/* Routines required for instrumenting a program. */
/* Compile this one with gcc. */
/* Copyright (C) 1989-2014 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
. */
#include "libgcov.h"
#if !defined(inhibit_libc)
#ifdef L_gcov_interval_profiler
/* If VALUE is in interval , then increases the
corresponding counter in COUNTERS. If the VALUE is above or below
the interval, COUNTERS[STEPS] or COUNTERS[STEPS + 1] is increased
instead. */
void
__gcov_interval_profiler (gcov_type *counters, gcov_type value,
int start, unsigned steps)
{
gcov_type delta = value - start;
if (delta < 0)
counters[steps + 1]++;
else if (delta >= steps)
counters[steps]++;
else
counters[delta]++;
}
#endif
#ifdef L_gcov_pow2_profiler
/* If VALUE is a power of two, COUNTERS[1] is incremented. Otherwise
COUNTERS[0] is incremented. */
void
__gcov_pow2_profiler (gcov_type *counters, gcov_type value)
{
if (value & (value - 1))
counters[0]++;
else
counters[1]++;
}
#endif
/* Tries to determine the most common value among its inputs. Checks if the
value stored in COUNTERS[0] matches VALUE. If this is the case, COUNTERS[1]
is incremented. If this is not the case and COUNTERS[1] is not zero,
COUNTERS[1] is decremented. Otherwise COUNTERS[1] is set to one and
VALUE is stored to COUNTERS[0]. This algorithm guarantees that if this
function is called more than 50% of the time with one value, this value
will be in COUNTERS[0] in the end.
In any case, COUNTERS[2] is incremented. */
static inline void
__gcov_one_value_profiler_body (gcov_type *counters, gcov_type value)
{
if (value == counters[0])
counters[1]++;
else if (counters[1] == 0)
{
counters[1] = 1;
counters[0] = value;
}
else
counters[1]--;
counters[2]++;
}
#ifdef L_gcov_one_value_profiler
void
__gcov_one_value_profiler (gcov_type *counters, gcov_type value)
{
__gcov_one_value_profiler_body (counters, value);
}
#endif
#ifdef L_gcov_indirect_call_profiler
/* This function exist only for workaround of binutils bug 14342.
Once this compatibility hack is obsolette, it can be removed. */
/* By default, the C++ compiler will use function addresses in the
vtable entries. Setting TARGET_VTABLE_USES_DESCRIPTORS to nonzero
tells the compiler to use function descriptors instead. The value
of this macro says how many words wide the descriptor is (normally 2).
It is assumed that the address of a function descriptor may be treated
as a pointer to a function. */
/* Tries to determine the most common value among its inputs. */
void
__gcov_indirect_call_profiler (gcov_type* counter, gcov_type value,
void* cur_func, void* callee_func)
{
/* If the C++ virtual tables contain function descriptors then one
function may have multiple descriptors and we need to dereference
the descriptors to see if they point to the same function. */
if (cur_func == callee_func
|| (__LIBGCC_VTABLE_USES_DESCRIPTORS__ && callee_func
&& *(void **) cur_func == *(void **) callee_func))
__gcov_one_value_profiler_body (counter, value);
}
#endif
#ifdef L_gcov_indirect_call_profiler_v2
/* These two variables are used to actually track caller and callee. Keep
them in TLS memory so races are not common (they are written to often).
The variables are set directly by GCC instrumented code, so declaration
here must match one in tree-profile.c */
#if defined(HAVE_CC_TLS) && !defined (USE_EMUTLS)
__thread
#endif
void * __gcov_indirect_call_callee;
#if defined(HAVE_CC_TLS) && !defined (USE_EMUTLS)
__thread
#endif
gcov_type * __gcov_indirect_call_counters;
/* By default, the C++ compiler will use function addresses in the
vtable entries. Setting TARGET_VTABLE_USES_DESCRIPTORS to nonzero
tells the compiler to use function descriptors instead. The value
of this macro says how many words wide the descriptor is (normally 2).
It is assumed that the address of a function descriptor may be treated
as a pointer to a function. */
/* Tries to determine the most common value among its inputs. */
void
__gcov_indirect_call_profiler_v2 (gcov_type value, void* cur_func)
{
/* If the C++ virtual tables contain function descriptors then one
function may have multiple descriptors and we need to dereference
the descriptors to see if they point to the same function. */
if (cur_func == __gcov_indirect_call_callee
|| (__LIBGCC_VTABLE_USES_DESCRIPTORS__ && __gcov_indirect_call_callee
&& *(void **) cur_func == *(void **) __gcov_indirect_call_callee))
__gcov_one_value_profiler_body (__gcov_indirect_call_counters, value);
}
#endif
#ifdef L_gcov_time_profiler
/* Counter for first visit of each function. */
static gcov_type function_counter;
/* Sets corresponding COUNTERS if there is no value. */
void
__gcov_time_profiler (gcov_type* counters)
{
if (!counters[0])
counters[0] = ++function_counter;
}
#endif
#ifdef L_gcov_average_profiler
/* Increase corresponding COUNTER by VALUE. FIXME: Perhaps we want
to saturate up. */
void
__gcov_average_profiler (gcov_type *counters, gcov_type value)
{
counters[0] += value;
counters[1] ++;
}
#endif
#ifdef L_gcov_ior_profiler
/* Bitwise-OR VALUE into COUNTER. */
void
__gcov_ior_profiler (gcov_type *counters, gcov_type value)
{
*counters |= value;
}
#endif
#endif /* inhibit_libc */