// Vector implementation (out of line) -*- C++ -*- // Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file vector.tcc * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _VECTOR_TCC #define _VECTOR_TCC 1 namespace _GLIBCXX_STD { template void vector<_Tp, _Alloc>:: reserve(size_type __n) { if (__n > this->max_size()) __throw_length_error(__N("vector::reserve")); if (this->capacity() < __n) { const size_type __old_size = size(); pointer __tmp = _M_allocate_and_copy(__n, this->_M_impl._M_start, this->_M_impl._M_finish); std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, this->get_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __tmp; this->_M_impl._M_finish = __tmp + __old_size; this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n; } } template typename vector<_Tp, _Alloc>::iterator vector<_Tp, _Alloc>:: insert(iterator __position, const value_type& __x) { const size_type __n = __position - begin(); if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage && __position == end()) { this->_M_impl.construct(this->_M_impl._M_finish, __x); ++this->_M_impl._M_finish; } else _M_insert_aux(__position, __x); return begin() + __n; } template typename vector<_Tp, _Alloc>::iterator vector<_Tp, _Alloc>:: erase(iterator __position) { if (__position + 1 != end()) std::copy(__position + 1, end(), __position); --this->_M_impl._M_finish; this->_M_impl.destroy(this->_M_impl._M_finish); return __position; } template typename vector<_Tp, _Alloc>::iterator vector<_Tp, _Alloc>:: erase(iterator __first, iterator __last) { iterator __i(std::copy(__last, end(), __first)); std::_Destroy(__i, end(), this->get_allocator()); this->_M_impl._M_finish = this->_M_impl._M_finish - (__last - __first); return __first; } template vector<_Tp, _Alloc>& vector<_Tp, _Alloc>:: operator=(const vector<_Tp, _Alloc>& __x) { if (&__x != this) { const size_type __xlen = __x.size(); if (__xlen > capacity()) { pointer __tmp = _M_allocate_and_copy(__xlen, __x.begin(), __x.end()); std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, this->get_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __tmp; this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __xlen; } else if (size() >= __xlen) { iterator __i(std::copy(__x.begin(), __x.end(), begin())); std::_Destroy(__i, end(), this->get_allocator()); } else { std::copy(__x.begin(), __x.begin() + size(), this->_M_impl._M_start); std::__uninitialized_copy_a(__x.begin() + size(), __x.end(), this->_M_impl._M_finish, this->get_allocator()); } this->_M_impl._M_finish = this->_M_impl._M_start + __xlen; } return *this; } template void vector<_Tp, _Alloc>:: _M_fill_assign(size_t __n, const value_type& __val) { if (__n > capacity()) { vector __tmp(__n, __val, get_allocator()); __tmp.swap(*this); } else if (__n > size()) { std::fill(begin(), end(), __val); std::__uninitialized_fill_n_a(this->_M_impl._M_finish, __n - size(), __val, this->get_allocator()); this->_M_impl._M_finish += __n - size(); } else erase(fill_n(begin(), __n, __val), end()); } template template void vector<_Tp, _Alloc>:: _M_assign_aux(_InputIterator __first, _InputIterator __last, input_iterator_tag) { iterator __cur(begin()); for (; __first != __last && __cur != end(); ++__cur, ++__first) *__cur = *__first; if (__first == __last) erase(__cur, end()); else insert(end(), __first, __last); } template template void vector<_Tp, _Alloc>:: _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { const size_type __len = std::distance(__first, __last); if (__len > capacity()) { pointer __tmp(_M_allocate_and_copy(__len, __first, __last)); std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, this->get_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __tmp; this->_M_impl._M_finish = this->_M_impl._M_start + __len; this->_M_impl._M_end_of_storage = this->_M_impl._M_finish; } else if (size() >= __len) { iterator __new_finish(std::copy(__first, __last, this->_M_impl._M_start)); std::_Destroy(__new_finish, end(), this->get_allocator()); this->_M_impl._M_finish = __new_finish.base(); } else { _ForwardIterator __mid = __first; std::advance(__mid, size()); std::copy(__first, __mid, this->_M_impl._M_start); this->_M_impl._M_finish = std::__uninitialized_copy_a(__mid, __last, this->_M_impl._M_finish, this->get_allocator()); } } template void vector<_Tp, _Alloc>:: _M_insert_aux(iterator __position, const _Tp& __x) { if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage) { this->_M_impl.construct(this->_M_impl._M_finish, *(this->_M_impl._M_finish - 1)); ++this->_M_impl._M_finish; _Tp __x_copy = __x; std::copy_backward(__position, iterator(this->_M_impl._M_finish-2), iterator(this->_M_impl._M_finish-1)); *__position = __x_copy; } else { const size_type __old_size = size(); if (__old_size == this->max_size()) __throw_length_error(__N("vector::_M_insert_aux")); // When sizeof(value_type) == 1 and __old_size > size_type(-1)/2 // __len overflows: if we don't notice and _M_allocate doesn't // throw we crash badly later. size_type __len = __old_size != 0 ? 2 * __old_size : 1; if (__len < __old_size) __len = this->max_size(); iterator __new_start(this->_M_allocate(__len)); iterator __new_finish(__new_start); try { __new_finish = std::__uninitialized_copy_a(iterator(this->_M_impl._M_start), __position, __new_start, this->get_allocator()); this->_M_impl.construct(__new_finish.base(), __x); ++__new_finish; __new_finish = std::__uninitialized_copy_a(__position, iterator(this->_M_impl._M_finish), __new_finish, this->get_allocator()); } catch(...) { std::_Destroy(__new_start, __new_finish, this->get_allocator()); _M_deallocate(__new_start.base(),__len); __throw_exception_again; } std::_Destroy(begin(), end(), this->get_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __new_start.base(); this->_M_impl._M_finish = __new_finish.base(); this->_M_impl._M_end_of_storage = __new_start.base() + __len; } } template void vector<_Tp, _Alloc>:: _M_fill_insert(iterator __position, size_type __n, const value_type& __x) { if (__n != 0) { if (size_type(this->_M_impl._M_end_of_storage - this->_M_impl._M_finish) >= __n) { value_type __x_copy = __x; const size_type __elems_after = end() - __position; iterator __old_finish(this->_M_impl._M_finish); if (__elems_after > __n) { std::__uninitialized_copy_a(this->_M_impl._M_finish - __n, this->_M_impl._M_finish, this->_M_impl._M_finish, this->get_allocator()); this->_M_impl._M_finish += __n; std::copy_backward(__position, __old_finish - __n, __old_finish); std::fill(__position, __position + __n, __x_copy); } else { std::__uninitialized_fill_n_a(this->_M_impl._M_finish, __n - __elems_after, __x_copy, this->get_allocator()); this->_M_impl._M_finish += __n - __elems_after; std::__uninitialized_copy_a(__position, __old_finish, this->_M_impl._M_finish, this->get_allocator()); this->_M_impl._M_finish += __elems_after; std::fill(__position, __old_finish, __x_copy); } } else { const size_type __old_size = size(); if (this->max_size() - __old_size < __n) __throw_length_error(__N("vector::_M_fill_insert")); // See _M_insert_aux above. size_type __len = __old_size + std::max(__old_size, __n); if (__len < __old_size) __len = this->max_size(); iterator __new_start(this->_M_allocate(__len)); iterator __new_finish(__new_start); try { __new_finish = std::__uninitialized_copy_a(begin(), __position, __new_start, this->get_allocator()); std::__uninitialized_fill_n_a(__new_finish, __n, __x, this->get_allocator()); __new_finish += __n; __new_finish = std::__uninitialized_copy_a(__position, end(), __new_finish, this->get_allocator()); } catch(...) { std::_Destroy(__new_start, __new_finish, this->get_allocator()); _M_deallocate(__new_start.base(), __len); __throw_exception_again; } std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, this->get_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __new_start.base(); this->_M_impl._M_finish = __new_finish.base(); this->_M_impl._M_end_of_storage = __new_start.base() + __len; } } } template template void vector<_Tp, _Alloc>:: _M_range_insert(iterator __pos, _InputIterator __first, _InputIterator __last, input_iterator_tag) { for (; __first != __last; ++__first) { __pos = insert(__pos, *__first); ++__pos; } } template template void vector<_Tp, _Alloc>:: _M_range_insert(iterator __position, _ForwardIterator __first, _ForwardIterator __last, forward_iterator_tag) { if (__first != __last) { const size_type __n = std::distance(__first, __last); if (size_type(this->_M_impl._M_end_of_storage - this->_M_impl._M_finish) >= __n) { const size_type __elems_after = end() - __position; iterator __old_finish(this->_M_impl._M_finish); if (__elems_after > __n) { std::__uninitialized_copy_a(this->_M_impl._M_finish - __n, this->_M_impl._M_finish, this->_M_impl._M_finish, this->get_allocator()); this->_M_impl._M_finish += __n; std::copy_backward(__position, __old_finish - __n, __old_finish); std::copy(__first, __last, __position); } else { _ForwardIterator __mid = __first; std::advance(__mid, __elems_after); std::__uninitialized_copy_a(__mid, __last, this->_M_impl._M_finish, this->get_allocator()); this->_M_impl._M_finish += __n - __elems_after; std::__uninitialized_copy_a(__position, __old_finish, this->_M_impl._M_finish, this->get_allocator()); this->_M_impl._M_finish += __elems_after; std::copy(__first, __mid, __position); } } else { const size_type __old_size = size(); if (this->max_size() - __old_size < __n) __throw_length_error(__N("vector::_M_range_insert")); // See _M_insert_aux above. size_type __len = __old_size + std::max(__old_size, __n); if (__len < __old_size) __len = this->max_size(); iterator __new_start(this->_M_allocate(__len)); iterator __new_finish(__new_start); try { __new_finish = std::__uninitialized_copy_a(iterator(this->_M_impl._M_start), __position, __new_start, this->get_allocator()); __new_finish = std::__uninitialized_copy_a(__first, __last, __new_finish, this->get_allocator()); __new_finish = std::__uninitialized_copy_a(__position, iterator(this->_M_impl._M_finish), __new_finish, this->get_allocator()); } catch(...) { std::_Destroy(__new_start,__new_finish, this->get_allocator()); _M_deallocate(__new_start.base(), __len); __throw_exception_again; } std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish, this->get_allocator()); _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage - this->_M_impl._M_start); this->_M_impl._M_start = __new_start.base(); this->_M_impl._M_finish = __new_finish.base(); this->_M_impl._M_end_of_storage = __new_start.base() + __len; } } } } // namespace std #endif /* _VECTOR_TCC */