setjmp_receiver) emit_insn (gen_builtin_setjmp_receiver (receiver_label)); else #endif #ifdef HAVE_nonlocal_goto_receiver if (HAVE_nonlocal_goto_receiver) emit_insn (gen_nonlocal_goto_receiver ()); else #endif { /* Nothing */ } /* @@@ This is a kludge. Not all machine descriptions define a blockage insn, but we must not allow the code we just generated to be reordered by scheduling. Specifically, the update of the frame pointer must happen immediately, not later. So emit an ASM_INPUT to act as blockage insn. */ emit_insn (gen_rtx_ASM_INPUT (VOIDmode, "")); } /* __builtin_setjmp is passed a pointer to an array of five words (not all will be used on all machines). It operates similarly to the C library function of the same name, but is more efficient. Much of the code below (and for longjmp) is copied from the handling of non-local gotos. NOTE: This is intended for use by GNAT and the exception handling scheme in the compiler and will only work in the method used by them. */ static rtx expand_builtin_setjmp (arglist, target) tree arglist; rtx target; { rtx buf_addr, next_lab, cont_lab; if (!validate_arglist (arglist, POINTER_TYPE, VOID_TYPE)) return NULL_RTX; if (target == 0 || GET_CODE (target) != REG || REGNO (target) < FIRST_PSEUDO_REGISTER) target = gen_reg_rtx (TYPE_MODE (integer_type_node)); buf_addr = expand_expr (TREE_VALUE (arglist), NULL_RTX, VOIDmode, 0); next_lab = gen_label_rtx (); cont_lab = gen_label_rtx (); expand_builtin_setjmp_setup (buf_addr, next_lab); /* Set TARGET to zero and branch to the continue label. */ emit_move_insn (target, const0_rtx); emit_jump_insn (gen_jump (cont_lab)); emit_barrier (); emit_label (next_lab); expand_builtin_setjmp_receiver (next_lab); /* Set TARGET to one. */ emit_move_insn (target, const1_rtx); emit_label (cont_lab); /* Tell flow about the strange goings on. Putting `next_lab' on `nonlocal_goto_handler_labels' to indicates that function calls may traverse the arc back to this label. */ current_function_has_nonlocal_label = 1; nonlocal_goto_handler_labels = gen_rtx_EXPR_LIST (VOIDmode, next_lab, nonlocal_goto_handler_labels); return target; } /* __builtin_longjmp is passed a pointer to an array of five words (not all will be used on all machines). It operates similarly to the C library function of the same name, but is more efficient. Much of the code below is copied from the handling of non-local gotos. NOTE: This is intended for use by GNAT and the exception handling scheme in the compiler and will only work in the method used by them. */ void expand_builtin_longjmp (buf_addr, value) rtx buf_addr, value; { rtx fp, lab, stack, insn; enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL); if (setjmp_alias_set == -1) setjmp_alias_set = new_alias_set (); #ifdef POINTERS_EXTEND_UNSIGNED buf_addr = convert_memory_address (Pmode, buf_addr); #endif buf_addr = force_reg (Pmode, buf_addr); /* We used to store value in static_chain_rtx, but that fails if pointers are smaller than integers. We instead require that the user must pass a second argument of 1, because that is what builtin_setjmp will return. This also makes EH slightly more efficient, since we are no longer copying around a value that we don't care about. */ if (value != const1_rtx) abort (); current_function_calls_longjmp = 1; #ifdef HAVE_builtin_longjmp if (HAVE_builtin_longjmp) emit_insn (gen_builtin_longjmp (buf_addr)); else #endif { fp = gen_rtx_MEM (Pmode, buf_addr); lab = gen_rtx_MEM (Pmode, plus_constant (buf_addr, GET_MODE_SIZE (Pmode))); stack = gen_rtx_MEM (sa_mode, plus_constant (buf_addr, 2 * GET_MODE_SIZE (Pmode))); set_mem_alias_set (fp, setjmp_alias_set); set_mem_alias_set (lab, setjmp_alias_set); set_mem_alias_set (stack, setjmp_alias_set); /* Pick up FP, label, and SP from the block and jump. This code is from expand_goto in stmt.c; see there for detailed comments. */ #if HAVE_nonlocal_goto if (HAVE_nonlocal_goto) /* We have to pass a value to the nonlocal_goto pattern that will get copied into the static_chain pointer, but it does not matter what that value is, because builtin_setjmp does not use it. */ emit_insn (gen_nonlocal_goto (value, lab, stack, fp)); else #endif { lab = copy_to_reg (lab); emit_move_insn (hard_frame_pointer_rtx, fp); emit_stack_restore (SAVE_NONLOCAL, stack, NULL_RTX); emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx)); emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx)); emit_indirect_jump (lab); } } /* Search backwards and mark the jump insn as a non-local goto. Note that this precludes the use of __builtin_longjmp to a __builtin_setjmp target in the same function. However, we've already cautioned the user that these functions are for internal exception handling use only. */ for (insn = get_last_insn (); insn; insn = PREV_INSN (insn)) { if (GET_CODE (insn) == JUMP_INSN) { REG_NOTES (insn) = alloc_EXPR_LIST (REG_NON_LOCAL_GOTO, const0_rtx, REG_NOTES (insn)); break; } else if (GET_CODE (insn) == CALL_INSN) break; } } /* Get a MEM rtx for expression EXP which is the address of an operand to be used to be used in a string instruction (cmpstrsi, movstrsi, ..). */ static rtx get_memory_rtx (exp) tree exp; { rtx mem = gen_rtx_MEM (BLKmode, memory_address (BLKmode, expand_expr (exp, NULL_RTX, ptr_mode, EXPAND_SUM))); /* Get an expression we can use to find the attributes to assign to MEM. If it is an ADDR_EXPR, use the operand. Otherwise, dereference it if we can. First remove any nops. */ while ((TREE_CODE (exp) == NOP_EXPR || TREE_CODE (exp) == CONVERT_EXPR || TREE_CODE (exp) == NON_LVALUE_EXPR) && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (exp, 0)))) exp = TREE_OPERAND (exp, 0); if (TREE_CODE (exp) == ADDR_EXPR) exp = TREE_OPERAND (exp, 0); else if (POINTER_TYPE_P (TREE_TYPE (exp))) exp = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (exp)), exp); else return mem; set_mem_attributes (mem, exp, 0); /* memcpy, memset and other builtin stringops can alias with anything. */ set_mem_alias_set (mem, 0); return mem; } /* Built-in functions to perform an untyped call and return. */ /* For each register that may be used for calling a function, this gives a mode used to copy the register's value. VOIDmode indicates the register is not used for calling a function. If the machine has register windows, this gives only the outbound registers. INCOMING_REGNO gives the corresponding inbound register. */ static enum machine_mode apply_args_mode[FIRST_PSEUDO_REGISTER]; /* For each register that may be used for returning values, this gives a mode used to copy the register's value. VOIDmode indicates the register is not used for returning values. If the machine has register windows, this gives only the outbound registers. INCOMING_REGNO gives the corresponding inbound register. */ static enum machine_mode apply_result_mode[FIRST_PSEUDO_REGISTER]; /* For each register that may be used for calling a function, this gives the offset of that register into the block returned by __builtin_apply_args. 0 indicates that the register is not used for calling a function. */ static int apply_args_reg_offset[FIRST_PSEUDO_REGISTER]; /* Return the offset of register REGNO into the block returned by __builtin_apply_args. This is not declared static, since it is needed in objc-act.c. */ int apply_args_register_offset (regno) int regno; { apply_args_size (); /* Arguments are always put in outgoing registers (in the argument block) if such make sense. */ #ifdef OUTGOING_REGNO regno = OUTGOING_REGNO(regno); #endif return apply_args_reg_offset[regno]; } /* Return the size required for the block returned by __builtin_apply_args, and initialize apply_args_mode. */ static int apply_args_size () { static int size = -1; int align, regno; enum machine_mode mode; /* The values computed by this function never change. */ if (size < 0) { /* The first value is the incoming arg-pointer. */ size = GET_MODE_SIZE (Pmode); /* The second value is the structure value address unless this is passed as an "invisible" first argument. */ if (struct_value_rtx) size += GET_MODE_SIZE (Pmode); for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (FUNCTION_ARG_REGNO_P (regno)) { /* Search for the proper mode for copying this register's value. I'm not sure this is right, but it works so far. */ enum machine_mode best_mode = VOIDmode; for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) if (HARD_REGNO_MODE_OK (regno, mode) && HARD_REGNO_NREGS (regno, mode) == 1) best_mode = mode; if (best_mode == VOIDmode) for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) if (HARD_REGNO_MODE_OK (regno, mode) && have_insn_for (SET, mode)) best_mode = mode; mode = best_mode; if (mode == VOIDmode) abort (); align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; apply_args_reg_offset[regno] = size; size += GET_MODE_SIZE (mode); apply_args_mode[regno] = mode; } else { apply_args_mode[regno] = VOIDmode; apply_args_reg_offset[regno] = 0; } } return size; } /* Return the size required for the block returned by __builtin_apply, and initialize apply_result_mode. */ static int apply_result_size () { static int size = -1; int align, regno; enum machine_mode mode; /* The values computed by this function never change. */ if (size < 0) { size = 0; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if (FUNCTION_VALUE_REGNO_P (regno)) { /* Search for the proper mode for copying this register's value. I'm not sure this is right, but it works so far. */ enum machine_mode best_mode = VOIDmode; for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != TImode; mode = GET_MODE_WIDER_MODE (mode)) if (HARD_REGNO_MODE_OK (regno, mode)) best_mode = mode; if (best_mode == VOIDmode) for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode; mode = GET_MODE_WIDER_MODE (mode)) if (HARD_REGNO_MODE_OK (regno, mode) && have_insn_for (SET, mode)) best_mode = mode; mode = best_mode; if (mode == VOIDmode) abort (); align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; size += GET_MODE_SIZE (mode); apply_result_mode[regno] = mode; } else apply_result_mode[regno] = VOIDmode; /* Allow targets that use untyped_call and untyped_return to override the size so that machine-specific information can be stored here. */ #ifdef APPLY_RESULT_SIZE size = APPLY_RESULT_SIZE; #endif } return size; } #if defined (HAVE_untyped_call) || defined (HAVE_untyped_return) /* Create a vector describing the result block RESULT. If SAVEP is true, the result block is used to save the values; otherwise it is used to restore the values. */ static rtx result_vector (savep, result) int savep; rtx result; { int regno, size, align, nelts; enum machine_mode mode; rtx reg, mem; rtx *savevec = (rtx *) alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx)); size = nelts = 0; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if ((mode = apply_result_mode[regno]) != VOIDmode) { align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; reg = gen_rtx_REG (mode, savep ? regno : INCOMING_REGNO (regno)); mem = adjust_address (result, mode, size); savevec[nelts++] = (savep ? gen_rtx_SET (VOIDmode, mem, reg) : gen_rtx_SET (VOIDmode, reg, mem)); size += GET_MODE_SIZE (mode); } return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelts, savevec)); } #endif /* HAVE_untyped_call or HAVE_untyped_return */ /* Save the state required to perform an untyped call with the same arguments as were passed to the current function. */ static rtx expand_builtin_apply_args_1 () { rtx registers; int size, align, regno; enum machine_mode mode; /* Create a block where the arg-pointer, structure value address, and argument registers can be saved. */ registers = assign_stack_local (BLKmode, apply_args_size (), -1); /* Walk past the arg-pointer and structure value address. */ size = GET_MODE_SIZE (Pmode); if (struct_value_rtx) size += GET_MODE_SIZE (Pmode); /* Save each register used in calling a function to the block. */ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if ((mode = apply_args_mode[regno]) != VOIDmode) { rtx tem; align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; tem = gen_rtx_REG (mode, INCOMING_REGNO (regno)); emit_move_insn (adjust_address (registers, mode, size), tem); size += GET_MODE_SIZE (mode); } /* Save the arg pointer to the block. */ emit_move_insn (adjust_address (registers, Pmode, 0), copy_to_reg (virtual_incoming_args_rtx)); size = GET_MODE_SIZE (Pmode); /* Save the structure value address unless this is passed as an "invisible" first argument. */ if (struct_value_incoming_rtx) { emit_move_insn (adjust_address (registers, Pmode, size), copy_to_reg (struct_value_incoming_rtx)); size += GET_MODE_SIZE (Pmode); } /* Return the address of the block. */ return copy_addr_to_reg (XEXP (registers, 0)); } /* __builtin_apply_args returns block of memory allocated on the stack into which is stored the arg pointer, structure value address, static chain, and all the registers that might possibly be used in performing a function call. The code is moved to the start of the function so the incoming values are saved. */ static rtx expand_builtin_apply_args () { /* Don't do __builtin_apply_args more than once in a function. Save the result of the first call and reuse it. */ if (apply_args_value != 0) return apply_args_value; { /* When this function is called, it means that registers must be saved on entry to this function. So we migrate the call to the first insn of this function. */ rtx temp; rtx seq; start_sequence (); temp = expand_builtin_apply_args_1 (); seq = get_insns (); end_sequence (); apply_args_value = temp; /* Put the sequence after the NOTE that starts the function. If this is inside a SEQUENCE, make the outer-level insn chain current, so the code is placed at the start of the function. */ push_topmost_sequence (); emit_insns_before (seq, NEXT_INSN (get_insns ())); pop_topmost_sequence (); return temp; } } /* Perform an untyped call and save the state required to perform an untyped return of whatever value was returned by the given function. */ static rtx expand_builtin_apply (function, arguments, argsize) rtx function, arguments, argsize; { int size, align, regno; enum machine_mode mode; rtx incoming_args, result, reg, dest, call_insn; rtx old_stack_level = 0; rtx call_fusage = 0; /* Create a block where the return registers can be saved. */ result = assign_stack_local (BLKmode, apply_result_size (), -1); /* Fetch the arg pointer from the ARGUMENTS block. */ incoming_args = gen_reg_rtx (Pmode); emit_move_insn (incoming_args, gen_rtx_MEM (Pmode, arguments)); #ifndef STACK_GROWS_DOWNWARD incoming_args = expand_simple_binop (Pmode, MINUS, incoming_args, argsize, incoming_args, 0, OPTAB_LIB_WIDEN); #endif /* Perform postincrements before actually calling the function. */ emit_queue (); /* Push a new argument block and copy the arguments. Do not allow the (potential) memcpy call below to interfere with our stack manipulations. */ do_pending_stack_adjust (); NO_DEFER_POP; /* Save the stack with nonlocal if available */ #ifdef HAVE_save_stack_nonlocal if (HAVE_save_stack_nonlocal) emit_stack_save (SAVE_NONLOCAL, &old_stack_level, NULL_RTX); else #endif emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX); /* Push a block of memory onto the stack to store the memory arguments. Save the address in a register, and copy the memory arguments. ??? I haven't figured out how the calling convention macros effect this, but it's likely that the source and/or destination addresses in the block copy will need updating in machine specific ways. */ dest = allocate_dynamic_stack_space (argsize, 0, BITS_PER_UNIT); emit_block_move (gen_rtx_MEM (BLKmode, dest), gen_rtx_MEM (BLKmode, incoming_args), argsize, PARM_BOUNDARY); /* Refer to the argument block. */ apply_args_size (); arguments = gen_rtx_MEM (BLKmode, arguments); /* Walk past the arg-pointer and structure value address. */ size = GET_MODE_SIZE (Pmode); if (struct_value_rtx) size += GET_MODE_SIZE (Pmode); /* Restore each of the registers previously saved. Make USE insns for each of these registers for use in making the call. */ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if ((mode = apply_args_mode[regno]) != VOIDmode) { align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; reg = gen_rtx_REG (mode, regno); emit_move_insn (reg, adjust_address (arguments, mode, size)); use_reg (&call_fusage, reg); size += GET_MODE_SIZE (mode); } /* Restore the structure value address unless this is passed as an "invisible" first argument. */ size = GET_MODE_SIZE (Pmode); if (struct_value_rtx) { rtx value = gen_reg_rtx (Pmode); emit_move_insn (value, adjust_address (arguments, Pmode, size)); emit_move_insn (struct_value_rtx, value); if (GET_CODE (struct_value_rtx) == REG) use_reg (&call_fusage, struct_value_rtx); size += GET_MODE_SIZE (Pmode); } /* All arguments and registers used for the call are set up by now! */ function = prepare_call_address (function, NULL_TREE, &call_fusage, 0, 0); /* Ensure address is valid. SYMBOL_REF is already valid, so no need, and we don't want to load it into a register as an optimization, because prepare_call_address already did it if it should be done. */ if (GET_CODE (function) != SYMBOL_REF) function = memory_address (FUNCTION_MODE, function); /* Generate the actual call instruction and save the return value. */ #ifdef HAVE_untyped_call if (HAVE_untyped_call) emit_call_insn (gen_untyped_call (gen_rtx_MEM (FUNCTION_MODE, function), result, result_vector (1, result))); else #endif #ifdef HAVE_call_value if (HAVE_call_value) { rtx valreg = 0; /* Locate the unique return register. It is not possible to express a call that sets more than one return register using call_value; use untyped_call for that. In fact, untyped_call only needs to save the return registers in the given block. */ for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if ((mode = apply_result_mode[regno]) != VOIDmode) { if (valreg) abort (); /* HAVE_untyped_call required. */ valreg = gen_rtx_REG (mode, regno); } emit_call_insn (GEN_CALL_VALUE (valreg, gen_rtx_MEM (FUNCTION_MODE, function), const0_rtx, NULL_RTX, const0_rtx)); emit_move_insn (adjust_address (result, GET_MODE (valreg), 0), valreg); } else #endif abort (); /* Find the CALL insn we just emitted. */ for (call_insn = get_last_insn (); call_insn && GET_CODE (call_insn) != CALL_INSN; call_insn = PREV_INSN (call_insn)) ; if (! call_insn) abort (); /* Put the register usage information on the CALL. If there is already some usage information, put ours at the end. */ if (CALL_INSN_FUNCTION_USAGE (call_insn)) { rtx link; for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0; link = XEXP (link, 1)) ; XEXP (link, 1) = call_fusage; } else CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage; /* Restore the stack. */ #ifdef HAVE_save_stack_nonlocal if (HAVE_save_stack_nonlocal) emit_stack_restore (SAVE_NONLOCAL, old_stack_level, NULL_RTX); else #endif emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX); OK_DEFER_POP; /* Return the address of the result block. */ return copy_addr_to_reg (XEXP (result, 0)); } /* Perform an untyped return. */ static void expand_builtin_return (result) rtx result; { int size, align, regno; enum machine_mode mode; rtx reg; rtx call_fusage = 0; apply_result_size (); result = gen_rtx_MEM (BLKmode, result); #ifdef HAVE_untyped_return if (HAVE_untyped_return) { emit_jump_insn (gen_untyped_return (result, result_vector (0, result))); emit_barrier (); return; } #endif /* Restore the return value and note that each value is used. */ size = 0; for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) if ((mode = apply_result_mode[regno]) != VOIDmode) { align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT; if (size % align != 0) size = CEIL (size, align) * align; reg = gen_rtx_REG (mode, INCOMING_REGNO (regno)); emit_move_insn (reg, adjust_address (result, mode, size)); push_to_sequence (call_fusage); emit_insn (gen_rtx_USE (VOIDmode, reg)); call_fusage = get_insns (); end_sequence (); size += GET_MODE_SIZE (mode); } /* Put the USE insns before the return. */ emit_insns (call_fusage); /* Return whatever values was restored by jumping directly to the end of the function. */ expand_null_return (); } /* Used by expand_builtin_classify_type and fold_builtin_classify_type. */ static enum type_class type_to_class (type) tree type; { switch (TREE_CODE (type)) { case VOID_TYPE: return void_type_class; case INTEGER_TYPE: return integer_type_class; case CHAR_TYPE: return char_type_class; case ENUMERAL_TYPE: return enumeral_type_class; case BOOLEAN_TYPE: return boolean_type_class; case POINTER_TYPE: return pointer_type_class; case REFERENCE_TYPE: return reference_type_class; case OFFSET_TYPE: return offset_type_class; case REAL_TYPE: return real_type_class; case COMPLEX_TYPE: return complex_type_class; case FUNCTION_TYPE: return function_type_class; case METHOD_TYPE: return method_type_class; case RECORD_TYPE: return record_type_class; case UNION_TYPE: case QUAL_UNION_TYPE: return union_type_class; case ARRAY_TYPE: return (TYPE_STRING_FLAG (type) ? string_type_class : array_type_class); case SET_TYPE: return set_type_class; case FILE_TYPE: return file_type_class; case LANG_TYPE: return lang_type_class; default: return no_type_class; } } /* Expand a call to __builtin_classify_type with arguments found in ARGLIST. */ static rtx expand_builtin_classify_type (arglist) tree arglist; { if (arglist != 0) return GEN_INT (type_to_class (TREE_TYPE (TREE_VALUE (arglist)))); return GEN_INT (no_type_class); } /* Expand expression EXP, which is a call to __builtin_constant_p. */ static rtx expand_builtin_constant_p (exp) tree exp; { tree arglist = TREE_OPERAND (exp, 1); enum machine_mode value_mode = TYPE_MODE (TREE_TYPE (exp)); rtx tmp; if (arglist == 0) return const0_rtx; arglist = TREE_VALUE (arglist); /* We have taken care of the easy cases during constant folding. This case is not obvious, so emit (constant_p_rtx (ARGLIST)) and let CSE get a chance to see if it can deduce whether ARGLIST is constant. */ tmp = expand_expr (arglist, NULL_RTX, VOIDmode, 0); tmp = gen_rtx_CONSTANT_P_RTX (value_mode, tmp); return tmp; } /* Expand a call to one of the builtin math functions (sin, cos, or sqrt). Return 0 if a normal call should be emitted rather than expanding the function in-line. EXP is the expression that is a call to the builtin function; if convenient, the result should be placed in TARGET. SUBTARGET may be used as the target for computing one of EXP's operands. */ static rtx expand_builtin_mathfn (exp, target, subtarget) tree exp; rtx target, subtarget; { optab builtin_optab; rtx op0, insns; tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); tree arglist = TREE_OPERAND (exp, 1); if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE)) return 0; /* Stabilize and compute the argument. */ if (TREE_CODE (TREE_VALUE (arglist)) != VAR_DECL && TREE_CODE (TREE_VALUE (arglist)) != PARM_DECL) { exp = copy_node (exp); TREE_OPERAND (exp, 1) = arglist; /* Wrap the computation of the argument in a SAVE_EXPR. That way, if we need to expand the argument again (as in the flag_errno_math case below where we cannot directly set errno), we will not perform side-effects more than once. Note that here we're mutating the original EXP as well as the copy; that's the right thing to do in case the original EXP is expanded later. */ TREE_VALUE (arglist) = save_expr (TREE_VALUE (arglist)); arglist = copy_node (arglist); } op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); /* Make a suitable register to place result in. */ target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp))); emit_queue (); start_sequence (); switch (DECL_FUNCTION_CODE (fndecl)) { case BUILT_IN_SIN: case BUILT_IN_SINF: case BUILT_IN_SINL: builtin_optab = sin_optab; break; case BUILT_IN_COS: case BUILT_IN_COSF: case BUILT_IN_COSL: builtin_optab = cos_optab; break; case BUILT_IN_FSQRT: case BUILT_IN_SQRTF: case BUILT_IN_SQRTL: builtin_optab = sqrt_optab; break; default: abort (); } /* Compute into TARGET. Set TARGET to wherever the result comes back. */ target = expand_unop (TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist))), builtin_optab, op0, target, 0); /* If we were unable to expand via the builtin, stop the sequence (without outputting the insns) and return 0, causing a call to the library function. */ if (target == 0) { end_sequence (); return 0; } /* If errno must be maintained and if we are not allowing unsafe math optimizations, check the result. */ if (flag_errno_math && ! flag_unsafe_math_optimizations) { rtx lab1; /* Don't define the builtin FP instructions if your machine is not IEEE. */ if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT) abort (); lab1 = gen_label_rtx (); /* Test the result; if it is NaN, set errno=EDOM because the argument was not in the domain. */ emit_cmp_and_jump_insns (target, target, EQ, 0, GET_MODE (target), 0, 0, lab1); #ifdef TARGET_EDOM { #ifdef GEN_ERRNO_RTX rtx errno_rtx = GEN_ERRNO_RTX; #else rtx errno_rtx = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno")); #endif emit_move_insn (errno_rtx, GEN_INT (TARGET_EDOM)); } #else /* We can't set errno=EDOM directly; let the library call do it. Pop the arguments right away in case the call gets deleted. */ NO_DEFER_POP; expand_call (exp, target, 0); OK_DEFER_POP; #endif emit_label (lab1); } /* Output the entire sequence. */ insns = get_insns (); end_sequence (); emit_insns (insns); return target; } /* Expand expression EXP which is a call to the strlen builtin. Return 0 if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_strlen (exp, target) tree exp; rtx target; { tree arglist = TREE_OPERAND (exp, 1); enum machine_mode value_mode = TYPE_MODE (TREE_TYPE (exp)); if (!validate_arglist (arglist, POINTER_TYPE, VOID_TYPE)) return 0; else { rtx pat; tree src = TREE_VALUE (arglist); int align = get_pointer_alignment (src, BIGGEST_ALIGNMENT) / BITS_PER_UNIT; rtx result, src_reg, char_rtx, before_strlen; enum machine_mode insn_mode = value_mode, char_mode; enum insn_code icode = CODE_FOR_nothing; /* If SRC is not a pointer type, don't do this operation inline. */ if (align == 0) return 0; /* Bail out if we can't compute strlen in the right mode. */ while (insn_mode != VOIDmode) { icode = strlen_optab->handlers[(int) insn_mode].insn_code; if (icode != CODE_FOR_nothing) break; insn_mode = GET_MODE_WIDER_MODE (insn_mode); } if (insn_mode == VOIDmode) return 0; /* Make a place to write the result of the instruction. */ result = target; if (! (result != 0 && GET_CODE (result) == REG && GET_MODE (result) == insn_mode && REGNO (result) >= FIRST_PSEUDO_REGISTER)) result = gen_reg_rtx (insn_mode); /* Make a place to hold the source address. We will not expand the actual source until we are sure that the expansion will not fail -- there are trees that cannot be expanded twice. */ src_reg = gen_reg_rtx (Pmode); /* Mark the beginning of the strlen sequence so we can emit the source operand later. */ before_strlen = get_last_insn(); /* Check the string is readable and has an end. */ if (current_function_check_memory_usage) emit_library_call (chkr_check_str_libfunc, LCT_CONST_MAKE_BLOCK, VOIDmode, 2, src_reg, Pmode, GEN_INT (MEMORY_USE_RO), TYPE_MODE (integer_type_node)); char_rtx = const0_rtx; char_mode = insn_data[(int) icode].operand[2].mode; if (! (*insn_data[(int) icode].operand[2].predicate) (char_rtx, char_mode)) char_rtx = copy_to_mode_reg (char_mode, char_rtx); pat = GEN_FCN (icode) (result, gen_rtx_MEM (BLKmode, src_reg), char_rtx, GEN_INT (align)); if (! pat) return 0; emit_insn (pat); /* Now that we are assured of success, expand the source. */ start_sequence (); pat = memory_address (BLKmode, expand_expr (src, src_reg, ptr_mode, EXPAND_SUM)); if (pat != src_reg) emit_move_insn (src_reg, pat); pat = gen_sequence (); end_sequence (); if (before_strlen) emit_insn_after (pat, before_strlen); else emit_insn_before (pat, get_insns ()); /* Return the value in the proper mode for this function. */ if (GET_MODE (result) == value_mode) target = result; else if (target != 0) convert_move (target, result, 0); else target = convert_to_mode (value_mode, result, 0); return target; } } /* Expand a call to the strstr builtin. Return 0 if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient (and in mode MODE if that's convenient). */ static rtx expand_builtin_strstr (arglist, target, mode) tree arglist; rtx target; enum machine_mode mode; { if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE) || current_function_check_memory_usage) return 0; else { tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist)); tree fn; const char *p1, *p2; p2 = c_getstr (s2); if (p2 == NULL) return 0; p1 = c_getstr (s1); if (p1 != NULL) { const char *r = strstr (p1, p2); if (r == NULL) return const0_rtx; /* Return an offset into the constant string argument. */ return expand_expr (fold (build (PLUS_EXPR, TREE_TYPE (s1), s1, ssize_int (r - p1))), target, mode, EXPAND_NORMAL); } if (p2[0] == '\0') return expand_expr (s1, target, mode, EXPAND_NORMAL); if (p2[1] != '\0') return 0; fn = built_in_decls[BUILT_IN_STRCHR]; if (!fn) return 0; /* New argument list transforming strstr(s1, s2) to strchr(s1, s2[0]). */ arglist = build_tree_list (NULL_TREE, build_int_2 (p2[0], 0)); arglist = tree_cons (NULL_TREE, s1, arglist); return expand_expr (build_function_call_expr (fn, arglist), target, mode, EXPAND_NORMAL); } } /* Expand a call to the strchr builtin. Return 0 if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient (and in mode MODE if that's convenient). */ static rtx expand_builtin_strchr (arglist, target, mode) tree arglist; rtx target; enum machine_mode mode; { if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE) || current_function_check_memory_usage) return 0; else { tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist)); const char *p1; if (TREE_CODE (s2) != INTEGER_CST) return 0; p1 = c_getstr (s1); if (p1 != NULL) { char c; const char *r; if (target_char_cast (s2, &c)) return 0; r = strchr (p1, c); if (r == NULL) return const0_rtx; /* Return an offset into the constant string argument. */ return expand_expr (fold (build (PLUS_EXPR, TREE_TYPE (s1), s1, ssize_int (r - p1))), target, mode, EXPAND_NORMAL); } /* FIXME: Should use here strchrM optab so that ports can optimize this. */ return 0; } } /* Expand a call to the strrchr builtin. Return 0 if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient (and in mode MODE if that's convenient). */ static rtx expand_builtin_strrchr (arglist, target, mode) tree arglist; rtx target; enum machine_mode mode; { if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE) || current_function_check_memory_usage) return 0; else { tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist)); tree fn; const char *p1; if (TREE_CODE (s2) != INTEGER_CST) return 0; p1 = c_getstr (s1); if (p1 != NULL) { char c; const char *r; if (target_char_cast (s2, &c)) return 0; r = strrchr (p1, c); if (r == NULL) return const0_rtx; /* Return an offset into the constant string argument. */ return expand_expr (fold (build (PLUS_EXPR, TREE_TYPE (s1), s1, ssize_int (r - p1))), target, mode, EXPAND_NORMAL); } if (! integer_zerop (s2)) return 0; fn = built_in_decls[BUILT_IN_STRCHR]; if (!fn) return 0; /* Transform strrchr(s1, '\0') to strchr(s1, '\0'). */ return expand_expr (build_function_call_expr (fn, arglist), target, mode, EXPAND_NORMAL); } } /* Expand a call to the strpbrk builtin. Return 0 if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient (and in mode MODE if that's convenient). */ static rtx expand_builtin_strpbrk (arglist, target, mode) tree arglist; rtx target; enum machine_mode mode; { if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE) || current_function_check_memory_usage) return 0; else { tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist)); tree fn; const char *p1, *p2; p2 = c_getstr (s2); if (p2 == NULL) return 0; p1 = c_getstr (s1); if (p1 != NULL) { const char *r = strpbrk (p1, p2); if (r == NULL) return const0_rtx; /* Return an offset into the constant string argument. */ return expand_expr (fold (build (PLUS_EXPR, TREE_TYPE (s1), s1, ssize_int (r - p1))), target, mode, EXPAND_NORMAL); } if (p2[0] == '\0') { /* strpbrk(x, "") == NULL. Evaluate and ignore the arguments in case they had side-effects. */ expand_expr (s1, const0_rtx, VOIDmode, EXPAND_NORMAL); return const0_rtx; } if (p2[1] != '\0') return 0; /* Really call strpbrk. */ fn = built_in_decls[BUILT_IN_STRCHR]; if (!fn) return 0; /* New argument list transforming strpbrk(s1, s2) to strchr(s1, s2[0]). */ arglist = build_tree_list (NULL_TREE, build_int_2 (p2[0], 0)); arglist = tree_cons (NULL_TREE, s1, arglist); return expand_expr (build_function_call_expr (fn, arglist), target, mode, EXPAND_NORMAL); } } /* Callback routine for store_by_pieces. Read GET_MODE_BITSIZE (MODE) bytes from constant string DATA + OFFSET and return it as target constant. */ static rtx builtin_memcpy_read_str (data, offset, mode) PTR data; HOST_WIDE_INT offset; enum machine_mode mode; { const char *str = (const char *) data; if (offset < 0 || ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode) > strlen (str) + 1)) abort (); /* Attempt to read past the end of constant string. */ return c_readstr (str + offset, mode); } /* Expand a call to the memcpy builtin, with arguments in ARGLIST. */ static rtx expand_builtin_memcpy (arglist) tree arglist; { if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return 0; else { tree dest = TREE_VALUE (arglist); tree src = TREE_VALUE (TREE_CHAIN (arglist)); tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); const char *src_str; unsigned int src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT); unsigned int dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT); rtx dest_mem, src_mem, dest_addr, len_rtx; /* If either SRC or DEST is not a pointer type, don't do this operation in-line. */ if (src_align == 0 || dest_align == 0) return 0; dest_mem = get_memory_rtx (dest); len_rtx = expand_expr (len, NULL_RTX, VOIDmode, 0); src_str = c_getstr (src); /* If SRC is a string constant and block move would be done by pieces, we can avoid loading the string from memory and only stored the computed constants. */ if (src_str && !current_function_check_memory_usage && GET_CODE (len_rtx) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1 && can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str, (PTR) src_str, dest_align)) { store_by_pieces (dest_mem, INTVAL (len_rtx), builtin_memcpy_read_str, (PTR) src_str, dest_align); return force_operand (XEXP (dest_mem, 0), NULL_RTX); } src_mem = get_memory_rtx (src); /* Just copy the rights of SRC to the rights of DEST. */ if (current_function_check_memory_usage) emit_library_call (chkr_copy_bitmap_libfunc, LCT_CONST_MAKE_BLOCK, VOIDmode, 3, XEXP (dest_mem, 0), Pmode, XEXP (src_mem, 0), Pmode, len_rtx, TYPE_MODE (sizetype)); /* Copy word part most expediently. */ dest_addr = emit_block_move (dest_mem, src_mem, len_rtx, MIN (src_align, dest_align)); if (dest_addr == 0) dest_addr = force_operand (XEXP (dest_mem, 0), NULL_RTX); return dest_addr; } } /* Expand expression EXP, which is a call to the strcpy builtin. Return 0 if we failed the caller should emit a normal call. */ static rtx expand_builtin_strcpy (exp) tree exp; { tree arglist = TREE_OPERAND (exp, 1); rtx result; if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) return 0; else { tree len = c_strlen (TREE_VALUE (TREE_CHAIN (arglist))); if (len == 0) return 0; len = size_binop (PLUS_EXPR, len, ssize_int (1)); chainon (arglist, build_tree_list (NULL_TREE, len)); } result = expand_builtin_memcpy (arglist); if (! result) TREE_CHAIN (TREE_CHAIN (arglist)) = 0; return result; } /* Callback routine for store_by_pieces. Read GET_MODE_BITSIZE (MODE) bytes from constant string DATA + OFFSET and return it as target constant. */ static rtx builtin_strncpy_read_str (data, offset, mode) PTR data; HOST_WIDE_INT offset; enum machine_mode mode; { const char *str = (const char *) data; if ((unsigned HOST_WIDE_INT) offset > strlen (str)) return const0_rtx; return c_readstr (str + offset, mode); } /* Expand expression EXP, which is a call to the strncpy builtin. Return 0 if we failed the caller should emit a normal call. */ static rtx expand_builtin_strncpy (arglist, target, mode) tree arglist; rtx target; enum machine_mode mode; { if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return 0; else { tree slen = c_strlen (TREE_VALUE (TREE_CHAIN (arglist))); tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); /* We must be passed a constant len parameter. */ if (TREE_CODE (len) != INTEGER_CST) return 0; /* If the len parameter is zero, return the dst parameter. */ if (compare_tree_int (len, 0) == 0) { /* Evaluate and ignore the src argument in case it has side-effects. */ expand_expr (TREE_VALUE (TREE_CHAIN (arglist)), const0_rtx, VOIDmode, EXPAND_NORMAL); /* Return the dst parameter. */ return expand_expr (TREE_VALUE (arglist), target, mode, EXPAND_NORMAL); } /* Now, we must be passed a constant src ptr parameter. */ if (slen == 0 || TREE_CODE (slen) != INTEGER_CST) return 0; slen = size_binop (PLUS_EXPR, slen, ssize_int (1)); /* We're required to pad with trailing zeros if the requested len is greater than strlen(s2)+1. In that case try to use store_by_pieces, if it fails, punt. */ if (tree_int_cst_lt (slen, len)) { tree dest = TREE_VALUE (arglist); unsigned int dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT); const char *p = c_getstr (TREE_VALUE (TREE_CHAIN (arglist))); rtx dest_mem; if (!p || dest_align == 0 || !host_integerp (len, 1) || !can_store_by_pieces (tree_low_cst (len, 1), builtin_strncpy_read_str, (PTR) p, dest_align)) return 0; dest_mem = get_memory_rtx (dest); store_by_pieces (dest_mem, tree_low_cst (len, 1), builtin_strncpy_read_str, (PTR) p, dest_align); return force_operand (XEXP (dest_mem, 0), NULL_RTX); } /* OK transform into builtin memcpy. */ return expand_builtin_memcpy (arglist); } } /* Callback routine for store_by_pieces. Read GET_MODE_BITSIZE (MODE) bytes from constant string DATA + OFFSET and return it as target constant. */ static rtx builtin_memset_read_str (data, offset, mode) PTR data; HOST_WIDE_INT offset ATTRIBUTE_UNUSED; enum machine_mode mode; { const char *c = (const char *) data; char *p = alloca (GET_MODE_SIZE (mode)); memset (p, *c, GET_MODE_SIZE (mode)); return c_readstr (p, mode); } /* Expand expression EXP, which is a call to the memset builtin. Return 0 if we failed the caller should emit a normal call. */ static rtx expand_builtin_memset (exp) tree exp; { tree arglist = TREE_OPERAND (exp, 1); if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE)) return 0; else { tree dest = TREE_VALUE (arglist); tree val = TREE_VALUE (TREE_CHAIN (arglist)); tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); char c; unsigned int dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT); rtx dest_mem, dest_addr, len_rtx; /* If DEST is not a pointer type, don't do this operation in-line. */ if (dest_align == 0) return 0; if (TREE_CODE (val) != INTEGER_CST) return 0; if (target_char_cast (val, &c)) return 0; if (c) { if (!host_integerp (len, 1)) return 0; if (current_function_check_memory_usage || !can_store_by_pieces (tree_low_cst (len, 1), builtin_memset_read_str, (PTR) &c, dest_align)) return 0; dest_mem = get_memory_rtx (dest); store_by_pieces (dest_mem, tree_low_cst (len, 1), builtin_memset_read_str, (PTR) &c, dest_align); return force_operand (XEXP (dest_mem, 0), NULL_RTX); } len_rtx = expand_expr (len, NULL_RTX, VOIDmode, 0); dest_mem = get_memory_rtx (dest); /* Just check DST is writable and mark it as readable. */ if (current_function_check_memory_usage) emit_library_call (chkr_check_addr_libfunc, LCT_CONST_MAKE_BLOCK, VOIDmode, 3, XEXP (dest_mem, 0), Pmode, len_rtx, TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_WO), TYPE_MODE (integer_type_node)); dest_addr = clear_storage (dest_mem, len_rtx, dest_align); if (dest_addr == 0) dest_addr = force_operand (XEXP (dest_mem, 0), NULL_RTX); return dest_addr; } } /* Expand expression EXP, which is a call to the bzero builtin. Return 0 if we failed the caller should emit a normal call. */ static rtx expand_builtin_bzero (exp) tree exp; { tree arglist = TREE_OPERAND (exp, 1); tree dest, size, newarglist; rtx result; if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return NULL_RTX; dest = TREE_VALUE (arglist); size = TREE_VALUE (TREE_CHAIN (arglist)); /* New argument list transforming bzero(ptr x, int y) to memset(ptr x, int 0, size_t y). */ newarglist = build_tree_list (NULL_TREE, convert (sizetype, size)); newarglist = tree_cons (NULL_TREE, integer_zero_node, newarglist); newarglist = tree_cons (NULL_TREE, dest, newarglist); TREE_OPERAND (exp, 1) = newarglist; result = expand_builtin_memset(exp); /* Always restore the original arguments. */ TREE_OPERAND (exp, 1) = arglist; return result; } #ifdef HAVE_cmpstrsi /* Expand expression EXP, which is a call to the memcmp or the strcmp builtin. ARGLIST is the argument list for this call. Return 0 if we failed and the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_memcmp (exp, arglist, target) tree exp; tree arglist; rtx target; { /* If we need to check memory accesses, call the library function. */ if (current_function_check_memory_usage) return 0; if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return 0; { enum machine_mode mode; tree arg1 = TREE_VALUE (arglist); tree arg2 = TREE_VALUE (TREE_CHAIN (arglist)); tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); rtx arg1_rtx, arg2_rtx, arg3_rtx; rtx result; rtx insn; int arg1_align = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT; int arg2_align = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT; enum machine_mode insn_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode; /* If we don't have POINTER_TYPE, call the function. */ if (arg1_align == 0 || arg2_align == 0) return 0; /* Make a place to write the result of the instruction. */ result = target; if (! (result != 0 && GET_CODE (result) == REG && GET_MODE (result) == insn_mode && REGNO (result) >= FIRST_PSEUDO_REGISTER)) result = gen_reg_rtx (insn_mode); arg1_rtx = get_memory_rtx (arg1); arg2_rtx = get_memory_rtx (arg2); arg3_rtx = expand_expr (len, NULL_RTX, VOIDmode, 0); if (!HAVE_cmpstrsi) insn = NULL_RTX; else insn = gen_cmpstrsi (result, arg1_rtx, arg2_rtx, arg3_rtx, GEN_INT (MIN (arg1_align, arg2_align))); if (insn) emit_insn (insn); else emit_library_call_value (memcmp_libfunc, result, LCT_PURE_MAKE_BLOCK, TYPE_MODE (integer_type_node), 3, XEXP (arg1_rtx, 0), Pmode, XEXP (arg2_rtx, 0), Pmode, convert_to_mode (TYPE_MODE (sizetype), arg3_rtx, TREE_UNSIGNED (sizetype)), TYPE_MODE (sizetype)); /* Return the value in the proper mode for this function. */ mode = TYPE_MODE (TREE_TYPE (exp)); if (GET_MODE (result) == mode) return result; else if (target != 0) { convert_move (target, result, 0); return target; } else return convert_to_mode (mode, result, 0); } } #endif /* Expand expression EXP, which is a call to the strcmp builtin. Return 0 if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_strcmp (exp, target, mode) tree exp; rtx target; enum machine_mode mode; { tree arglist = TREE_OPERAND (exp, 1); tree arg1, arg2; const char *p1, *p2; /* If we need to check memory accesses, call the library function. */ if (current_function_check_memory_usage) return 0; if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) return 0; arg1 = TREE_VALUE (arglist); arg2 = TREE_VALUE (TREE_CHAIN (arglist)); p1 = c_getstr (arg1); p2 = c_getstr (arg2); if (p1 && p2) { const int i = strcmp (p1, p2); return (i < 0 ? constm1_rtx : (i > 0 ? const1_rtx : const0_rtx)); } /* If either arg is "", return an expression corresponding to (*(const unsigned char*)arg1 - (const unsigned char*)arg2). */ if ((p1 && *p1 == '\0') || (p2 && *p2 == '\0')) { tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0); tree cst_uchar_ptr_node = build_pointer_type (cst_uchar_node); tree ind1 = fold (build1 (CONVERT_EXPR, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, build1 (NOP_EXPR, cst_uchar_ptr_node, arg1)))); tree ind2 = fold (build1 (CONVERT_EXPR, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, build1 (NOP_EXPR, cst_uchar_ptr_node, arg2)))); tree result = fold (build (MINUS_EXPR, integer_type_node, ind1, ind2)); return expand_expr (result, target, mode, EXPAND_NORMAL); } #ifdef HAVE_cmpstrsi if (! HAVE_cmpstrsi) return 0; { tree len = c_strlen (arg1); tree len2 = c_strlen (arg2); rtx result; if (len) len = size_binop (PLUS_EXPR, ssize_int (1), len); if (len2) len2 = size_binop (PLUS_EXPR, ssize_int (1), len2); /* If we don't have a constant length for the first, use the length of the second, if we know it. We don't require a constant for this case; some cost analysis could be done if both are available but neither is constant. For now, assume they're equally cheap unless one has side effects. If both strings have constant lengths, use the smaller. This could arise if optimization results in strcpy being called with two fixed strings, or if the code was machine-generated. We should add some code to the `memcmp' handler below to deal with such situations, someday. */ if (!len || TREE_CODE (len) != INTEGER_CST) { if (len2 && !TREE_SIDE_EFFECTS (len2)) len = len2; else if (len == 0) return 0; } else if (len2 && TREE_CODE (len2) == INTEGER_CST && tree_int_cst_lt (len2, len)) len = len2; /* If both arguments have side effects, we cannot optimize. */ if (TREE_SIDE_EFFECTS (len)) return 0; chainon (arglist, build_tree_list (NULL_TREE, len)); result = expand_builtin_memcmp (exp, arglist, target); if (! result) TREE_CHAIN (TREE_CHAIN (arglist)) = 0; return result; } #else return 0; #endif } /* Expand expression EXP, which is a call to the strncmp builtin. Return 0 if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_strncmp (exp, target, mode) tree exp; rtx target; enum machine_mode mode; { tree arglist = TREE_OPERAND (exp, 1); tree arg1, arg2, arg3; const char *p1, *p2; /* If we need to check memory accesses, call the library function. */ if (current_function_check_memory_usage) return 0; if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return 0; arg1 = TREE_VALUE (arglist); arg2 = TREE_VALUE (TREE_CHAIN (arglist)); arg3 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); /* If the len parameter is zero, return zero. */ if (host_integerp (arg3, 1) && tree_low_cst (arg3, 1) == 0) { /* Evaluate and ignore arg1 and arg2 in case they have side-effects. */ expand_expr (arg1, const0_rtx, VOIDmode, EXPAND_NORMAL); expand_expr (arg2, const0_rtx, VOIDmode, EXPAND_NORMAL); return const0_rtx; } p1 = c_getstr (arg1); p2 = c_getstr (arg2); /* If all arguments are constant, evaluate at compile-time. */ if (host_integerp (arg3, 1) && p1 && p2) { const int r = strncmp (p1, p2, tree_low_cst (arg3, 1)); return (r < 0 ? constm1_rtx : (r > 0 ? const1_rtx : const0_rtx)); } /* If len == 1 or (either string parameter is "" and (len >= 1)), return (*(const u_char*)arg1 - *(const u_char*)arg2). */ if (host_integerp (arg3, 1) && (tree_low_cst (arg3, 1) == 1 || (tree_low_cst (arg3, 1) > 1 && ((p1 && *p1 == '\0') || (p2 && *p2 == '\0'))))) { tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0); tree cst_uchar_ptr_node = build_pointer_type (cst_uchar_node); tree ind1 = fold (build1 (CONVERT_EXPR, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, build1 (NOP_EXPR, cst_uchar_ptr_node, arg1)))); tree ind2 = fold (build1 (CONVERT_EXPR, integer_type_node, build1 (INDIRECT_REF, cst_uchar_node, build1 (NOP_EXPR, cst_uchar_ptr_node, arg2)))); tree result = fold (build (MINUS_EXPR, integer_type_node, ind1, ind2)); return expand_expr (result, target, mode, EXPAND_NORMAL); } #ifdef HAVE_cmpstrsi /* If c_strlen can determine an expression for one of the string lengths, and it doesn't have side effects, then call expand_builtin_memcmp() using length MIN(strlen(string)+1, arg3). */ if (HAVE_cmpstrsi) { tree newarglist, len = 0; /* Perhaps one of the strings is really constant, if so prefer that constant length over the other string's length. */ if (p1) len = c_strlen (arg1); else if (p2) len = c_strlen (arg2); /* If we still don't have a len, try either string arg as long as they don't have side effects. */ if (!len && !TREE_SIDE_EFFECTS (arg1)) len = c_strlen (arg1); if (!len && !TREE_SIDE_EFFECTS (arg2)) len = c_strlen (arg2); /* If we still don't have a length, punt. */ if (!len) return 0; /* Add one to the string length. */ len = fold (size_binop (PLUS_EXPR, len, ssize_int (1))); /* The actual new length parameter is MIN(len,arg3). */ len = fold (build (MIN_EXPR, TREE_TYPE (len), len, arg3)); newarglist = build_tree_list (NULL_TREE, len); newarglist = tree_cons (NULL_TREE, arg2, newarglist); newarglist = tree_cons (NULL_TREE, arg1, newarglist); return expand_builtin_memcmp (exp, newarglist, target); } #endif return 0; } /* Expand expression EXP, which is a call to the strcat builtin. Return 0 if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_strcat (arglist, target, mode) tree arglist; rtx target; enum machine_mode mode; { /* If we need to check memory accesses, call the library function. */ if (current_function_check_memory_usage) return 0; if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) return 0; else { tree dst = TREE_VALUE (arglist), src = TREE_VALUE (TREE_CHAIN (arglist)); const char *p = c_getstr (src); /* If the string length is zero, return the dst parameter. */ if (p && *p == '\0') return expand_expr (dst, target, mode, EXPAND_NORMAL); return 0; } } /* Expand expression EXP, which is a call to the strncat builtin. Return 0 if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_strncat (arglist, target, mode) tree arglist; rtx target; enum machine_mode mode; { /* If we need to check memory accesses, call the library function. */ if (current_function_check_memory_usage) return 0; if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return 0; else { tree dst = TREE_VALUE (arglist), src = TREE_VALUE (TREE_CHAIN (arglist)), len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist))); const char *p = c_getstr (src); /* If the requested length is zero, or the src parameter string length is zero, return the dst parameter. */ if ((TREE_CODE (len) == INTEGER_CST && compare_tree_int (len, 0) == 0) || (p && *p == '\0')) { /* Evaluate and ignore the src and len parameters in case they have side-effects. */ expand_expr (src, const0_rtx, VOIDmode, EXPAND_NORMAL); expand_expr (len, const0_rtx, VOIDmode, EXPAND_NORMAL); return expand_expr (dst, target, mode, EXPAND_NORMAL); } /* If the requested len is greater than or equal to the string length, call strcat. */ if (TREE_CODE (len) == INTEGER_CST && p && compare_tree_int (len, strlen (p)) >= 0) { tree newarglist = tree_cons (NULL_TREE, dst, build_tree_list (NULL_TREE, src)), fn = built_in_decls[BUILT_IN_STRCAT]; /* If the replacement _DECL isn't initialized, don't do the transformation. */ if (!fn) return 0; return expand_expr (build_function_call_expr (fn, newarglist), target, mode, EXPAND_NORMAL); } return 0; } } /* Expand expression EXP, which is a call to the strspn builtin. Return 0 if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_strspn (arglist, target, mode) tree arglist; rtx target; enum machine_mode mode; { /* If we need to check memory accesses, call the library function. */ if (current_function_check_memory_usage) return 0; if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) return 0; else { tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist)); const char *p1 = c_getstr (s1), *p2 = c_getstr (s2); /* If both arguments are constants, evaluate at compile-time. */ if (p1 && p2) { const size_t r = strspn (p1, p2); return expand_expr (size_int (r), target, mode, EXPAND_NORMAL); } /* If either argument is "", return 0. */ if ((p1 && *p1 == '\0') || (p2 && *p2 == '\0')) { /* Evaluate and ignore both arguments in case either one has side-effects. */ expand_expr (s1, const0_rtx, VOIDmode, EXPAND_NORMAL); expand_expr (s2, const0_rtx, VOIDmode, EXPAND_NORMAL); return const0_rtx; } return 0; } } /* Expand expression EXP, which is a call to the strcspn builtin. Return 0 if we failed the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_strcspn (arglist, target, mode) tree arglist; rtx target; enum machine_mode mode; { /* If we need to check memory accesses, call the library function. */ if (current_function_check_memory_usage) return 0; if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)) return 0; else { tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist)); const char *p1 = c_getstr (s1), *p2 = c_getstr (s2); /* If both arguments are constants, evaluate at compile-time. */ if (p1 && p2) { const size_t r = strcspn (p1, p2); return expand_expr (size_int (r), target, mode, EXPAND_NORMAL); } /* If the first argument is "", return 0. */ if (p1 && *p1 == '\0') { /* Evaluate and ignore argument s2 in case it has side-effects. */ expand_expr (s2, const0_rtx, VOIDmode, EXPAND_NORMAL); return const0_rtx; } /* If the second argument is "", return __builtin_strlen(s1). */ if (p2 && *p2 == '\0') { tree newarglist = build_tree_list (NULL_TREE, s1), fn = built_in_decls[BUILT_IN_STRLEN]; /* If the replacement _DECL isn't initialized, don't do the transformation. */ if (!fn) return 0; return expand_expr (build_function_call_expr (fn, newarglist), target, mode, EXPAND_NORMAL); } return 0; } } /* Expand a call to __builtin_saveregs, generating the result in TARGET, if that's convenient. */ rtx expand_builtin_saveregs () { rtx val, seq; /* Don't do __builtin_saveregs more than once in a function. Save the result of the first call and reuse it. */ if (saveregs_value != 0) return saveregs_value; /* When this function is called, it means that registers must be saved on entry to this function. So we migrate the call to the first insn of this function. */ start_sequence (); #ifdef EXPAND_BUILTIN_SAVEREGS /* Do whatever the machine needs done in this case. */ val = EXPAND_BUILTIN_SAVEREGS (); #else /* ??? We used to try and build up a call to the out of line function, guessing about what registers needed saving etc. This became much harder with __builtin_va_start, since we don't have a tree for a call to __builtin_saveregs to fall back on. There was exactly one port (i860) that used this code, and I'm unconvinced it could actually handle the general case. So we no longer try to handle anything weird and make the backend absorb the evil. */ error ("__builtin_saveregs not supported by this target"); val = const0_rtx; #endif seq = get_insns (); end_sequence (); saveregs_value = val; /* Put the sequence after the NOTE that starts the function. If this is inside a SEQUENCE, make the outer-level insn chain current, so the code is placed at the start of the function. */ push_topmost_sequence (); emit_insns_after (seq, get_insns ()); pop_topmost_sequence (); return val; } /* __builtin_args_info (N) returns word N of the arg space info for the current function. The number and meanings of words is controlled by the definition of CUMULATIVE_ARGS. */ static rtx expand_builtin_args_info (exp) tree exp; { tree arglist = TREE_OPERAND (exp, 1); int nwords = sizeof (CUMULATIVE_ARGS) / sizeof (int); int *word_ptr = (int *) ¤t_function_args_info; #if 0 /* These are used by the code below that is if 0'ed away */ int i; tree type, elts, result; #endif if (sizeof (CUMULATIVE_ARGS) % sizeof (int) != 0) abort (); if (arglist != 0) { if (!host_integerp (TREE_VALUE (arglist), 0)) error ("argument of `__builtin_args_info' must be constant"); else { HOST_WIDE_INT wordnum = tree_low_cst (TREE_VALUE (arglist), 0); if (wordnum < 0 || wordnum >= nwords) error ("argument of `__builtin_args_info' out of range"); else return GEN_INT (word_ptr[wordnum]); } } else error ("missing argument in `__builtin_args_info'"); return const0_rtx; #if 0 for (i = 0; i < nwords; i++) elts = tree_cons (NULL_TREE, build_int_2 (word_ptr[i], 0)); type = build_array_type (integer_type_node, build_index_type (build_int_2 (nwords, 0))); result = build (CONSTRUCTOR, type, NULL_TREE, nreverse (elts)); TREE_CONSTANT (result) = 1; TREE_STATIC (result) = 1; result = build1 (INDIRECT_REF, build_pointer_type (type), result); TREE_CONSTANT (result) = 1; return expand_expr (result, NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD); #endif } /* Expand ARGLIST, from a call to __builtin_next_arg. */ static rtx expand_builtin_next_arg (arglist) tree arglist; { tree fntype = TREE_TYPE (current_function_decl); if ((TYPE_ARG_TYPES (fntype) == 0 || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) == void_type_node)) && ! current_function_varargs) { error ("`va_start' used in function with fixed args"); return const0_rtx; } if (arglist) { tree last_parm = tree_last (DECL_ARGUMENTS (current_function_decl)); tree arg = TREE_VALUE (arglist); /* Strip off all nops for the sake of the comparison. This is not quite the same as STRIP_NOPS. It does more. We must also strip off INDIRECT_EXPR for C++ reference parameters. */ while (TREE_CODE (arg) == NOP_EXPR || TREE_CODE (arg) == CONVERT_EXPR || TREE_CODE (arg) == NON_LVALUE_EXPR || TREE_CODE (arg) == INDIRECT_REF) arg = TREE_OPERAND (arg, 0); if (arg != last_parm) warning ("second parameter of `va_start' not last named argument"); } else if (! current_function_varargs) /* Evidently an out of date version of ; can't validate va_start's second argument, but can still work as intended. */ warning ("`__builtin_next_arg' called without an argument"); return expand_binop (Pmode, add_optab, current_function_internal_arg_pointer, current_function_arg_offset_rtx, NULL_RTX, 0, OPTAB_LIB_WIDEN); } /* Make it easier for the backends by protecting the valist argument from multiple evaluations. */ static tree stabilize_va_list (valist, needs_lvalue) tree valist; int needs_lvalue; { if (TREE_CODE (va_list_type_node) == ARRAY_TYPE) { if (TREE_SIDE_EFFECTS (valist)) valist = save_expr (valist); /* For this case, the backends will be expecting a pointer to TREE_TYPE (va_list_type_node), but it's possible we've actually been given an array (an actual va_list_type_node). So fix it. */ if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE) { tree p1 = build_pointer_type (TREE_TYPE (va_list_type_node)); tree p2 = build_pointer_type (va_list_type_node); valist = build1 (ADDR_EXPR, p2, valist); valist = fold (build1 (NOP_EXPR, p1, valist)); } } else { tree pt; if (! needs_lvalue) { if (! TREE_SIDE_EFFECTS (valist)) return valist; pt = build_pointer_type (va_list_type_node); valist = fold (build1 (ADDR_EXPR, pt, valist)); TREE_SIDE_EFFECTS (valist) = 1; } if (TREE_SIDE_EFFECTS (valist)) valist = save_expr (valist); valist = fold (build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist)); } return valist; } /* The "standard" implementation of va_start: just assign `nextarg' to the variable. */ void std_expand_builtin_va_start (stdarg_p, valist, nextarg) int stdarg_p; tree valist; rtx nextarg; { tree t; if (! stdarg_p) { /* The dummy named parameter is declared as a 'word' sized object, but if a 'word' is smaller than an 'int', it would have been promoted to int when it was added to the arglist. */ int align = PARM_BOUNDARY / BITS_PER_UNIT; int size = MAX (UNITS_PER_WORD, GET_MODE_SIZE (TYPE_MODE (integer_type_node))); int offset = ((size + align - 1) / align) * align; nextarg = plus_constant (nextarg, -offset); } t = build (MODIFY_EXPR, TREE_TYPE (valist), valist, make_tree (ptr_type_node, nextarg)); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } /* Expand ARGLIST, which from a call to __builtin_stdarg_va_start or __builtin_varargs_va_start, depending on STDARG_P. */ static rtx expand_builtin_va_start (stdarg_p, arglist) int stdarg_p; tree arglist; { rtx nextarg; tree chain = arglist, valist; if (stdarg_p) nextarg = expand_builtin_next_arg (chain = TREE_CHAIN (arglist)); else nextarg = expand_builtin_next_arg (NULL_TREE); if (TREE_CHAIN (chain)) error ("too many arguments to function `va_start'"); valist = stabilize_va_list (TREE_VALUE (arglist), 1); #ifdef EXPAND_BUILTIN_VA_START EXPAND_BUILTIN_VA_START (stdarg_p, valist, nextarg); #else std_expand_builtin_va_start (stdarg_p, valist, nextarg); #endif return const0_rtx; } /* The "standard" implementation of va_arg: read the value from the current (padded) address and increment by the (padded) size. */ rtx std_expand_builtin_va_arg (valist, type) tree valist, type; { tree addr_tree, t; HOST_WIDE_INT align; HOST_WIDE_INT rounded_size; rtx addr; /* Compute the rounded size of the type. */ align = PARM_BOUNDARY / BITS_PER_UNIT; rounded_size = (((int_size_in_bytes (type) + align - 1) / align) * align); /* Get AP. */ addr_tree = valist; if (PAD_VARARGS_DOWN) { /* Small args are padded downward. */ HOST_WIDE_INT adj = rounded_size > align ? rounded_size : int_size_in_bytes (type); addr_tree = build (PLUS_EXPR, TREE_TYPE (addr_tree), addr_tree, build_int_2 (rounded_size - adj, 0)); } addr = expand_expr (addr_tree, NULL_RTX, Pmode, EXPAND_NORMAL); addr = copy_to_reg (addr); /* Compute new value for AP. */ t = build (MODIFY_EXPR, TREE_TYPE (valist), valist, build (PLUS_EXPR, TREE_TYPE (valist), valist, build_int_2 (rounded_size, 0))); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); return addr; } /* Expand __builtin_va_arg, which is not really a builtin function, but a very special sort of operator. */ rtx expand_builtin_va_arg (valist, type) tree valist, type; { rtx addr, result; tree promoted_type, want_va_type, have_va_type; /* Verify that valist is of the proper type. */ want_va_type = va_list_type_node; have_va_type = TREE_TYPE (valist); if (TREE_CODE (want_va_type) == ARRAY_TYPE) { /* If va_list is an array type, the argument may have decayed to a pointer type, e.g. by being passed to another function. In that case, unwrap both types so that we can compare the underlying records. */ if (TREE_CODE (have_va_type) == ARRAY_TYPE || TREE_CODE (have_va_type) == POINTER_TYPE) { want_va_type = TREE_TYPE (want_va_type); have_va_type = TREE_TYPE (have_va_type); } } if (TYPE_MAIN_VARIANT (want_va_type) != TYPE_MAIN_VARIANT (have_va_type)) { error ("first argument to `va_arg' not of type `va_list'"); addr = const0_rtx; } /* Generate a diagnostic for requesting data of a type that cannot be passed through `...' due to type promotion at the call site. */ else if ((promoted_type = (*lang_type_promotes_to) (type)) != NULL_TREE) { const char *name = "", *pname = 0; static int gave_help; if (TYPE_NAME (type)) { if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE) name = IDENTIFIER_POINTER (TYPE_NAME (type)); else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL && DECL_NAME (TYPE_NAME (type))) name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))); } if (TYPE_NAME (promoted_type)) { if (TREE_CODE (TYPE_NAME (promoted_type)) == IDENTIFIER_NODE) pname = IDENTIFIER_POINTER (TYPE_NAME (promoted_type)); else if (TREE_CODE (TYPE_NAME (promoted_type)) == TYPE_DECL && DECL_NAME (TYPE_NAME (promoted_type))) pname = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (promoted_type))); } error ("`%s' is promoted to `%s' when passed through `...'", name, pname); if (! gave_help) { gave_help = 1; error ("(so you should pass `%s' not `%s' to `va_arg')", pname, name); } addr = const0_rtx; } else { /* Make it easier for the backends by protecting the valist argument from multiple evaluations. */ valist = stabilize_va_list (valist, 0); #ifdef EXPAND_BUILTIN_VA_ARG addr = EXPAND_BUILTIN_VA_ARG (valist, type); #else addr = std_expand_builtin_va_arg (valist, type); #endif } result = gen_rtx_MEM (TYPE_MODE (type), addr); set_mem_alias_set (result, get_varargs_alias_set ()); return result; } /* Expand ARGLIST, from a call to __builtin_va_end. */ static rtx expand_builtin_va_end (arglist) tree arglist; { tree valist = TREE_VALUE (arglist); #ifdef EXPAND_BUILTIN_VA_END valist = stabilize_va_list (valist, 0); EXPAND_BUILTIN_VA_END(arglist); #else /* Evaluate for side effects, if needed. I hate macros that don't do that. */ if (TREE_SIDE_EFFECTS (valist)) expand_expr (valist, const0_rtx, VOIDmode, EXPAND_NORMAL); #endif return const0_rtx; } /* Expand ARGLIST, from a call to __builtin_va_copy. We do this as a builtin rather than just as an assignment in stdarg.h because of the nastiness of array-type va_list types. */ static rtx expand_builtin_va_copy (arglist) tree arglist; { tree dst, src, t; dst = TREE_VALUE (arglist); src = TREE_VALUE (TREE_CHAIN (arglist)); dst = stabilize_va_list (dst, 1); src = stabilize_va_list (src, 0); if (TREE_CODE (va_list_type_node) != ARRAY_TYPE) { t = build (MODIFY_EXPR, va_list_type_node, dst, src); TREE_SIDE_EFFECTS (t) = 1; expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL); } else { rtx dstb, srcb, size; /* Evaluate to pointers. */ dstb = expand_expr (dst, NULL_RTX, Pmode, EXPAND_NORMAL); srcb = expand_expr (src, NULL_RTX, Pmode, EXPAND_NORMAL); size = expand_expr (TYPE_SIZE_UNIT (va_list_type_node), NULL_RTX, VOIDmode, EXPAND_NORMAL); /* "Dereference" to BLKmode memories. */ dstb = gen_rtx_MEM (BLKmode, dstb); set_mem_alias_set (dstb, get_alias_set (TREE_TYPE (TREE_TYPE (dst)))); srcb = gen_rtx_MEM (BLKmode, srcb); set_mem_alias_set (srcb, get_alias_set (TREE_TYPE (TREE_TYPE (src)))); /* Copy. */ emit_block_move (dstb, srcb, size, TYPE_ALIGN (va_list_type_node)); } return const0_rtx; } /* Expand a call to one of the builtin functions __builtin_frame_address or __builtin_return_address. */ static rtx expand_builtin_frame_address (exp) tree exp; { tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); tree arglist = TREE_OPERAND (exp, 1); /* The argument must be a nonnegative integer constant. It counts the number of frames to scan up the stack. The value is the return address saved in that frame. */ if (arglist == 0) /* Warning about missing arg was already issued. */ return const0_rtx; else if (! host_integerp (TREE_VALUE (arglist), 1)) { if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS) error ("invalid arg to `__builtin_frame_address'"); else error ("invalid arg to `__builtin_return_address'"); return const0_rtx; } else { rtx tem = expand_builtin_return_addr (DECL_FUNCTION_CODE (fndecl), tree_low_cst (TREE_VALUE (arglist), 1), hard_frame_pointer_rtx); /* Some ports cannot access arbitrary stack frames. */ if (tem == NULL) { if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS) warning ("unsupported arg to `__builtin_frame_address'"); else warning ("unsupported arg to `__builtin_return_address'"); return const0_rtx; } /* For __builtin_frame_address, return what we've got. */ if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS) return tem; if (GET_CODE (tem) != REG && ! CONSTANT_P (tem)) tem = copy_to_mode_reg (Pmode, tem); return tem; } } /* Expand a call to the alloca builtin, with arguments ARGLIST. Return 0 if we failed and the caller should emit a normal call, otherwise try to get the result in TARGET, if convenient. */ static rtx expand_builtin_alloca (arglist, target) tree arglist; rtx target; { rtx op0; rtx result; if (!validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE)) return 0; /* Compute the argument. */ op0 = expand_expr (TREE_VALUE (arglist), NULL_RTX, VOIDmode, 0); /* Allocate the desired space. */ result = allocate_dynamic_stack_space (op0, target, BITS_PER_UNIT); #ifdef POINTERS_EXTEND_UNSIGNED result = convert_memory_address (ptr_mode, result); #endif return result; } /* Expand a call to the ffs builtin. The arguments are in ARGLIST. Return 0 if a normal call should be emitted rather than expanding the function in-line. If convenient, the result should be placed in TARGET. SUBTARGET may be used as the target for computing one of EXP's operands. */ static rtx expand_builtin_ffs (arglist, target, subtarget) tree arglist; rtx target, subtarget; { rtx op0; if (!validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE)) return 0; /* Compute the argument. */ op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); /* Compute ffs, into TARGET if possible. Set TARGET to wherever the result comes back. */ target = expand_unop (TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist))), ffs_optab, op0, target, 1); if (target == 0) abort (); return target; } /* If the string passed to fputs is a constant and is one character long, we attempt to transform this call into __builtin_fputc(). */ static rtx expand_builtin_fputs (arglist, ignore) tree arglist; int ignore; { tree len, fn, fn_fputc = built_in_decls[BUILT_IN_FPUTC], fn_fwrite = built_in_decls[BUILT_IN_FWRITE]; /* If the return value is used, or the replacement _DECL isn't initialized, don't do the transformation. */ if (!ignore || !fn_fputc || !fn_fwrite) return 0; /* Verify the arguments in the original call. */ if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE) || current_function_check_memory_usage) return 0; /* Get the length of the string passed to fputs. If the length can't be determined, punt. */ if (!(len = c_strlen (TREE_VALUE (arglist))) || TREE_CODE (len) != INTEGER_CST) return 0; switch (compare_tree_int (len, 1)) { case -1: /* length is 0, delete the call entirely . */ { /* Evaluate and ignore the argument in case it has side-effects. */ expand_expr (TREE_VALUE (TREE_CHAIN (arglist)), const0_rtx, VOIDmode, EXPAND_NORMAL); return const0_rtx; } case 0: /* length is 1, call fputc. */ { const char *p = c_getstr (TREE_VALUE (arglist)); if (p != NULL) { /* New argument list transforming fputs(string, stream) to fputc(string[0], stream). */ arglist = build_tree_list (NULL_TREE, TREE_VALUE (TREE_CHAIN (arglist))); arglist = tree_cons (NULL_TREE, build_int_2 (p[0], 0), arglist); fn = fn_fputc; break; } } /* FALLTHROUGH */ case 1: /* length is greater than 1, call fwrite. */ { tree string_arg = TREE_VALUE (arglist); /* New argument list transforming fputs(string, stream) to fwrite(string, 1, len, stream). */ arglist = build_tree_list (NULL_TREE, TREE_VALUE (TREE_CHAIN (arglist))); arglist = tree_cons (NULL_TREE, len, arglist); arglist = tree_cons (NULL_TREE, size_one_node, arglist); arglist = tree_cons (NULL_TREE, string_arg, arglist); fn = fn_fwrite; break; } default: abort(); } return expand_expr (build_function_call_expr (fn, arglist), (ignore ? const0_rtx : NULL_RTX), VOIDmode, EXPAND_NORMAL); } /* Expand a call to __builtin_expect. We return our argument and emit a NOTE_INSN_EXPECTED_VALUE note. This is the expansion of __builtin_expect in a non-jump context. */ static rtx expand_builtin_expect (arglist, target) tree arglist; rtx target; { tree exp, c; rtx note, rtx_c; if (arglist == NULL_TREE || TREE_CHAIN (arglist) == NULL_TREE) return const0_rtx; exp = TREE_VALUE (arglist); c = TREE_VALUE (TREE_CHAIN (arglist)); if (TREE_CODE (c) != INTEGER_CST) { error ("second arg to `__builtin_expect' must be a constant"); c = integer_zero_node; } target = expand_expr (exp, target, VOIDmode, EXPAND_NORMAL); /* Don't bother with expected value notes for integral constants. */ if (GET_CODE (target) != CONST_INT) { /* We do need to force this into a register so that we can be moderately sure to be able to correctly interpret the branch condition later. */ target = force_reg (GET_MODE (target), target); rtx_c = expand_expr (c, NULL_RTX, GET_MODE (target), EXPAND_NORMAL); note = emit_note (NULL, NOTE_INSN_EXPECTED_VALUE); NOTE_EXPECTED_VALUE (note) = gen_rtx_EQ (VOIDmode, target, rtx_c); } return target; } /* Like expand_builtin_expect, except do this in a jump context. This is called from do_jump if the conditional is a __builtin_expect. Return either a SEQUENCE of insns to emit the jump or NULL if we cannot optimize __builtin_expect. We need to optimize this at jump time so that machines like the PowerPC don't turn the test into a SCC operation, and then jump based on the test being 0/1. */ rtx expand_builtin_expect_jump (exp, if_false_label, if_true_label) tree exp; rtx if_false_label; rtx if_true_label; { tree arglist = TREE_OPERAND (exp, 1); tree arg0 = TREE_VALUE (arglist); tree arg1 = TREE_VALUE (TREE_CHAIN (arglist)); rtx ret = NULL_RTX; /* Only handle __builtin_expect (test, 0) and __builtin_expect (test, 1). */ if (TREE_CODE (TREE_TYPE (arg1)) == INTEGER_TYPE && (integer_zerop (arg1) || integer_onep (arg1))) { int j; int num_jumps = 0; /* If we fail to locate an appropriate conditional jump, we'll fall back to normal evaluation. Ensure that the expression can be re-evaluated. */ switch (unsafe_for_reeval (arg0)) { case 0: /* Safe. */ break; case 1: /* Mildly unsafe. */ arg0 = unsave_expr (arg0); break; case 2: /* Wildly unsafe. */ return NULL_RTX; } /* Expand the jump insns. */ start_sequence (); do_jump (arg0, if_false_label, if_true_label); ret = gen_sequence (); end_sequence (); /* Now that the __builtin_expect has been validated, go through and add the expect's to each of the conditional jumps. If we run into an error, just give up and generate the 'safe' code of doing a SCC operation and then doing a branch on that. */ for (j = 0; j < XVECLEN (ret, 0); j++) { rtx insn = XVECEXP (ret, 0, j); rtx pattern; if (GET_CODE (insn) == JUMP_INSN && any_condjump_p (insn) && (pattern = pc_set (insn)) != NULL_RTX) { rtx ifelse = SET_SRC (pattern); rtx label; int taken; if (GET_CODE (ifelse) != IF_THEN_ELSE) continue; if (GET_CODE (XEXP (ifelse, 1)) == LABEL_REF) { taken = 1; label = XEXP (XEXP (ifelse, 1), 0); } /* An inverted jump reverses the probabilities. */ else if (GET_CODE (XEXP (ifelse, 2)) == LABEL_REF) { taken = 0; label = XEXP (XEXP (ifelse, 2), 0); } /* We shouldn't have to worry about conditional returns during the expansion stage, but handle it gracefully anyway. */ else if (GET_CODE (XEXP (ifelse, 1)) == RETURN) { taken = 1; label = NULL_RTX; } /* An inverted return reverses the probabilities. */ else if (GET_CODE (XEXP (ifelse, 2)) == RETURN) { taken = 0; label = NULL_RTX; } else continue; /* If the test is expected to fail, reverse the probabilities. */ if (integer_zerop (arg1)) taken = 1 - taken; /* If we are jumping to the false label, reverse the probabilities. */ if (label == NULL_RTX) ; /* conditional return */ else if (label == if_false_label) taken = 1 - taken; else if (label != if_true_label) continue; num_jumps++; predict_insn_def (insn, PRED_BUILTIN_EXPECT, taken); } } /* If no jumps were modified, fail and do __builtin_expect the normal way. */ if (num_jumps == 0) ret = NULL_RTX; } return ret; } /* Expand an expression EXP that calls a built-in function, with result going to TARGET if that's convenient (and in mode MODE if that's convenient). SUBTARGET may be used as the target for computing one of EXP's operands. IGNORE is nonzero if the value is to be ignored. */ rtx expand_builtin (exp, target, subtarget, mode, ignore) tree exp; rtx target; rtx subtarget; enum machine_mode mode; int ignore; { tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); tree arglist = TREE_OPERAND (exp, 1); enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD) return (*targetm.expand_builtin) (exp, target, subtarget, mode, ignore); /* When not optimizing, generate calls to library functions for a certain set of builtins. */ if (! optimize && ! CALLED_AS_BUILT_IN (fndecl) && (fcode == BUILT_IN_SIN || fcode == BUILT_IN_COS || fcode == BUILT_IN_FSQRT || fcode == BUILT_IN_SQRTF || fcode == BUILT_IN_SQRTL || fcode == BUILT_IN_MEMSET || fcode == BUILT_IN_MEMCPY || fcode == BUILT_IN_MEMCMP || fcode == BUILT_IN_BCMP || fcode == BUILT_IN_BZERO || fcode == BUILT_IN_INDEX || fcode == BUILT_IN_RINDEX || fcode == BUILT_IN_STRCHR || fcode == BUILT_IN_STRRCHR || fcode == BUILT_IN_STRLEN || fcode == BUILT_IN_STRCPY || fcode == BUILT_IN_STRNCPY || fcode == BUILT_IN_STRNCMP || fcode == BUILT_IN_STRSTR || fcode == BUILT_IN_STRPBRK || fcode == BUILT_IN_STRCAT || fcode == BUILT_IN_STRNCAT || fcode == BUILT_IN_STRSPN || fcode == BUILT_IN_STRCSPN || fcode == BUILT_IN_STRCMP || fcode == BUILT_IN_FFS || fcode == BUILT_IN_PUTCHAR || fcode == BUILT_IN_PUTS || fcode == BUILT_IN_PRINTF || fcode == BUILT_IN_FPUTC || fcode == BUILT_IN_FPUTS || fcode == BUILT_IN_FWRITE)) return expand_call (exp, target, ignore); switch (fcode) { case BUILT_IN_ABS: case BUILT_IN_LABS: case BUILT_IN_LLABS: case BUILT_IN_IMAXABS: case BUILT_IN_FABS: case BUILT_IN_FABSF: case BUILT_IN_FABSL: /* build_function_call changes these into ABS_EXPR. */ abort (); case BUILT_IN_CONJ: case BUILT_IN_CONJF: case BUILT_IN_CONJL: case BUILT_IN_CREAL: case BUILT_IN_CREALF: case BUILT_IN_CREALL: case BUILT_IN_CIMAG: case BUILT_IN_CIMAGF: case BUILT_IN_CIMAGL: /* expand_tree_builtin changes these into CONJ_EXPR, REALPART_EXPR and IMAGPART_EXPR. */ abort (); case BUILT_IN_SIN: case BUILT_IN_SINF: case BUILT_IN_SINL: case BUILT_IN_COS: case BUILT_IN_COSF: case BUILT_IN_COSL: /* Treat these like sqrt only if unsafe math optimizations are allowed, because of possible accuracy problems. */ if (! flag_unsafe_math_optimizations) break; case BUILT_IN_FSQRT: case BUILT_IN_SQRTF: case BUILT_IN_SQRTL: target = expand_builtin_mathfn (exp, target, subtarget); if (target) return target; break; case BUILT_IN_FMOD: break; case BUILT_IN_APPLY_ARGS: return expand_builtin_apply_args (); /* __builtin_apply (FUNCTION, ARGUMENTS, ARGSIZE) invokes FUNCTION with a copy of the parameters described by ARGUMENTS, and ARGSIZE. It returns a block of memory allocated on the stack into which is stored all the registers that might possibly be used for returning the result of a function. ARGUMENTS is the value returned by __builtin_apply_args. ARGSIZE is the number of bytes of arguments that must be copied. ??? How should this value be computed? We'll also need a safe worst case value for varargs functions. */ case BUILT_IN_APPLY: if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE) && !validate_arglist (arglist, REFERENCE_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) return const0_rtx; else { int i; tree t; rtx ops[3]; for (t = arglist, i = 0; t; t = TREE_CHAIN (t), i++) ops[i] = expand_expr (TREE_VALUE (t), NULL_RTX, VOIDmode, 0); return expand_builtin_apply (ops[0], ops[1], ops[2]); } /* __builtin_return (RESULT) causes the function to return the value described by RESULT. RESULT is address of the block of memory returned by __builtin_apply. */ case BUILT_IN_RETURN: if (validate_arglist (arglist, POINTER_TYPE, VOID_TYPE)) expand_builtin_return (expand_expr (TREE_VALUE (arglist), NULL_RTX, VOIDmode, 0)); return const0_rtx; case BUILT_IN_SAVEREGS: return expand_builtin_saveregs (); case BUILT_IN_ARGS_INFO: return expand_builtin_args_info (exp); /* Return the address of the first anonymous stack arg. */ case BUILT_IN_NEXT_ARG: return expand_builtin_next_arg (arglist); case BUILT_IN_CLASSIFY_TYPE: return expand_builtin_classify_type (arglist); case BUILT_IN_CONSTANT_P: return expand_builtin_constant_p (exp); case BUILT_IN_FRAME_ADDRESS: case BUILT_IN_RETURN_ADDRESS: return expand_builtin_frame_address (exp); /* Returns the address of the area where the structure is returned. 0 otherwise. */ case BUILT_IN_AGGREGATE_INCOMING_ADDRESS: if (arglist != 0 || ! AGGREGATE_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl))) || GET_CODE (DECL_RTL (DECL_RESULT (current_function_decl))) != MEM) return const0_rtx; else return XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0); case BUILT_IN_ALLOCA: target = expand_builtin_alloca (arglist, target); if (target) return target; break; case BUILT_IN_FFS: target = expand_builtin_ffs (arglist, target, subtarget); if (target) return target; break; case BUILT_IN_STRLEN: target = expand_builtin_strlen (exp, target); if (target) return target; break; case BUILT_IN_STRCPY: target = expand_builtin_strcpy (exp); if (target) return target; break; case BUILT_IN_STRNCPY: target = expand_builtin_strncpy (arglist, target, mode); if (target) return target; break; case BUILT_IN_STRCAT: target = expand_builtin_strcat (arglist, target, mode); if (target) return target; break; case BUILT_IN_STRNCAT: target = expand_builtin_strncat (arglist, target, mode); if (target) return target; break; case BUILT_IN_STRSPN: target = expand_builtin_strspn (arglist, target, mode); if (target) return target; break; case BUILT_IN_STRCSPN: target = expand_builtin_strcspn (arglist, target, mode); if (target) return target; break; case BUILT_IN_STRSTR: target = expand_builtin_strstr (arglist, target, mode); if (target) return target; break; case BUILT_IN_STRPBRK: target = expand_builtin_strpbrk (arglist, target, mode); if (target) return target; break; case BUILT_IN_INDEX: case BUILT_IN_STRCHR: target = expand_builtin_strchr (arglist, target, mode); if (target) return target; break; case BUILT_IN_RINDEX: case BUILT_IN_STRRCHR: target = expand_builtin_strrchr (arglist, target, mode); if (target) return target; break; case BUILT_IN_MEMCPY: target = expand_builtin_memcpy (arglist); if (target) return target; break; case BUILT_IN_MEMSET: target = expand_builtin_memset (exp); if (target) return target; break; case BUILT_IN_BZERO: target = expand_builtin_bzero (exp); if (target) return target; break; case BUILT_IN_STRCMP: target = expand_builtin_strcmp (exp, target, mode); if (target) return target; break; case BUILT_IN_STRNCMP: target = expand_builtin_strncmp (exp, target, mode); if (target) return target; break; /* These comparison functions need an instruction that returns an actual index. An ordinary compare that just sets the condition codes is not enough. */ #ifdef HAVE_cmpstrsi case BUILT_IN_BCMP: case BUILT_IN_MEMCMP: target = expand_builtin_memcmp (exp, arglist, target); if (target) return target; break; #else case BUILT_IN_BCMP: case BUILT_IN_MEMCMP: break; #endif case BUILT_IN_SETJMP: target = expand_builtin_setjmp (arglist, target); if (target) return target; break; /* __builtin_longjmp is passed a pointer to an array of five words. It's similar to the C library longjmp function but works with __builtin_setjmp above. */ case BUILT_IN_LONGJMP: if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)) break; else { rtx buf_addr = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0); rtx value = expand_expr (TREE_VALUE (TREE_CHAIN (arglist)), NULL_RTX, VOIDmode, 0); if (value != const1_rtx) { error ("__builtin_longjmp second argument must be 1"); return const0_rtx; } expand_builtin_longjmp (buf_addr, value); return const0_rtx; } case BUILT_IN_TRAP: #ifdef HAVE_trap if (HAVE_trap) emit_insn (gen_trap ()); else #endif error ("__builtin_trap not supported by this target"); emit_barrier (); return const0_rtx; case BUILT_IN_PUTCHAR: case BUILT_IN_PUTS: case BUILT_IN_FPUTC: case BUILT_IN_FWRITE: break; case BUILT_IN_FPUTS: target = expand_builtin_fputs (arglist, ignore); if (target) return target; break; /* Various hooks for the DWARF 2 __throw routine. */ case BUILT_IN_UNWIND_INIT: expand_builtin_unwind_init (); return const0_rtx; case BUILT_IN_DWARF_CFA: return virtual_cfa_rtx; #ifdef DWARF2_UNWIND_INFO case BUILT_IN_DWARF_FP_REGNUM: return expand_builtin_dwarf_fp_regnum (); case BUILT_IN_INIT_DWARF_REG_SIZES: expand_builtin_init_dwarf_reg_sizes (TREE_VALUE (arglist)); return const0_rtx; #endif case BUILT_IN_FROB_RETURN_ADDR: return expand_builtin_frob_return_addr (TREE_VALUE (arglist)); case BUILT_IN_EXTRACT_RETURN_ADDR: return expand_builtin_extract_return_addr (TREE_VALUE (arglist)); case BUILT_IN_EH_RETURN: expand_builtin_eh_return (TREE_VALUE (arglist), TREE_VALUE (TREE_CHAIN (arglist))); return const0_rtx; #ifdef EH_RETURN_DATA_REGNO case BUILT_IN_EH_RETURN_DATA_REGNO: return expand_builtin_eh_return_data_regno (arglist); #endif case BUILT_IN_VARARGS_START: return expand_builtin_va_start (0, arglist); case BUILT_IN_STDARG_START: return expand_builtin_va_start (1, arglist); case BUILT_IN_VA_END: return expand_builtin_va_end (arglist); case BUILT_IN_VA_COPY: return expand_builtin_va_copy (arglist); case BUILT_IN_EXPECT: return expand_builtin_expect (arglist, target); default: /* just do library call, if unknown builtin */ error ("built-in function `%s' not currently supported", IDENTIFIER_POINTER (DECL_NAME (fndecl))); } /* The switch statement above can drop through to cause the function to be called normally. */ return expand_call (exp, target, ignore); } /* Fold a call to __builtin_constant_p, if we know it will evaluate to a constant. ARGLIST is the argument list of the call. */ static tree fold_builtin_constant_p (arglist) tree arglist; { if (arglist == 0) return 0; arglist = TREE_VALUE (arglist); /* We return 1 for a numeric type that's known to be a constant value at compile-time or for an aggregate type that's a literal constant. */ STRIP_NOPS (arglist); /* If we know this is a constant, emit the constant of one. */ if (TREE_CODE_CLASS (TREE_CODE (arglist)) == 'c' || (TREE_CODE (arglist) == CONSTRUCTOR && TREE_CONSTANT (arglist)) || (TREE_CODE (arglist) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (arglist, 0)) == STRING_CST)) return integer_one_node; /* If we aren't going to be running CSE or this expression has side effects, show we don't know it to be a constant. Likewise if it's a pointer or aggregate type since in those case we only want literals, since those are only optimized when generating RTL, not later. And finally, if we are compiling an initializer, not code, we need to return a definite result now; there's not going to be any more optimization done. */ if (TREE_SIDE_EFFECTS (arglist) || cse_not_expected || AGGREGATE_TYPE_P (TREE_TYPE (arglist)) || POINTER_TYPE_P (TREE_TYPE (arglist)) || cfun == 0) return integer_zero_node; return 0; } /* Fold a call to __builtin_classify_type. */ static tree fold_builtin_classify_type (arglist) tree arglist; { if (arglist == 0) return build_int_2 (no_type_class, 0); return build_int_2 (type_to_class (TREE_TYPE (TREE_VALUE (arglist))), 0); } /* Used by constant folding to eliminate some builtin calls early. EXP is the CALL_EXPR of a call to a builtin function. */ tree fold_builtin (exp) tree exp; { tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0); tree arglist = TREE_OPERAND (exp, 1); enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl); if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD) return 0; switch (fcode) { case BUILT_IN_CONSTANT_P: return fold_builtin_constant_p (arglist); case BUILT_IN_CLASSIFY_TYPE: return fold_builtin_classify_type (arglist); case BUILT_IN_STRLEN: if (validate_arglist (arglist, POINTER_TYPE, VOID_TYPE)) { tree len = c_strlen (TREE_VALUE (arglist)); if (len != 0) return len; } break; default: break; } return 0; } static tree build_function_call_expr (fn, arglist) tree fn, arglist; { tree call_expr; call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn); call_expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)), call_expr, arglist); TREE_SIDE_EFFECTS (call_expr) = 1; return fold (call_expr); } /* This function validates the types of a function call argument list represented as a tree chain of parameters against a specified list of tree_codes. If the last specifier is a 0, that represents an ellipses, otherwise the last specifier must be a VOID_TYPE. */ static int validate_arglist VPARAMS ((tree arglist, ...)) { enum tree_code code; int res = 0; VA_OPEN (ap, arglist); VA_FIXEDARG (ap, tree, arglist); do { code = va_arg (ap, enum tree_code); switch (code) { case 0: /* This signifies an ellipses, any further arguments are all ok. */ res = 1; goto end; case VOID_TYPE: /* This signifies an endlink, if no arguments remain, return true, otherwise return false. */ res = arglist == 0; goto end; default: /* If no parameters remain or the parameter's code does not match the specified code, return false. Otherwise continue checking any remaining arguments. */ if (arglist == 0 || code != TREE_CODE (TREE_TYPE (TREE_VALUE (arglist)))) goto end; break; } arglist = TREE_CHAIN (arglist); } while (1); /* We need gotos here since we can only have one VA_CLOSE in a function. */ end: ; VA_CLOSE (ap); return res; } /* Default version of target-specific builtin setup that does nothing. */ void default_init_builtins () { } /* Default target-specific builtin expander that does nothing. */ rtx default_expand_builtin (exp, target, subtarget, mode, ignore) tree exp ATTRIBUTE_UNUSED; rtx target ATTRIBUTE_UNUSED; rtx subtarget ATTRIBUTE_UNUSED; enum machine_mode mode ATTRIBUTE_UNUSED; int ignore ATTRIBUTE_UNUSED; { return NULL_RTX; }