/* ieee754-df.S double-precision floating point support for ARM
Copyright (C) 2003-2013 Free Software Foundation, Inc.
Contributed by Nicolas Pitre (nico@cam.org)
This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
. */
/*
* Notes:
*
* The goal of this code is to be as fast as possible. This is
* not meant to be easy to understand for the casual reader.
* For slightly simpler code please see the single precision version
* of this file.
*
* Only the default rounding mode is intended for best performances.
* Exceptions aren't supported yet, but that can be added quite easily
* if necessary without impacting performances.
*/
#ifndef __ARMEB__
#define xl r0
#define xh r1
#define yl r2
#define yh r3
#else
#define xh r0
#define xl r1
#define yh r2
#define yl r3
#endif
#ifdef L_arm_negdf2
ARM_FUNC_START negdf2
ARM_FUNC_ALIAS aeabi_dneg negdf2
@ flip sign bit
eor xh, xh, #0x80000000
RET
FUNC_END aeabi_dneg
FUNC_END negdf2
#endif
#ifdef L_arm_addsubdf3
ARM_FUNC_START aeabi_drsub
eor xh, xh, #0x80000000 @ flip sign bit of first arg
b 1f
ARM_FUNC_START subdf3
ARM_FUNC_ALIAS aeabi_dsub subdf3
eor yh, yh, #0x80000000 @ flip sign bit of second arg
#if defined(__INTERWORKING_STUBS__)
b 1f @ Skip Thumb-code prologue
#endif
ARM_FUNC_START adddf3
ARM_FUNC_ALIAS aeabi_dadd adddf3
1: do_push {r4, r5, lr}
@ Look for zeroes, equal values, INF, or NAN.
shift1 lsl, r4, xh, #1
shift1 lsl, r5, yh, #1
teq r4, r5
do_it eq
teqeq xl, yl
do_it ne, ttt
COND(orr,s,ne) ip, r4, xl
COND(orr,s,ne) ip, r5, yl
COND(mvn,s,ne) ip, r4, asr #21
COND(mvn,s,ne) ip, r5, asr #21
beq LSYM(Lad_s)
@ Compute exponent difference. Make largest exponent in r4,
@ corresponding arg in xh-xl, and positive exponent difference in r5.
shift1 lsr, r4, r4, #21
rsbs r5, r4, r5, lsr #21
do_it lt
rsblt r5, r5, #0
ble 1f
add r4, r4, r5
eor yl, xl, yl
eor yh, xh, yh
eor xl, yl, xl
eor xh, yh, xh
eor yl, xl, yl
eor yh, xh, yh
1:
@ If exponent difference is too large, return largest argument
@ already in xh-xl. We need up to 54 bit to handle proper rounding
@ of 0x1p54 - 1.1.
cmp r5, #54
do_it hi
RETLDM "r4, r5" hi
@ Convert mantissa to signed integer.
tst xh, #0x80000000
mov xh, xh, lsl #12
mov ip, #0x00100000
orr xh, ip, xh, lsr #12
beq 1f
#if defined(__thumb2__)
negs xl, xl
sbc xh, xh, xh, lsl #1
#else
rsbs xl, xl, #0
rsc xh, xh, #0
#endif
1:
tst yh, #0x80000000
mov yh, yh, lsl #12
orr yh, ip, yh, lsr #12
beq 1f
#if defined(__thumb2__)
negs yl, yl
sbc yh, yh, yh, lsl #1
#else
rsbs yl, yl, #0
rsc yh, yh, #0
#endif
1:
@ If exponent == difference, one or both args were denormalized.
@ Since this is not common case, rescale them off line.
teq r4, r5
beq LSYM(Lad_d)
LSYM(Lad_x):
@ Compensate for the exponent overlapping the mantissa MSB added later
sub r4, r4, #1
@ Shift yh-yl right per r5, add to xh-xl, keep leftover bits into ip.
rsbs lr, r5, #32
blt 1f
shift1 lsl, ip, yl, lr
shiftop adds xl xl yl lsr r5 yl
adc xh, xh, #0
shiftop adds xl xl yh lsl lr yl
shiftop adcs xh xh yh asr r5 yh
b 2f
1: sub r5, r5, #32
add lr, lr, #32
cmp yl, #1
shift1 lsl,ip, yh, lr
do_it cs
orrcs ip, ip, #2 @ 2 not 1, to allow lsr #1 later
shiftop adds xl xl yh asr r5 yh
adcs xh, xh, yh, asr #31
2:
@ We now have a result in xh-xl-ip.
@ Keep absolute value in xh-xl-ip, sign in r5 (the n bit was set above)
and r5, xh, #0x80000000
bpl LSYM(Lad_p)
#if defined(__thumb2__)
mov lr, #0
negs ip, ip
sbcs xl, lr, xl
sbc xh, lr, xh
#else
rsbs ip, ip, #0
rscs xl, xl, #0
rsc xh, xh, #0
#endif
@ Determine how to normalize the result.
LSYM(Lad_p):
cmp xh, #0x00100000
bcc LSYM(Lad_a)
cmp xh, #0x00200000
bcc LSYM(Lad_e)
@ Result needs to be shifted right.
movs xh, xh, lsr #1
movs xl, xl, rrx
mov ip, ip, rrx
add r4, r4, #1
@ Make sure we did not bust our exponent.
mov r2, r4, lsl #21
cmn r2, #(2 << 21)
bcs LSYM(Lad_o)
@ Our result is now properly aligned into xh-xl, remaining bits in ip.
@ Round with MSB of ip. If halfway between two numbers, round towards
@ LSB of xl = 0.
@ Pack final result together.
LSYM(Lad_e):
cmp ip, #0x80000000
do_it eq
COND(mov,s,eq) ip, xl, lsr #1
adcs xl, xl, #0
adc xh, xh, r4, lsl #20
orr xh, xh, r5
RETLDM "r4, r5"
@ Result must be shifted left and exponent adjusted.
LSYM(Lad_a):
movs ip, ip, lsl #1
adcs xl, xl, xl
adc xh, xh, xh
tst xh, #0x00100000
sub r4, r4, #1
bne LSYM(Lad_e)
@ No rounding necessary since ip will always be 0 at this point.
LSYM(Lad_l):
#if __ARM_ARCH__ < 5
teq xh, #0
movne r3, #20
moveq r3, #52
moveq xh, xl
moveq xl, #0
mov r2, xh
cmp r2, #(1 << 16)
movhs r2, r2, lsr #16
subhs r3, r3, #16
cmp r2, #(1 << 8)
movhs r2, r2, lsr #8
subhs r3, r3, #8
cmp r2, #(1 << 4)
movhs r2, r2, lsr #4
subhs r3, r3, #4
cmp r2, #(1 << 2)
subhs r3, r3, #2
sublo r3, r3, r2, lsr #1
sub r3, r3, r2, lsr #3
#else
teq xh, #0
do_it eq, t
moveq xh, xl
moveq xl, #0
clz r3, xh
do_it eq
addeq r3, r3, #32
sub r3, r3, #11
#endif
@ determine how to shift the value.
subs r2, r3, #32
bge 2f
adds r2, r2, #12
ble 1f
@ shift value left 21 to 31 bits, or actually right 11 to 1 bits
@ since a register switch happened above.
add ip, r2, #20
rsb r2, r2, #12
shift1 lsl, xl, xh, ip
shift1 lsr, xh, xh, r2
b 3f
@ actually shift value left 1 to 20 bits, which might also represent
@ 32 to 52 bits if counting the register switch that happened earlier.
1: add r2, r2, #20
2: do_it le
rsble ip, r2, #32
shift1 lsl, xh, xh, r2
#if defined(__thumb2__)
lsr ip, xl, ip
itt le
orrle xh, xh, ip
lslle xl, xl, r2
#else
orrle xh, xh, xl, lsr ip
movle xl, xl, lsl r2
#endif
@ adjust exponent accordingly.
3: subs r4, r4, r3
do_it ge, tt
addge xh, xh, r4, lsl #20
orrge xh, xh, r5
RETLDM "r4, r5" ge
@ Exponent too small, denormalize result.
@ Find out proper shift value.
mvn r4, r4
subs r4, r4, #31
bge 2f
adds r4, r4, #12
bgt 1f
@ shift result right of 1 to 20 bits, sign is in r5.
add r4, r4, #20
rsb r2, r4, #32
shift1 lsr, xl, xl, r4
shiftop orr xl xl xh lsl r2 yh
shiftop orr xh r5 xh lsr r4 yh
RETLDM "r4, r5"
@ shift result right of 21 to 31 bits, or left 11 to 1 bits after
@ a register switch from xh to xl.
1: rsb r4, r4, #12
rsb r2, r4, #32
shift1 lsr, xl, xl, r2
shiftop orr xl xl xh lsl r4 yh
mov xh, r5
RETLDM "r4, r5"
@ Shift value right of 32 to 64 bits, or 0 to 32 bits after a switch
@ from xh to xl.
2: shift1 lsr, xl, xh, r4
mov xh, r5
RETLDM "r4, r5"
@ Adjust exponents for denormalized arguments.
@ Note that r4 must not remain equal to 0.
LSYM(Lad_d):
teq r4, #0
eor yh, yh, #0x00100000
do_it eq, te
eoreq xh, xh, #0x00100000
addeq r4, r4, #1
subne r5, r5, #1
b LSYM(Lad_x)
LSYM(Lad_s):
mvns ip, r4, asr #21
do_it ne
COND(mvn,s,ne) ip, r5, asr #21
beq LSYM(Lad_i)
teq r4, r5
do_it eq
teqeq xl, yl
beq 1f
@ Result is x + 0.0 = x or 0.0 + y = y.
orrs ip, r4, xl
do_it eq, t
moveq xh, yh
moveq xl, yl
RETLDM "r4, r5"
1: teq xh, yh
@ Result is x - x = 0.
do_it ne, tt
movne xh, #0
movne xl, #0
RETLDM "r4, r5" ne
@ Result is x + x = 2x.
movs ip, r4, lsr #21
bne 2f
movs xl, xl, lsl #1
adcs xh, xh, xh
do_it cs
orrcs xh, xh, #0x80000000
RETLDM "r4, r5"
2: adds r4, r4, #(2 << 21)
do_it cc, t
addcc xh, xh, #(1 << 20)
RETLDM "r4, r5" cc
and r5, xh, #0x80000000
@ Overflow: return INF.
LSYM(Lad_o):
orr xh, r5, #0x7f000000
orr xh, xh, #0x00f00000
mov xl, #0
RETLDM "r4, r5"
@ At least one of x or y is INF/NAN.
@ if xh-xl != INF/NAN: return yh-yl (which is INF/NAN)
@ if yh-yl != INF/NAN: return xh-xl (which is INF/NAN)
@ if either is NAN: return NAN
@ if opposite sign: return NAN
@ otherwise return xh-xl (which is INF or -INF)
LSYM(Lad_i):
mvns ip, r4, asr #21
do_it ne, te
movne xh, yh
movne xl, yl
COND(mvn,s,eq) ip, r5, asr #21
do_it ne, t
movne yh, xh
movne yl, xl
orrs r4, xl, xh, lsl #12
do_it eq, te
COND(orr,s,eq) r5, yl, yh, lsl #12
teqeq xh, yh
orrne xh, xh, #0x00080000 @ quiet NAN
RETLDM "r4, r5"
FUNC_END aeabi_dsub
FUNC_END subdf3
FUNC_END aeabi_dadd
FUNC_END adddf3
ARM_FUNC_START floatunsidf
ARM_FUNC_ALIAS aeabi_ui2d floatunsidf
teq r0, #0
do_it eq, t
moveq r1, #0
RETc(eq)
do_push {r4, r5, lr}
mov r4, #0x400 @ initial exponent
add r4, r4, #(52-1 - 1)
mov r5, #0 @ sign bit is 0
.ifnc xl, r0
mov xl, r0
.endif
mov xh, #0
b LSYM(Lad_l)
FUNC_END aeabi_ui2d
FUNC_END floatunsidf
ARM_FUNC_START floatsidf
ARM_FUNC_ALIAS aeabi_i2d floatsidf
teq r0, #0
do_it eq, t
moveq r1, #0
RETc(eq)
do_push {r4, r5, lr}
mov r4, #0x400 @ initial exponent
add r4, r4, #(52-1 - 1)
ands r5, r0, #0x80000000 @ sign bit in r5
do_it mi
rsbmi r0, r0, #0 @ absolute value
.ifnc xl, r0
mov xl, r0
.endif
mov xh, #0
b LSYM(Lad_l)
FUNC_END aeabi_i2d
FUNC_END floatsidf
ARM_FUNC_START extendsfdf2
ARM_FUNC_ALIAS aeabi_f2d extendsfdf2
movs r2, r0, lsl #1 @ toss sign bit
mov xh, r2, asr #3 @ stretch exponent
mov xh, xh, rrx @ retrieve sign bit
mov xl, r2, lsl #28 @ retrieve remaining bits
do_it ne, ttt
COND(and,s,ne) r3, r2, #0xff000000 @ isolate exponent
teqne r3, #0xff000000 @ if not 0, check if INF or NAN
eorne xh, xh, #0x38000000 @ fixup exponent otherwise.
RETc(ne) @ and return it.
teq r2, #0 @ if actually 0
do_it ne, e
teqne r3, #0xff000000 @ or INF or NAN
RETc(eq) @ we are done already.
@ value was denormalized. We can normalize it now.
do_push {r4, r5, lr}
mov r4, #0x380 @ setup corresponding exponent
and r5, xh, #0x80000000 @ move sign bit in r5
bic xh, xh, #0x80000000
b LSYM(Lad_l)
FUNC_END aeabi_f2d
FUNC_END extendsfdf2
ARM_FUNC_START floatundidf
ARM_FUNC_ALIAS aeabi_ul2d floatundidf
orrs r2, r0, r1
do_it eq
RETc(eq)
do_push {r4, r5, lr}
mov r5, #0
b 2f
ARM_FUNC_START floatdidf
ARM_FUNC_ALIAS aeabi_l2d floatdidf
orrs r2, r0, r1
do_it eq
RETc(eq)
do_push {r4, r5, lr}
ands r5, ah, #0x80000000 @ sign bit in r5
bpl 2f
#if defined(__thumb2__)
negs al, al
sbc ah, ah, ah, lsl #1
#else
rsbs al, al, #0
rsc ah, ah, #0
#endif
2:
mov r4, #0x400 @ initial exponent
add r4, r4, #(52-1 - 1)
@ If FP word order does not match integer word order, swap the words.
.ifnc xh, ah
mov ip, al
mov xh, ah
mov xl, ip
.endif
movs ip, xh, lsr #22
beq LSYM(Lad_p)
@ The value is too big. Scale it down a bit...
mov r2, #3
movs ip, ip, lsr #3
do_it ne
addne r2, r2, #3
movs ip, ip, lsr #3
do_it ne
addne r2, r2, #3
add r2, r2, ip, lsr #3
rsb r3, r2, #32
shift1 lsl, ip, xl, r3
shift1 lsr, xl, xl, r2
shiftop orr xl xl xh lsl r3 lr
shift1 lsr, xh, xh, r2
add r4, r4, r2
b LSYM(Lad_p)
FUNC_END floatdidf
FUNC_END aeabi_l2d
FUNC_END floatundidf
FUNC_END aeabi_ul2d
#endif /* L_addsubdf3 */
#ifdef L_arm_muldivdf3
ARM_FUNC_START muldf3
ARM_FUNC_ALIAS aeabi_dmul muldf3
do_push {r4, r5, r6, lr}
@ Mask out exponents, trap any zero/denormal/INF/NAN.
mov ip, #0xff
orr ip, ip, #0x700
ands r4, ip, xh, lsr #20
do_it ne, tte
COND(and,s,ne) r5, ip, yh, lsr #20
teqne r4, ip
teqne r5, ip
bleq LSYM(Lml_s)
@ Add exponents together
add r4, r4, r5
@ Determine final sign.
eor r6, xh, yh
@ Convert mantissa to unsigned integer.
@ If power of two, branch to a separate path.
bic xh, xh, ip, lsl #21
bic yh, yh, ip, lsl #21
orrs r5, xl, xh, lsl #12
do_it ne
COND(orr,s,ne) r5, yl, yh, lsl #12
orr xh, xh, #0x00100000
orr yh, yh, #0x00100000
beq LSYM(Lml_1)
#if __ARM_ARCH__ < 4
@ Put sign bit in r6, which will be restored in yl later.
and r6, r6, #0x80000000
@ Well, no way to make it shorter without the umull instruction.
stmfd sp!, {r6, r7, r8, r9, sl, fp}
mov r7, xl, lsr #16
mov r8, yl, lsr #16
mov r9, xh, lsr #16
mov sl, yh, lsr #16
bic xl, xl, r7, lsl #16
bic yl, yl, r8, lsl #16
bic xh, xh, r9, lsl #16
bic yh, yh, sl, lsl #16
mul ip, xl, yl
mul fp, xl, r8
mov lr, #0
adds ip, ip, fp, lsl #16
adc lr, lr, fp, lsr #16
mul fp, r7, yl
adds ip, ip, fp, lsl #16
adc lr, lr, fp, lsr #16
mul fp, xl, sl
mov r5, #0
adds lr, lr, fp, lsl #16
adc r5, r5, fp, lsr #16
mul fp, r7, yh
adds lr, lr, fp, lsl #16
adc r5, r5, fp, lsr #16
mul fp, xh, r8
adds lr, lr, fp, lsl #16
adc r5, r5, fp, lsr #16
mul fp, r9, yl
adds lr, lr, fp, lsl #16
adc r5, r5, fp, lsr #16
mul fp, xh, sl
mul r6, r9, sl
adds r5, r5, fp, lsl #16
adc r6, r6, fp, lsr #16
mul fp, r9, yh
adds r5, r5, fp, lsl #16
adc r6, r6, fp, lsr #16
mul fp, xl, yh
adds lr, lr, fp
mul fp, r7, sl
adcs r5, r5, fp
mul fp, xh, yl
adc r6, r6, #0
adds lr, lr, fp
mul fp, r9, r8
adcs r5, r5, fp
mul fp, r7, r8
adc r6, r6, #0
adds lr, lr, fp
mul fp, xh, yh
adcs r5, r5, fp
adc r6, r6, #0
ldmfd sp!, {yl, r7, r8, r9, sl, fp}
#else
@ Here is the actual multiplication.
umull ip, lr, xl, yl
mov r5, #0
umlal lr, r5, xh, yl
and yl, r6, #0x80000000
umlal lr, r5, xl, yh
mov r6, #0
umlal r5, r6, xh, yh
#endif
@ The LSBs in ip are only significant for the final rounding.
@ Fold them into lr.
teq ip, #0
do_it ne
orrne lr, lr, #1
@ Adjust result upon the MSB position.
sub r4, r4, #0xff
cmp r6, #(1 << (20-11))
sbc r4, r4, #0x300
bcs 1f
movs lr, lr, lsl #1
adcs r5, r5, r5
adc r6, r6, r6
1:
@ Shift to final position, add sign to result.
orr xh, yl, r6, lsl #11
orr xh, xh, r5, lsr #21
mov xl, r5, lsl #11
orr xl, xl, lr, lsr #21
mov lr, lr, lsl #11
@ Check exponent range for under/overflow.
subs ip, r4, #(254 - 1)
do_it hi
cmphi ip, #0x700
bhi LSYM(Lml_u)
@ Round the result, merge final exponent.
cmp lr, #0x80000000
do_it eq
COND(mov,s,eq) lr, xl, lsr #1
adcs xl, xl, #0
adc xh, xh, r4, lsl #20
RETLDM "r4, r5, r6"
@ Multiplication by 0x1p*: let''s shortcut a lot of code.
LSYM(Lml_1):
and r6, r6, #0x80000000
orr xh, r6, xh
orr xl, xl, yl
eor xh, xh, yh
subs r4, r4, ip, lsr #1
do_it gt, tt
COND(rsb,s,gt) r5, r4, ip
orrgt xh, xh, r4, lsl #20
RETLDM "r4, r5, r6" gt
@ Under/overflow: fix things up for the code below.
orr xh, xh, #0x00100000
mov lr, #0
subs r4, r4, #1
LSYM(Lml_u):
@ Overflow?
bgt LSYM(Lml_o)
@ Check if denormalized result is possible, otherwise return signed 0.
cmn r4, #(53 + 1)
do_it le, tt
movle xl, #0
bicle xh, xh, #0x7fffffff
RETLDM "r4, r5, r6" le
@ Find out proper shift value.
rsb r4, r4, #0
subs r4, r4, #32
bge 2f
adds r4, r4, #12
bgt 1f
@ shift result right of 1 to 20 bits, preserve sign bit, round, etc.
add r4, r4, #20
rsb r5, r4, #32
shift1 lsl, r3, xl, r5
shift1 lsr, xl, xl, r4
shiftop orr xl xl xh lsl r5 r2
and r2, xh, #0x80000000
bic xh, xh, #0x80000000
adds xl, xl, r3, lsr #31
shiftop adc xh r2 xh lsr r4 r6
orrs lr, lr, r3, lsl #1
do_it eq
biceq xl, xl, r3, lsr #31
RETLDM "r4, r5, r6"
@ shift result right of 21 to 31 bits, or left 11 to 1 bits after
@ a register switch from xh to xl. Then round.
1: rsb r4, r4, #12
rsb r5, r4, #32
shift1 lsl, r3, xl, r4
shift1 lsr, xl, xl, r5
shiftop orr xl xl xh lsl r4 r2
bic xh, xh, #0x7fffffff
adds xl, xl, r3, lsr #31
adc xh, xh, #0
orrs lr, lr, r3, lsl #1
do_it eq
biceq xl, xl, r3, lsr #31
RETLDM "r4, r5, r6"
@ Shift value right of 32 to 64 bits, or 0 to 32 bits after a switch
@ from xh to xl. Leftover bits are in r3-r6-lr for rounding.
2: rsb r5, r4, #32
shiftop orr lr lr xl lsl r5 r2
shift1 lsr, r3, xl, r4
shiftop orr r3 r3 xh lsl r5 r2
shift1 lsr, xl, xh, r4
bic xh, xh, #0x7fffffff
shiftop bic xl xl xh lsr r4 r2
add xl, xl, r3, lsr #31
orrs lr, lr, r3, lsl #1
do_it eq
biceq xl, xl, r3, lsr #31
RETLDM "r4, r5, r6"
@ One or both arguments are denormalized.
@ Scale them leftwards and preserve sign bit.
LSYM(Lml_d):
teq r4, #0
bne 2f
and r6, xh, #0x80000000
1: movs xl, xl, lsl #1
adc xh, xh, xh
tst xh, #0x00100000
do_it eq
subeq r4, r4, #1
beq 1b
orr xh, xh, r6
teq r5, #0
do_it ne
RETc(ne)
2: and r6, yh, #0x80000000
3: movs yl, yl, lsl #1
adc yh, yh, yh
tst yh, #0x00100000
do_it eq
subeq r5, r5, #1
beq 3b
orr yh, yh, r6
RET
LSYM(Lml_s):
@ Isolate the INF and NAN cases away
teq r4, ip
and r5, ip, yh, lsr #20
do_it ne
teqne r5, ip
beq 1f
@ Here, one or more arguments are either denormalized or zero.
orrs r6, xl, xh, lsl #1
do_it ne
COND(orr,s,ne) r6, yl, yh, lsl #1
bne LSYM(Lml_d)
@ Result is 0, but determine sign anyway.
LSYM(Lml_z):
eor xh, xh, yh
and xh, xh, #0x80000000
mov xl, #0
RETLDM "r4, r5, r6"
1: @ One or both args are INF or NAN.
orrs r6, xl, xh, lsl #1
do_it eq, te
moveq xl, yl
moveq xh, yh
COND(orr,s,ne) r6, yl, yh, lsl #1
beq LSYM(Lml_n) @ 0 * INF or INF * 0 -> NAN
teq r4, ip
bne 1f
orrs r6, xl, xh, lsl #12
bne LSYM(Lml_n) @ NAN * -> NAN
1: teq r5, ip
bne LSYM(Lml_i)
orrs r6, yl, yh, lsl #12
do_it ne, t
movne xl, yl
movne xh, yh
bne LSYM(Lml_n) @ * NAN -> NAN
@ Result is INF, but we need to determine its sign.
LSYM(Lml_i):
eor xh, xh, yh
@ Overflow: return INF (sign already in xh).
LSYM(Lml_o):
and xh, xh, #0x80000000
orr xh, xh, #0x7f000000
orr xh, xh, #0x00f00000
mov xl, #0
RETLDM "r4, r5, r6"
@ Return a quiet NAN.
LSYM(Lml_n):
orr xh, xh, #0x7f000000
orr xh, xh, #0x00f80000
RETLDM "r4, r5, r6"
FUNC_END aeabi_dmul
FUNC_END muldf3
ARM_FUNC_START divdf3
ARM_FUNC_ALIAS aeabi_ddiv divdf3
do_push {r4, r5, r6, lr}
@ Mask out exponents, trap any zero/denormal/INF/NAN.
mov ip, #0xff
orr ip, ip, #0x700
ands r4, ip, xh, lsr #20
do_it ne, tte
COND(and,s,ne) r5, ip, yh, lsr #20
teqne r4, ip
teqne r5, ip
bleq LSYM(Ldv_s)
@ Subtract divisor exponent from dividend''s.
sub r4, r4, r5
@ Preserve final sign into lr.
eor lr, xh, yh
@ Convert mantissa to unsigned integer.
@ Dividend -> r5-r6, divisor -> yh-yl.
orrs r5, yl, yh, lsl #12
mov xh, xh, lsl #12
beq LSYM(Ldv_1)
mov yh, yh, lsl #12
mov r5, #0x10000000
orr yh, r5, yh, lsr #4
orr yh, yh, yl, lsr #24
mov yl, yl, lsl #8
orr r5, r5, xh, lsr #4
orr r5, r5, xl, lsr #24
mov r6, xl, lsl #8
@ Initialize xh with final sign bit.
and xh, lr, #0x80000000
@ Ensure result will land to known bit position.
@ Apply exponent bias accordingly.
cmp r5, yh
do_it eq
cmpeq r6, yl
adc r4, r4, #(255 - 2)
add r4, r4, #0x300
bcs 1f
movs yh, yh, lsr #1
mov yl, yl, rrx
1:
@ Perform first subtraction to align result to a nibble.
subs r6, r6, yl
sbc r5, r5, yh
movs yh, yh, lsr #1
mov yl, yl, rrx
mov xl, #0x00100000
mov ip, #0x00080000
@ The actual division loop.
1: subs lr, r6, yl
sbcs lr, r5, yh
do_it cs, tt
subcs r6, r6, yl
movcs r5, lr
orrcs xl, xl, ip
movs yh, yh, lsr #1
mov yl, yl, rrx
subs lr, r6, yl
sbcs lr, r5, yh
do_it cs, tt
subcs r6, r6, yl
movcs r5, lr
orrcs xl, xl, ip, lsr #1
movs yh, yh, lsr #1
mov yl, yl, rrx
subs lr, r6, yl
sbcs lr, r5, yh
do_it cs, tt
subcs r6, r6, yl
movcs r5, lr
orrcs xl, xl, ip, lsr #2
movs yh, yh, lsr #1
mov yl, yl, rrx
subs lr, r6, yl
sbcs lr, r5, yh
do_it cs, tt
subcs r6, r6, yl
movcs r5, lr
orrcs xl, xl, ip, lsr #3
orrs lr, r5, r6
beq 2f
mov r5, r5, lsl #4
orr r5, r5, r6, lsr #28
mov r6, r6, lsl #4
mov yh, yh, lsl #3
orr yh, yh, yl, lsr #29
mov yl, yl, lsl #3
movs ip, ip, lsr #4
bne 1b
@ We are done with a word of the result.
@ Loop again for the low word if this pass was for the high word.
tst xh, #0x00100000
bne 3f
orr xh, xh, xl
mov xl, #0
mov ip, #0x80000000
b 1b
2:
@ Be sure result starts in the high word.
tst xh, #0x00100000
do_it eq, t
orreq xh, xh, xl
moveq xl, #0
3:
@ Check exponent range for under/overflow.
subs ip, r4, #(254 - 1)
do_it hi
cmphi ip, #0x700
bhi LSYM(Lml_u)
@ Round the result, merge final exponent.
subs ip, r5, yh
do_it eq, t
COND(sub,s,eq) ip, r6, yl
COND(mov,s,eq) ip, xl, lsr #1
adcs xl, xl, #0
adc xh, xh, r4, lsl #20
RETLDM "r4, r5, r6"
@ Division by 0x1p*: shortcut a lot of code.
LSYM(Ldv_1):
and lr, lr, #0x80000000
orr xh, lr, xh, lsr #12
adds r4, r4, ip, lsr #1
do_it gt, tt
COND(rsb,s,gt) r5, r4, ip
orrgt xh, xh, r4, lsl #20
RETLDM "r4, r5, r6" gt
orr xh, xh, #0x00100000
mov lr, #0
subs r4, r4, #1
b LSYM(Lml_u)
@ Result mightt need to be denormalized: put remainder bits
@ in lr for rounding considerations.
LSYM(Ldv_u):
orr lr, r5, r6
b LSYM(Lml_u)
@ One or both arguments is either INF, NAN or zero.
LSYM(Ldv_s):
and r5, ip, yh, lsr #20
teq r4, ip
do_it eq
teqeq r5, ip
beq LSYM(Lml_n) @ INF/NAN / INF/NAN -> NAN
teq r4, ip
bne 1f
orrs r4, xl, xh, lsl #12
bne LSYM(Lml_n) @ NAN / -> NAN
teq r5, ip
bne LSYM(Lml_i) @ INF / -> INF
mov xl, yl
mov xh, yh
b LSYM(Lml_n) @ INF / (INF or NAN) -> NAN
1: teq r5, ip
bne 2f
orrs r5, yl, yh, lsl #12
beq LSYM(Lml_z) @ / INF -> 0
mov xl, yl
mov xh, yh
b LSYM(Lml_n) @ / NAN -> NAN
2: @ If both are nonzero, we need to normalize and resume above.
orrs r6, xl, xh, lsl #1
do_it ne
COND(orr,s,ne) r6, yl, yh, lsl #1
bne LSYM(Lml_d)
@ One or both arguments are 0.
orrs r4, xl, xh, lsl #1
bne LSYM(Lml_i) @ / 0 -> INF
orrs r5, yl, yh, lsl #1
bne LSYM(Lml_z) @ 0 / -> 0
b LSYM(Lml_n) @ 0 / 0 -> NAN
FUNC_END aeabi_ddiv
FUNC_END divdf3
#endif /* L_muldivdf3 */
#ifdef L_arm_cmpdf2
@ Note: only r0 (return value) and ip are clobbered here.
ARM_FUNC_START gtdf2
ARM_FUNC_ALIAS gedf2 gtdf2
mov ip, #-1
b 1f
ARM_FUNC_START ltdf2
ARM_FUNC_ALIAS ledf2 ltdf2
mov ip, #1
b 1f
ARM_FUNC_START cmpdf2
ARM_FUNC_ALIAS nedf2 cmpdf2
ARM_FUNC_ALIAS eqdf2 cmpdf2
mov ip, #1 @ how should we specify unordered here?
1: str ip, [sp, #-4]!
@ Trap any INF/NAN first.
mov ip, xh, lsl #1
mvns ip, ip, asr #21
mov ip, yh, lsl #1
do_it ne
COND(mvn,s,ne) ip, ip, asr #21
beq 3f
@ Test for equality.
@ Note that 0.0 is equal to -0.0.
2: add sp, sp, #4
orrs ip, xl, xh, lsl #1 @ if x == 0.0 or -0.0
do_it eq, e
COND(orr,s,eq) ip, yl, yh, lsl #1 @ and y == 0.0 or -0.0
teqne xh, yh @ or xh == yh
do_it eq, tt
teqeq xl, yl @ and xl == yl
moveq r0, #0 @ then equal.
RETc(eq)
@ Clear C flag
cmn r0, #0
@ Compare sign,
teq xh, yh
@ Compare values if same sign
do_it pl
cmppl xh, yh
do_it eq
cmpeq xl, yl
@ Result:
do_it cs, e
movcs r0, yh, asr #31
mvncc r0, yh, asr #31
orr r0, r0, #1
RET
@ Look for a NAN.
3: mov ip, xh, lsl #1
mvns ip, ip, asr #21
bne 4f
orrs ip, xl, xh, lsl #12
bne 5f @ x is NAN
4: mov ip, yh, lsl #1
mvns ip, ip, asr #21
bne 2b
orrs ip, yl, yh, lsl #12
beq 2b @ y is not NAN
5: ldr r0, [sp], #4 @ unordered return code
RET
FUNC_END gedf2
FUNC_END gtdf2
FUNC_END ledf2
FUNC_END ltdf2
FUNC_END nedf2
FUNC_END eqdf2
FUNC_END cmpdf2
ARM_FUNC_START aeabi_cdrcmple
mov ip, r0
mov r0, r2
mov r2, ip
mov ip, r1
mov r1, r3
mov r3, ip
b 6f
ARM_FUNC_START aeabi_cdcmpeq
ARM_FUNC_ALIAS aeabi_cdcmple aeabi_cdcmpeq
@ The status-returning routines are required to preserve all
@ registers except ip, lr, and cpsr.
6: do_push {r0, lr}
ARM_CALL cmpdf2
@ Set the Z flag correctly, and the C flag unconditionally.
cmp r0, #0
@ Clear the C flag if the return value was -1, indicating
@ that the first operand was smaller than the second.
do_it mi
cmnmi r0, #0
RETLDM "r0"
FUNC_END aeabi_cdcmple
FUNC_END aeabi_cdcmpeq
FUNC_END aeabi_cdrcmple
ARM_FUNC_START aeabi_dcmpeq
str lr, [sp, #-8]!
ARM_CALL aeabi_cdcmple
do_it eq, e
moveq r0, #1 @ Equal to.
movne r0, #0 @ Less than, greater than, or unordered.
RETLDM
FUNC_END aeabi_dcmpeq
ARM_FUNC_START aeabi_dcmplt
str lr, [sp, #-8]!
ARM_CALL aeabi_cdcmple
do_it cc, e
movcc r0, #1 @ Less than.
movcs r0, #0 @ Equal to, greater than, or unordered.
RETLDM
FUNC_END aeabi_dcmplt
ARM_FUNC_START aeabi_dcmple
str lr, [sp, #-8]!
ARM_CALL aeabi_cdcmple
do_it ls, e
movls r0, #1 @ Less than or equal to.
movhi r0, #0 @ Greater than or unordered.
RETLDM
FUNC_END aeabi_dcmple
ARM_FUNC_START aeabi_dcmpge
str lr, [sp, #-8]!
ARM_CALL aeabi_cdrcmple
do_it ls, e
movls r0, #1 @ Operand 2 is less than or equal to operand 1.
movhi r0, #0 @ Operand 2 greater than operand 1, or unordered.
RETLDM
FUNC_END aeabi_dcmpge
ARM_FUNC_START aeabi_dcmpgt
str lr, [sp, #-8]!
ARM_CALL aeabi_cdrcmple
do_it cc, e
movcc r0, #1 @ Operand 2 is less than operand 1.
movcs r0, #0 @ Operand 2 is greater than or equal to operand 1,
@ or they are unordered.
RETLDM
FUNC_END aeabi_dcmpgt
#endif /* L_cmpdf2 */
#ifdef L_arm_unorddf2
ARM_FUNC_START unorddf2
ARM_FUNC_ALIAS aeabi_dcmpun unorddf2
mov ip, xh, lsl #1
mvns ip, ip, asr #21
bne 1f
orrs ip, xl, xh, lsl #12
bne 3f @ x is NAN
1: mov ip, yh, lsl #1
mvns ip, ip, asr #21
bne 2f
orrs ip, yl, yh, lsl #12
bne 3f @ y is NAN
2: mov r0, #0 @ arguments are ordered.
RET
3: mov r0, #1 @ arguments are unordered.
RET
FUNC_END aeabi_dcmpun
FUNC_END unorddf2
#endif /* L_unorddf2 */
#ifdef L_arm_fixdfsi
ARM_FUNC_START fixdfsi
ARM_FUNC_ALIAS aeabi_d2iz fixdfsi
@ check exponent range.
mov r2, xh, lsl #1
adds r2, r2, #(1 << 21)
bcs 2f @ value is INF or NAN
bpl 1f @ value is too small
mov r3, #(0xfffffc00 + 31)
subs r2, r3, r2, asr #21
bls 3f @ value is too large
@ scale value
mov r3, xh, lsl #11
orr r3, r3, #0x80000000
orr r3, r3, xl, lsr #21
tst xh, #0x80000000 @ the sign bit
shift1 lsr, r0, r3, r2
do_it ne
rsbne r0, r0, #0
RET
1: mov r0, #0
RET
2: orrs xl, xl, xh, lsl #12
bne 4f @ x is NAN.
3: ands r0, xh, #0x80000000 @ the sign bit
do_it eq
moveq r0, #0x7fffffff @ maximum signed positive si
RET
4: mov r0, #0 @ How should we convert NAN?
RET
FUNC_END aeabi_d2iz
FUNC_END fixdfsi
#endif /* L_fixdfsi */
#ifdef L_arm_fixunsdfsi
ARM_FUNC_START fixunsdfsi
ARM_FUNC_ALIAS aeabi_d2uiz fixunsdfsi
@ check exponent range.
movs r2, xh, lsl #1
bcs 1f @ value is negative
adds r2, r2, #(1 << 21)
bcs 2f @ value is INF or NAN
bpl 1f @ value is too small
mov r3, #(0xfffffc00 + 31)
subs r2, r3, r2, asr #21
bmi 3f @ value is too large
@ scale value
mov r3, xh, lsl #11
orr r3, r3, #0x80000000
orr r3, r3, xl, lsr #21
shift1 lsr, r0, r3, r2
RET
1: mov r0, #0
RET
2: orrs xl, xl, xh, lsl #12
bne 4f @ value is NAN.
3: mov r0, #0xffffffff @ maximum unsigned si
RET
4: mov r0, #0 @ How should we convert NAN?
RET
FUNC_END aeabi_d2uiz
FUNC_END fixunsdfsi
#endif /* L_fixunsdfsi */
#ifdef L_arm_truncdfsf2
ARM_FUNC_START truncdfsf2
ARM_FUNC_ALIAS aeabi_d2f truncdfsf2
@ check exponent range.
mov r2, xh, lsl #1
subs r3, r2, #((1023 - 127) << 21)
do_it cs, t
COND(sub,s,cs) ip, r3, #(1 << 21)
COND(rsb,s,cs) ip, ip, #(254 << 21)
bls 2f @ value is out of range
1: @ shift and round mantissa
and ip, xh, #0x80000000
mov r2, xl, lsl #3
orr xl, ip, xl, lsr #29
cmp r2, #0x80000000
adc r0, xl, r3, lsl #2
do_it eq
biceq r0, r0, #1
RET
2: @ either overflow or underflow
tst xh, #0x40000000
bne 3f @ overflow
@ check if denormalized value is possible
adds r2, r3, #(23 << 21)
do_it lt, t
andlt r0, xh, #0x80000000 @ too small, return signed 0.
RETc(lt)
@ denormalize value so we can resume with the code above afterwards.
orr xh, xh, #0x00100000
mov r2, r2, lsr #21
rsb r2, r2, #24
rsb ip, r2, #32
#if defined(__thumb2__)
lsls r3, xl, ip
#else
movs r3, xl, lsl ip
#endif
shift1 lsr, xl, xl, r2
do_it ne
orrne xl, xl, #1 @ fold r3 for rounding considerations.
mov r3, xh, lsl #11
mov r3, r3, lsr #11
shiftop orr xl xl r3 lsl ip ip
shift1 lsr, r3, r3, r2
mov r3, r3, lsl #1
b 1b
3: @ chech for NAN
mvns r3, r2, asr #21
bne 5f @ simple overflow
orrs r3, xl, xh, lsl #12
do_it ne, tt
movne r0, #0x7f000000
orrne r0, r0, #0x00c00000
RETc(ne) @ return NAN
5: @ return INF with sign
and r0, xh, #0x80000000
orr r0, r0, #0x7f000000
orr r0, r0, #0x00800000
RET
FUNC_END aeabi_d2f
FUNC_END truncdfsf2
#endif /* L_truncdfsf2 */