/* Implementation of the ALL intrinsic Copyright (C) 2002-2017 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #if defined (HAVE_GFC_LOGICAL_1) extern void all_l1 (gfc_array_l1 * const restrict, gfc_array_l1 * const restrict, const index_type * const restrict); export_proto(all_l1); void all_l1 (gfc_array_l1 * const restrict retarray, gfc_array_l1 * const restrict array, const index_type * const restrict pdim) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride[GFC_MAX_DIMENSIONS]; const GFC_LOGICAL_1 * restrict base; GFC_LOGICAL_1 * restrict dest; index_type rank; index_type n; index_type len; index_type delta; index_type dim; int src_kind; int continue_loop; /* Make dim zero based to avoid confusion. */ dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; src_kind = GFC_DESCRIPTOR_SIZE (array); len = GFC_DESCRIPTOR_EXTENT(array,dim); if (len < 0) len = 0; delta = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim); for (n = 0; n < dim; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); if (extent[n] < 0) extent[n] = 0; } for (n = dim; n < rank; n++) { sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n + 1); extent[n] = GFC_DESCRIPTOR_EXTENT(array,n + 1); if (extent[n] < 0) extent[n] = 0; } if (retarray->base_addr == NULL) { size_t alloc_size, str; for (n = 0; n < rank; n++) { if (n == 0) str = 1; else str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1]; GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str); } retarray->offset = 0; retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1]; if (alloc_size == 0) { /* Make sure we have a zero-sized array. */ GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1); return; } else retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_LOGICAL_1)); } else { if (rank != GFC_DESCRIPTOR_RANK (retarray)) runtime_error ("rank of return array incorrect in" " ALL intrinsic: is %ld, should be %ld", (long int) GFC_DESCRIPTOR_RANK (retarray), (long int) rank); if (unlikely (compile_options.bounds_check)) { for (n=0; n < rank; n++) { index_type ret_extent; ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n); if (extent[n] != ret_extent) runtime_error ("Incorrect extent in return value of" " ALL intrinsic in dimension %d:" " is %ld, should be %ld", (int) n + 1, (long int) ret_extent, (long int) extent[n]); } } } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n); if (extent[n] <= 0) return; } base = array->base_addr; if (src_kind == 1 || src_kind == 2 || src_kind == 4 || src_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || src_kind == 16 #endif ) { if (base) base = GFOR_POINTER_TO_L1 (base, src_kind); } else internal_error (NULL, "Funny sized logical array in ALL intrinsic"); dest = retarray->base_addr; continue_loop = 1; while (continue_loop) { const GFC_LOGICAL_1 * restrict src; GFC_LOGICAL_1 result; src = base; { /* Return true only if all the elements are set. */ result = 1; if (len <= 0) *dest = 1; else { for (n = 0; n < len; n++, src += delta) { if (! *src) { result = 0; break; } } *dest = result; } } /* Advance to the next element. */ count[0]++; base += sstride[0]; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; dest -= dstride[n] * extent[n]; n++; if (n >= rank) { /* Break out of the loop. */ continue_loop = 0; break; } else { count[n]++; base += sstride[n]; dest += dstride[n]; } } } } #endif