// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build darwin freebsd linux netbsd openbsd // Fork, exec, wait, etc. package syscall import ( "runtime" "sync" "unsafe" ) //sysnb raw_fork() (pid Pid_t, err Errno) //fork() Pid_t //sysnb raw_setsid() (err Errno) //setsid() Pid_t //sysnb raw_setpgid(pid int, pgid int) (err Errno) //setpgid(pid Pid_t, pgid Pid_t) int //sysnb raw_chroot(path *byte) (err Errno) //chroot(path *byte) int //sysnb raw_chdir(path *byte) (err Errno) //chdir(path *byte) int //sysnb raw_fcntl(fd int, cmd int, arg int) (val int, err Errno) //fcntl(fd int, cmd int, arg int) int //sysnb raw_close(fd int) (err Errno) //close(fd int) int //sysnb raw_ioctl(fd int, cmd int, val int) (rval int, err Errno) //ioctl(fd int, cmd int, val int) int //sysnb raw_execve(argv0 *byte, argv **byte, envv **byte) (err Errno) //execve(argv0 *byte, argv **byte, envv **byte) int //sysnb raw_write(fd int, buf *byte, count int) (err Errno) //write(fd int, buf *byte, count Size_t) Ssize_t //sysnb raw_exit(status int) //_exit(status int) // Note: not raw, returns error rather than Errno. //sys read(fd int, p *byte, np int) (n int, err error) //read(fd int, buf *byte, count Size_t) Ssize_t // Lock synchronizing creation of new file descriptors with fork. // // We want the child in a fork/exec sequence to inherit only the // file descriptors we intend. To do that, we mark all file // descriptors close-on-exec and then, in the child, explicitly // unmark the ones we want the exec'ed program to keep. // Unix doesn't make this easy: there is, in general, no way to // allocate a new file descriptor close-on-exec. Instead you // have to allocate the descriptor and then mark it close-on-exec. // If a fork happens between those two events, the child's exec // will inherit an unwanted file descriptor. // // This lock solves that race: the create new fd/mark close-on-exec // operation is done holding ForkLock for reading, and the fork itself // is done holding ForkLock for writing. At least, that's the idea. // There are some complications. // // Some system calls that create new file descriptors can block // for arbitrarily long times: open on a hung NFS server or named // pipe, accept on a socket, and so on. We can't reasonably grab // the lock across those operations. // // It is worse to inherit some file descriptors than others. // If a non-malicious child accidentally inherits an open ordinary file, // that's not a big deal. On the other hand, if a long-lived child // accidentally inherits the write end of a pipe, then the reader // of that pipe will not see EOF until that child exits, potentially // causing the parent program to hang. This is a common problem // in threaded C programs that use popen. // // Luckily, the file descriptors that are most important not to // inherit are not the ones that can take an arbitrarily long time // to create: pipe returns instantly, and the net package uses // non-blocking I/O to accept on a listening socket. // The rules for which file descriptor-creating operations use the // ForkLock are as follows: // // 1) Pipe. Does not block. Use the ForkLock. // 2) Socket. Does not block. Use the ForkLock. // 3) Accept. If using non-blocking mode, use the ForkLock. // Otherwise, live with the race. // 4) Open. Can block. Use O_CLOEXEC if available (GNU/Linux). // Otherwise, live with the race. // 5) Dup. Does not block. Use the ForkLock. // On GNU/Linux, could use fcntl F_DUPFD_CLOEXEC // instead of the ForkLock, but only for dup(fd, -1). var ForkLock sync.RWMutex // Convert array of string to array // of NUL-terminated byte pointer. func StringSlicePtr(ss []string) []*byte { bb := make([]*byte, len(ss)+1) for i := 0; i < len(ss); i++ { bb[i] = StringBytePtr(ss[i]) } bb[len(ss)] = nil return bb } func CloseOnExec(fd int) { fcntl(fd, F_SETFD, FD_CLOEXEC) } func SetNonblock(fd int, nonblocking bool) (err error) { flag, err := fcntl(fd, F_GETFL, 0) if err != nil { return err } if nonblocking { flag |= O_NONBLOCK } else { flag &= ^O_NONBLOCK } _, err = fcntl(fd, F_SETFL, flag) return err } // Credential holds user and group identities to be assumed // by a child process started by StartProcess. type Credential struct { Uid uint32 // User ID. Gid uint32 // Group ID. Groups []uint32 // Supplementary group IDs. } // ProcAttr holds attributes that will be applied to a new process started // by StartProcess. type ProcAttr struct { Dir string // Current working directory. Env []string // Environment. Files []int // File descriptors. Sys *SysProcAttr } var zeroProcAttr ProcAttr var zeroSysProcAttr SysProcAttr func forkExec(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) { var p [2]int var n int var err1 Errno var wstatus WaitStatus if attr == nil { attr = &zeroProcAttr } sys := attr.Sys if sys == nil { sys = &zeroSysProcAttr } p[0] = -1 p[1] = -1 // Convert args to C form. argv0p := StringBytePtr(argv0) argvp := StringSlicePtr(argv) envvp := StringSlicePtr(attr.Env) if runtime.GOOS == "freebsd" && len(argv[0]) > len(argv0) { argvp[0] = argv0p } var chroot *byte if sys.Chroot != "" { chroot = StringBytePtr(sys.Chroot) } var dir *byte if attr.Dir != "" { dir = StringBytePtr(attr.Dir) } // Acquire the fork lock so that no other threads // create new fds that are not yet close-on-exec // before we fork. ForkLock.Lock() // Allocate child status pipe close on exec. if err = Pipe(p[0:]); err != nil { goto error } if _, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != nil { goto error } if _, err = fcntl(p[1], F_SETFD, FD_CLOEXEC); err != nil { goto error } // Kick off child. pid, err1 = forkAndExecInChild(argv0p, argvp, envvp, chroot, dir, attr, sys, p[1]) if err1 != 0 { goto error } ForkLock.Unlock() // Read child error status from pipe. Close(p[1]) n, err = read(p[0], (*byte)(unsafe.Pointer(&err1)), int(unsafe.Sizeof(err1))) Close(p[0]) if err != nil || n != 0 { if n == int(unsafe.Sizeof(err1)) { err = Errno(err1) } if err == nil { err = EPIPE } // Child failed; wait for it to exit, to make sure // the zombies don't accumulate. _, err1 := Wait4(pid, &wstatus, 0, nil) for err1 == EINTR { _, err1 = Wait4(pid, &wstatus, 0, nil) } return 0, err } // Read got EOF, so pipe closed on exec, so exec succeeded. return pid, nil error: if p[0] >= 0 { Close(p[0]) Close(p[1]) } ForkLock.Unlock() return 0, err } // Combination of fork and exec, careful to be thread safe. func ForkExec(argv0 string, argv []string, attr *ProcAttr) (pid int, err error) { return forkExec(argv0, argv, attr) } // StartProcess wraps ForkExec for package os. func StartProcess(argv0 string, argv []string, attr *ProcAttr) (pid, handle int, err error) { pid, err = forkExec(argv0, argv, attr) return pid, 0, err } // Ordinary exec. func Exec(argv0 string, argv []string, envv []string) (err error) { err1 := raw_execve(StringBytePtr(argv0), &StringSlicePtr(argv)[0], &StringSlicePtr(envv)[0]) return Errno(err1) }