// The template and inlines for the -*- C++ -*- complex number classes. // Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. // // ISO C++ 14882: 26.2 Complex Numbers // Note: this is not a conforming implementation. // Initially implemented by Ulrich Drepper // Improved by Gabriel Dos Reis // /** @file complex * This is a Standard C++ Library header. You should @c #include this header * in your programs, rather than any of the "st[dl]_*.h" implementation files. */ #ifndef _GLIBCXX_COMPLEX #define _GLIBCXX_COMPLEX 1 #pragma GCC system_header #include #include #include #include namespace std { // Forward declarations template class complex; template<> class complex; template<> class complex; template<> class complex; /// Return magnitude of @a z. template _Tp abs(const complex<_Tp>&); /// Return phase angle of @a z. template _Tp arg(const complex<_Tp>&); /// Return @a z magnitude squared. template _Tp norm(const complex<_Tp>&); /// Return complex conjugate of @a z. template complex<_Tp> conj(const complex<_Tp>&); /// Return complex with magnitude @a rho and angle @a theta. template complex<_Tp> polar(const _Tp&, const _Tp& = 0); // Transcendentals: /// Return complex cosine of @a z. template complex<_Tp> cos(const complex<_Tp>&); /// Return complex hyperbolic cosine of @a z. template complex<_Tp> cosh(const complex<_Tp>&); /// Return complex base e exponential of @a z. template complex<_Tp> exp(const complex<_Tp>&); /// Return complex natural logarithm of @a z. template complex<_Tp> log(const complex<_Tp>&); /// Return complex base 10 logarithm of @a z. template complex<_Tp> log10(const complex<_Tp>&); /// Return complex cosine of @a z. template complex<_Tp> pow(const complex<_Tp>&, int); /// Return @a x to the @a y'th power. template complex<_Tp> pow(const complex<_Tp>&, const _Tp&); /// Return @a x to the @a y'th power. template complex<_Tp> pow(const complex<_Tp>&, const complex<_Tp>&); /// Return @a x to the @a y'th power. template complex<_Tp> pow(const _Tp&, const complex<_Tp>&); /// Return complex sine of @a z. template complex<_Tp> sin(const complex<_Tp>&); /// Return complex hyperbolic sine of @a z. template complex<_Tp> sinh(const complex<_Tp>&); /// Return complex square root of @a z. template complex<_Tp> sqrt(const complex<_Tp>&); /// Return complex tangent of @a z. template complex<_Tp> tan(const complex<_Tp>&); /// Return complex hyperbolic tangent of @a z. template complex<_Tp> tanh(const complex<_Tp>&); //@} // 26.2.2 Primary template class complex /** * Template to represent complex numbers. * * Specializations for float, double, and long double are part of the * library. Results with any other type are not guaranteed. * * @param Tp Type of real and imaginary values. */ template struct complex { /// Value typedef. typedef _Tp value_type; /// Default constructor. First parameter is x, second parameter is y. /// Unspecified parameters default to 0. complex(const _Tp& = _Tp(), const _Tp & = _Tp()); // Lets the compiler synthesize the copy constructor // complex (const complex<_Tp>&); /// Copy constructor. template complex(const complex<_Up>&); /// Return real part of complex number. _Tp& real(); /// Return real part of complex number. const _Tp& real() const; /// Return imaginary part of complex number. _Tp& imag(); /// Return imaginary part of complex number. const _Tp& imag() const; /// Assign this complex number to scalar @a t. complex<_Tp>& operator=(const _Tp&); /// Add @a t to this complex number. complex<_Tp>& operator+=(const _Tp&); /// Subtract @a t from this complex number. complex<_Tp>& operator-=(const _Tp&); /// Multiply this complex number by @a t. complex<_Tp>& operator*=(const _Tp&); /// Divide this complex number by @a t. complex<_Tp>& operator/=(const _Tp&); // Lets the compiler synthesize the // copy and assignment operator // complex<_Tp>& operator= (const complex<_Tp>&); /// Assign this complex number to complex @a z. template complex<_Tp>& operator=(const complex<_Up>&); /// Add @a z to this complex number. template complex<_Tp>& operator+=(const complex<_Up>&); /// Subtract @a z from this complex number. template complex<_Tp>& operator-=(const complex<_Up>&); /// Multiply this complex number by @a z. template complex<_Tp>& operator*=(const complex<_Up>&); /// Divide this complex number by @a z. template complex<_Tp>& operator/=(const complex<_Up>&); const complex& __rep() const; private: _Tp _M_real; _Tp _M_imag; }; template inline _Tp& complex<_Tp>::real() { return _M_real; } template inline const _Tp& complex<_Tp>::real() const { return _M_real; } template inline _Tp& complex<_Tp>::imag() { return _M_imag; } template inline const _Tp& complex<_Tp>::imag() const { return _M_imag; } template inline complex<_Tp>::complex(const _Tp& __r, const _Tp& __i) : _M_real(__r), _M_imag(__i) { } template template inline complex<_Tp>::complex(const complex<_Up>& __z) : _M_real(__z.real()), _M_imag(__z.imag()) { } template complex<_Tp>& complex<_Tp>::operator=(const _Tp& __t) { _M_real = __t; _M_imag = _Tp(); return *this; } // 26.2.5/1 template inline complex<_Tp>& complex<_Tp>::operator+=(const _Tp& __t) { _M_real += __t; return *this; } // 26.2.5/3 template inline complex<_Tp>& complex<_Tp>::operator-=(const _Tp& __t) { _M_real -= __t; return *this; } // 26.2.5/5 template complex<_Tp>& complex<_Tp>::operator*=(const _Tp& __t) { _M_real *= __t; _M_imag *= __t; return *this; } // 26.2.5/7 template complex<_Tp>& complex<_Tp>::operator/=(const _Tp& __t) { _M_real /= __t; _M_imag /= __t; return *this; } template template complex<_Tp>& complex<_Tp>::operator=(const complex<_Up>& __z) { _M_real = __z.real(); _M_imag = __z.imag(); return *this; } // 26.2.5/9 template template complex<_Tp>& complex<_Tp>::operator+=(const complex<_Up>& __z) { _M_real += __z.real(); _M_imag += __z.imag(); return *this; } // 26.2.5/11 template template complex<_Tp>& complex<_Tp>::operator-=(const complex<_Up>& __z) { _M_real -= __z.real(); _M_imag -= __z.imag(); return *this; } // 26.2.5/13 // XXX: This is a grammar school implementation. template template complex<_Tp>& complex<_Tp>::operator*=(const complex<_Up>& __z) { const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag(); _M_imag = _M_real * __z.imag() + _M_imag * __z.real(); _M_real = __r; return *this; } // 26.2.5/15 // XXX: This is a grammar school implementation. template template complex<_Tp>& complex<_Tp>::operator/=(const complex<_Up>& __z) { const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag(); const _Tp __n = std::norm(__z); _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n; _M_real = __r / __n; return *this; } template inline const complex<_Tp>& complex<_Tp>::__rep() const { return *this; } // Operators: //@{ /// Return new complex value @a x plus @a y. template inline complex<_Tp> operator+(const complex<_Tp>& __x, const complex<_Tp>& __y) { complex<_Tp> __r = __x; __r += __y; return __r; } template inline complex<_Tp> operator+(const complex<_Tp>& __x, const _Tp& __y) { complex<_Tp> __r = __x; __r.real() += __y; return __r; } template inline complex<_Tp> operator+(const _Tp& __x, const complex<_Tp>& __y) { complex<_Tp> __r = __y; __r.real() += __x; return __r; } //@} //@{ /// Return new complex value @a x minus @a y. template inline complex<_Tp> operator-(const complex<_Tp>& __x, const complex<_Tp>& __y) { complex<_Tp> __r = __x; __r -= __y; return __r; } template inline complex<_Tp> operator-(const complex<_Tp>& __x, const _Tp& __y) { complex<_Tp> __r = __x; __r.real() -= __y; return __r; } template inline complex<_Tp> operator-(const _Tp& __x, const complex<_Tp>& __y) { complex<_Tp> __r(__x, -__y.imag()); __r.real() -= __y.real(); return __r; } //@} //@{ /// Return new complex value @a x times @a y. template inline complex<_Tp> operator*(const complex<_Tp>& __x, const complex<_Tp>& __y) { complex<_Tp> __r = __x; __r *= __y; return __r; } template inline complex<_Tp> operator*(const complex<_Tp>& __x, const _Tp& __y) { complex<_Tp> __r = __x; __r *= __y; return __r; } template inline complex<_Tp> operator*(const _Tp& __x, const complex<_Tp>& __y) { complex<_Tp> __r = __y; __r *= __x; return __r; } //@} //@{ /// Return new complex value @a x divided by @a y. template inline complex<_Tp> operator/(const complex<_Tp>& __x, const complex<_Tp>& __y) { complex<_Tp> __r = __x; __r /= __y; return __r; } template inline complex<_Tp> operator/(const complex<_Tp>& __x, const _Tp& __y) { complex<_Tp> __r = __x; __r /= __y; return __r; } template inline complex<_Tp> operator/(const _Tp& __x, const complex<_Tp>& __y) { complex<_Tp> __r = __x; __r /= __y; return __r; } //@} /// Return @a x. template inline complex<_Tp> operator+(const complex<_Tp>& __x) { return __x; } /// Return complex negation of @a x. template inline complex<_Tp> operator-(const complex<_Tp>& __x) { return complex<_Tp>(-__x.real(), -__x.imag()); } //@{ /// Return true if @a x is equal to @a y. template inline bool operator==(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() == __y.real() && __x.imag() == __y.imag(); } template inline bool operator==(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() == __y && __x.imag() == _Tp(); } template inline bool operator==(const _Tp& __x, const complex<_Tp>& __y) { return __x == __y.real() && _Tp() == __y.imag(); } //@} //@{ /// Return false if @a x is equal to @a y. template inline bool operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() != __y.real() || __x.imag() != __y.imag(); } template inline bool operator!=(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() != __y || __x.imag() != _Tp(); } template inline bool operator!=(const _Tp& __x, const complex<_Tp>& __y) { return __x != __y.real() || _Tp() != __y.imag(); } //@} /// Extraction operator for complex values. template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x) { _Tp __re_x, __im_x; _CharT __ch; __is >> __ch; if (__ch == '(') { __is >> __re_x >> __ch; if (__ch == ',') { __is >> __im_x >> __ch; if (__ch == ')') __x = complex<_Tp>(__re_x, __im_x); else __is.setstate(ios_base::failbit); } else if (__ch == ')') __x = __re_x; else __is.setstate(ios_base::failbit); } else { __is.putback(__ch); __is >> __re_x; __x = __re_x; } return __is; } /// Insertion operator for complex values. template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x) { basic_ostringstream<_CharT, _Traits> __s; __s.flags(__os.flags()); __s.imbue(__os.getloc()); __s.precision(__os.precision()); __s << '(' << __x.real() << ',' << __x.imag() << ')'; return __os << __s.str(); } // Values template inline _Tp& real(complex<_Tp>& __z) { return __z.real(); } template inline const _Tp& real(const complex<_Tp>& __z) { return __z.real(); } template inline _Tp& imag(complex<_Tp>& __z) { return __z.imag(); } template inline const _Tp& imag(const complex<_Tp>& __z) { return __z.imag(); } // 26.2.7/3 abs(__z): Returns the magnitude of __z. template inline _Tp __complex_abs(const complex<_Tp>& __z) { _Tp __x = __z.real(); _Tp __y = __z.imag(); const _Tp __s = std::max(abs(__x), abs(__y)); if (__s == _Tp()) // well ... return __s; __x /= __s; __y /= __s; return __s * sqrt(__x * __x + __y * __y); } inline float __complex_abs(__complex__ float __z) { return __builtin_cabsf(__z); } inline double __complex_abs(__complex__ double __z) { return __builtin_cabs(__z); } inline long double __complex_abs(const __complex__ long double& __z) { return __builtin_cabsl(__z); } template inline _Tp abs(const complex<_Tp>& __z) { return __complex_abs(__z.__rep()); } // 26.2.7/4: arg(__z): Returns the phase angle of __z. template inline _Tp __complex_arg(const complex<_Tp>& __z) { return atan2(__z.imag(), __z.real()); } inline float __complex_arg(__complex__ float __z) { return __builtin_cargf(__z); } inline double __complex_arg(__complex__ double __z) { return __builtin_carg(__z); } inline long double __complex_arg(const __complex__ long double& __z) { return __builtin_cargl(__z); } template inline _Tp arg(const complex<_Tp>& __z) { return __complex_arg(__z.__rep()); } // 26.2.7/5: norm(__z) returns the squared magintude of __z. // As defined, norm() is -not- a norm is the common mathematical // sens used in numerics. The helper class _Norm_helper<> tries to // distinguish between builtin floating point and the rest, so as // to deliver an answer as close as possible to the real value. template struct _Norm_helper { template static inline _Tp _S_do_it(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return __x * __x + __y * __y; } }; template<> struct _Norm_helper { template static inline _Tp _S_do_it(const complex<_Tp>& __z) { _Tp __res = std::abs(__z); return __res * __res; } }; template inline _Tp norm(const complex<_Tp>& __z) { return _Norm_helper<__is_floating<_Tp>::_M_type && !_GLIBCXX_FAST_MATH>::_S_do_it(__z); } template inline complex<_Tp> polar(const _Tp& __rho, const _Tp& __theta) { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); } template inline complex<_Tp> conj(const complex<_Tp>& __z) { return complex<_Tp>(__z.real(), -__z.imag()); } // Transcendentals // 26.2.8/1 cos(__z): Returns the cosine of __z. template inline complex<_Tp> __complex_cos(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y)); } inline __complex__ float __complex_cos(__complex__ float __z) { return __builtin_ccosf(__z); } inline __complex__ double __complex_cos(__complex__ double __z) { return __builtin_ccos(__z); } inline __complex__ long double __complex_cos(const __complex__ long double& __z) { return __builtin_ccosl(__z); } template inline complex<_Tp> cos(const complex<_Tp>& __z) { return __complex_cos(__z.__rep()); } // 26.2.8/2 cosh(__z): Returns the hyperbolic cosine of __z. template inline complex<_Tp> __complex_cosh(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y)); } inline __complex__ float __complex_cosh(__complex__ float __z) { return __builtin_ccoshf(__z); } inline __complex__ double __complex_cosh(__complex__ double __z) { return __builtin_ccosh(__z); } inline __complex__ long double __complex_cosh(const __complex__ long double& __z) { return __builtin_ccoshl(__z); } template inline complex<_Tp> cosh(const complex<_Tp>& __z) { return __complex_cosh(__z.__rep()); } // 26.2.8/3 exp(__z): Returns the complex base e exponential of x template inline complex<_Tp> __complex_exp(const complex<_Tp>& __z) { return std::polar(exp(__z.real()), __z.imag()); } inline __complex__ float __complex_exp(__complex__ float __z) { return __builtin_cexpf(__z); } inline __complex__ double __complex_exp(__complex__ double __z) { return __builtin_cexp(__z); } inline __complex__ long double __complex_exp(const __complex__ long double& __z) { return __builtin_cexpl(__z); } template inline complex<_Tp> exp(const complex<_Tp>& __z) { return __complex_exp(__z.__rep()); } // 26.2.8/5 log(__z): Reurns the natural complex logaritm of __z. // The branch cut is along the negative axis. template inline complex<_Tp> __complex_log(const complex<_Tp>& __z) { return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); } /* inline __complex__ float __complex_log(__complex__ float __z) { return __builtin_clogf(__z); } inline __complex__ double __complex_log(__complex__ double __z) { return __builtin_clog(__z); } inline __complex__ long double __complex_log(const __complex__ long double& __z) { return __builtin_clogl(__z); } */ // FIXME: Currently wer don't use built-ins for log() because of some // obscure user name-space issues. So, we use the generic version // which is why we don't use __z.__rep() in the call below. template inline complex<_Tp> log(const complex<_Tp>& __z) { return __complex_log(__z); } template inline complex<_Tp> log10(const complex<_Tp>& __z) { return std::log(__z) / log(_Tp(10.0)); } // 26.2.8/10 sin(__z): Returns the sine of __z. template inline complex<_Tp> __complex_sin(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); } inline __complex__ float __complex_sin(__complex__ float __z) { return __builtin_csinf(__z); } inline __complex__ double __complex_sin(__complex__ double __z) { return __builtin_csin(__z); } inline __complex__ long double __complex_sin(const __complex__ long double& __z) { return __builtin_csinl(__z); } template inline complex<_Tp> sin(const complex<_Tp>& __z) { return __complex_sin(__z.__rep()); } // 26.2.8/11 sinh(__z): Returns the hyperbolic sine of __z. template inline complex<_Tp> __complex_sinh(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y)); } inline __complex__ float __complex_sinh(__complex__ float __z) { return __builtin_csinhf(__z); } inline __complex__ double __complex_sinh(__complex__ double __z) { return __builtin_csinh(__z); } inline __complex__ long double __complex_sinh(const __complex__ long double& __z) { return __builtin_csinhl(__z); } template inline complex<_Tp> sinh(const complex<_Tp>& __z) { return __complex_sinh(__z.__rep()); } // 26.2.8/13 sqrt(__z): Returns the complex square root of __z. // The branch cut is on the negative axis. template complex<_Tp> __complex_sqrt(const complex<_Tp>& __z) { _Tp __x = __z.real(); _Tp __y = __z.imag(); if (__x == _Tp()) { _Tp __t = sqrt(abs(__y) / 2); return complex<_Tp>(__t, __y < _Tp() ? -__t : __t); } else { _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x))); _Tp __u = __t / 2; return __x > _Tp() ? complex<_Tp>(__u, __y / __t) : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u); } } inline __complex__ float __complex_sqrt(__complex__ float __z) { return __builtin_csqrtf(__z); } inline __complex__ double __complex_sqrt(__complex__ double __z) { return __builtin_csqrt(__z); } inline __complex__ long double __complex_sqrt(const __complex__ long double& __z) { return __builtin_csqrtl(__z); } template inline complex<_Tp> sqrt(const complex<_Tp>& __z) { return __complex_sqrt(__z.__rep()); } // 26.2.8/14 tan(__z): Return the complex tangent of __z. template inline complex<_Tp> __complex_tan(const complex<_Tp>& __z) { return std::sin(__z) / std::cos(__z); } inline __complex__ float __complex_tan(__complex__ float __z) { return __builtin_ctanf(__z); } inline __complex__ double __complex_tan(__complex__ double __z) { return __builtin_ctan(__z); } inline __complex__ long double __complex_tan(const __complex__ long double& __z) { return __builtin_ctanl(__z); } template inline complex<_Tp> tan(const complex<_Tp>& __z) { return __complex_tan(__z.__rep()); } // 26.2.8/15 tanh(__z): Returns the hyperbolic tangent of __z. template inline complex<_Tp> __complex_tanh(const complex<_Tp>& __z) { return std::sinh(__z) / std::cosh(__z); } inline __complex__ float __complex_tanh(__complex__ float __z) { return __builtin_ctanhf(__z); } inline __complex__ double __complex_tanh(__complex__ double __z) { return __builtin_ctanh(__z); } inline __complex__ long double __complex_tanh(const __complex__ long double& __z) { return __builtin_ctanhl(__z); } template inline complex<_Tp> tanh(const complex<_Tp>& __z) { return __complex_tanh(__z.__rep()); } // 26.2.8/9 pow(__x, __y): Returns the complex power base of __x // raised to the __y-th power. The branch // cut is on the negative axis. template inline complex<_Tp> pow(const complex<_Tp>& __z, int __n) { return std::__pow_helper(__z, __n); } template complex<_Tp> pow(const complex<_Tp>& __x, const _Tp& __y) { if (__x.imag() == _Tp() && __x.real() > _Tp()) return pow(__x.real(), __y); complex<_Tp> __t = std::log(__x); return std::polar(exp(__y * __t.real()), __y * __t.imag()); } template inline complex<_Tp> __complex_pow(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x)); } inline __complex__ float __complex_pow(__complex__ float __x, __complex__ float __y) { return __builtin_cpowf(__x, __y); } inline __complex__ double __complex_pow(__complex__ double __x, __complex__ double __y) { return __builtin_cpow(__x, __y); } inline __complex__ long double __complex_pow(__complex__ long double& __x, __complex__ long double& __y) { return __builtin_cpowl(__x, __y); } template inline complex<_Tp> pow(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __complex_pow(__x, __y); } template inline complex<_Tp> pow(const _Tp& __x, const complex<_Tp>& __y) { return __x > _Tp() ? std::polar(pow(__x, __y.real()), __y.imag() * log(__x)) : std::pow(complex<_Tp>(__x, _Tp()), __y); } // 26.2.3 complex specializations // complex specialization template<> struct complex { typedef float value_type; typedef __complex__ float _ComplexT; complex(_ComplexT __z) : _M_value(__z) { } complex(float = 0.0f, float = 0.0f); #ifdef _GLIBCXX_BUGGY_COMPLEX complex(const complex& __z) : _M_value(__z._M_value) { } #endif explicit complex(const complex&); explicit complex(const complex&); float& real(); const float& real() const; float& imag(); const float& imag() const; complex& operator=(float); complex& operator+=(float); complex& operator-=(float); complex& operator*=(float); complex& operator/=(float); // Let's the compiler synthetize the copy and assignment // operator. It always does a pretty good job. // complex& operator= (const complex&); template complex&operator=(const complex<_Tp>&); template complex& operator+=(const complex<_Tp>&); template complex& operator-=(const complex<_Tp>&); template complex& operator*=(const complex<_Tp>&); template complex&operator/=(const complex<_Tp>&); const _ComplexT& __rep() const { return _M_value; } private: _ComplexT _M_value; }; inline float& complex::real() { return __real__ _M_value; } inline const float& complex::real() const { return __real__ _M_value; } inline float& complex::imag() { return __imag__ _M_value; } inline const float& complex::imag() const { return __imag__ _M_value; } inline complex::complex(float r, float i) { __real__ _M_value = r; __imag__ _M_value = i; } inline complex& complex::operator=(float __f) { __real__ _M_value = __f; __imag__ _M_value = 0.0f; return *this; } inline complex& complex::operator+=(float __f) { __real__ _M_value += __f; return *this; } inline complex& complex::operator-=(float __f) { __real__ _M_value -= __f; return *this; } inline complex& complex::operator*=(float __f) { _M_value *= __f; return *this; } inline complex& complex::operator/=(float __f) { _M_value /= __f; return *this; } template inline complex& complex::operator=(const complex<_Tp>& __z) { __real__ _M_value = __z.real(); __imag__ _M_value = __z.imag(); return *this; } template inline complex& complex::operator+=(const complex<_Tp>& __z) { __real__ _M_value += __z.real(); __imag__ _M_value += __z.imag(); return *this; } template inline complex& complex::operator-=(const complex<_Tp>& __z) { __real__ _M_value -= __z.real(); __imag__ _M_value -= __z.imag(); return *this; } template inline complex& complex::operator*=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value *= __t; return *this; } template inline complex& complex::operator/=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value /= __t; return *this; } // 26.2.3 complex specializations // complex specialization template<> struct complex { typedef double value_type; typedef __complex__ double _ComplexT; complex(_ComplexT __z) : _M_value(__z) { } complex(double = 0.0, double = 0.0); #ifdef _GLIBCXX_BUGGY_COMPLEX complex(const complex& __z) : _M_value(__z._M_value) { } #endif complex(const complex&); explicit complex(const complex&); double& real(); const double& real() const; double& imag(); const double& imag() const; complex& operator=(double); complex& operator+=(double); complex& operator-=(double); complex& operator*=(double); complex& operator/=(double); // The compiler will synthetize this, efficiently. // complex& operator= (const complex&); template complex& operator=(const complex<_Tp>&); template complex& operator+=(const complex<_Tp>&); template complex& operator-=(const complex<_Tp>&); template complex& operator*=(const complex<_Tp>&); template complex& operator/=(const complex<_Tp>&); const _ComplexT& __rep() const { return _M_value; } private: _ComplexT _M_value; }; inline double& complex::real() { return __real__ _M_value; } inline const double& complex::real() const { return __real__ _M_value; } inline double& complex::imag() { return __imag__ _M_value; } inline const double& complex::imag() const { return __imag__ _M_value; } inline complex::complex(double __r, double __i) { __real__ _M_value = __r; __imag__ _M_value = __i; } inline complex& complex::operator=(double __d) { __real__ _M_value = __d; __imag__ _M_value = 0.0; return *this; } inline complex& complex::operator+=(double __d) { __real__ _M_value += __d; return *this; } inline complex& complex::operator-=(double __d) { __real__ _M_value -= __d; return *this; } inline complex& complex::operator*=(double __d) { _M_value *= __d; return *this; } inline complex& complex::operator/=(double __d) { _M_value /= __d; return *this; } template inline complex& complex::operator=(const complex<_Tp>& __z) { __real__ _M_value = __z.real(); __imag__ _M_value = __z.imag(); return *this; } template inline complex& complex::operator+=(const complex<_Tp>& __z) { __real__ _M_value += __z.real(); __imag__ _M_value += __z.imag(); return *this; } template inline complex& complex::operator-=(const complex<_Tp>& __z) { __real__ _M_value -= __z.real(); __imag__ _M_value -= __z.imag(); return *this; } template inline complex& complex::operator*=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value *= __t; return *this; } template inline complex& complex::operator/=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value /= __t; return *this; } // 26.2.3 complex specializations // complex specialization template<> struct complex { typedef long double value_type; typedef __complex__ long double _ComplexT; complex(_ComplexT __z) : _M_value(__z) { } complex(long double = 0.0L, long double = 0.0L); #ifdef _GLIBCXX_BUGGY_COMPLEX complex(const complex& __z) : _M_value(__z._M_value) { } #endif complex(const complex&); complex(const complex&); long double& real(); const long double& real() const; long double& imag(); const long double& imag() const; complex& operator= (long double); complex& operator+= (long double); complex& operator-= (long double); complex& operator*= (long double); complex& operator/= (long double); // The compiler knows how to do this efficiently // complex& operator= (const complex&); template complex& operator=(const complex<_Tp>&); template complex& operator+=(const complex<_Tp>&); template complex& operator-=(const complex<_Tp>&); template complex& operator*=(const complex<_Tp>&); template complex& operator/=(const complex<_Tp>&); const _ComplexT& __rep() const { return _M_value; } private: _ComplexT _M_value; }; inline complex::complex(long double __r, long double __i) { __real__ _M_value = __r; __imag__ _M_value = __i; } inline long double& complex::real() { return __real__ _M_value; } inline const long double& complex::real() const { return __real__ _M_value; } inline long double& complex::imag() { return __imag__ _M_value; } inline const long double& complex::imag() const { return __imag__ _M_value; } inline complex& complex::operator=(long double __r) { __real__ _M_value = __r; __imag__ _M_value = 0.0L; return *this; } inline complex& complex::operator+=(long double __r) { __real__ _M_value += __r; return *this; } inline complex& complex::operator-=(long double __r) { __real__ _M_value -= __r; return *this; } inline complex& complex::operator*=(long double __r) { _M_value *= __r; return *this; } inline complex& complex::operator/=(long double __r) { _M_value /= __r; return *this; } template inline complex& complex::operator=(const complex<_Tp>& __z) { __real__ _M_value = __z.real(); __imag__ _M_value = __z.imag(); return *this; } template inline complex& complex::operator+=(const complex<_Tp>& __z) { __real__ _M_value += __z.real(); __imag__ _M_value += __z.imag(); return *this; } template inline complex& complex::operator-=(const complex<_Tp>& __z) { __real__ _M_value -= __z.real(); __imag__ _M_value -= __z.imag(); return *this; } template inline complex& complex::operator*=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value *= __t; return *this; } template inline complex& complex::operator/=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value /= __t; return *this; } // These bits have to be at the end of this file, so that the // specializations have all been defined. // ??? No, they have to be there because of compiler limitation at // inlining. It suffices that class specializations be defined. inline complex::complex(const complex& __z) : _M_value(__z.__rep()) { } inline complex::complex(const complex& __z) : _M_value(__z.__rep()) { } inline complex::complex(const complex& __z) : _M_value(__z.__rep()) { } inline complex::complex(const complex& __z) : _M_value(__z.__rep()) { } inline complex::complex(const complex& __z) : _M_value(__z.__rep()) { } inline complex::complex(const complex& __z) : _M_value(__z.__rep()) { } } // namespace std #endif /* _GLIBCXX_COMPLEX */