// Class template uniform_int_distribution -*- C++ -*- // Copyright (C) 2009-2020 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** * @file bits/uniform_int_dist.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{random} */ #ifndef _GLIBCXX_BITS_UNIFORM_INT_DIST_H #define _GLIBCXX_BITS_UNIFORM_INT_DIST_H #include #include #if __cplusplus > 201703L # include #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION #ifdef __cpp_lib_concepts /// Requirements for a uniform random bit generator. template concept uniform_random_bit_generator = invocable<_Gen&> && unsigned_integral> && requires { { _Gen::min() } -> same_as>; { _Gen::max() } -> same_as>; requires bool_constant<(_Gen::min() < _Gen::max())>::value; }; #endif namespace __detail { /* Determine whether number is a power of 2. */ template inline bool _Power_of_2(_Tp __x) { return ((__x - 1) & __x) == 0; } } /** * @brief Uniform discrete distribution for random numbers. * A discrete random distribution on the range @f$[min, max]@f$ with equal * probability throughout the range. */ template class uniform_int_distribution { static_assert(std::is_integral<_IntType>::value, "template argument must be an integral type"); public: /** The type of the range of the distribution. */ typedef _IntType result_type; /** Parameter type. */ struct param_type { typedef uniform_int_distribution<_IntType> distribution_type; param_type() : param_type(0) { } explicit param_type(_IntType __a, _IntType __b = __gnu_cxx::__int_traits<_IntType>::__max) : _M_a(__a), _M_b(__b) { __glibcxx_assert(_M_a <= _M_b); } result_type a() const { return _M_a; } result_type b() const { return _M_b; } friend bool operator==(const param_type& __p1, const param_type& __p2) { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; } friend bool operator!=(const param_type& __p1, const param_type& __p2) { return !(__p1 == __p2); } private: _IntType _M_a; _IntType _M_b; }; public: /** * @brief Constructs a uniform distribution object. */ uniform_int_distribution() : uniform_int_distribution(0) { } /** * @brief Constructs a uniform distribution object. */ explicit uniform_int_distribution(_IntType __a, _IntType __b = __gnu_cxx::__int_traits<_IntType>::__max) : _M_param(__a, __b) { } explicit uniform_int_distribution(const param_type& __p) : _M_param(__p) { } /** * @brief Resets the distribution state. * * Does nothing for the uniform integer distribution. */ void reset() { } result_type a() const { return _M_param.a(); } result_type b() const { return _M_param.b(); } /** * @brief Returns the parameter set of the distribution. */ param_type param() const { return _M_param; } /** * @brief Sets the parameter set of the distribution. * @param __param The new parameter set of the distribution. */ void param(const param_type& __param) { _M_param = __param; } /** * @brief Returns the inclusive lower bound of the distribution range. */ result_type min() const { return this->a(); } /** * @brief Returns the inclusive upper bound of the distribution range. */ result_type max() const { return this->b(); } /** * @brief Generating functions. */ template result_type operator()(_UniformRandomNumberGenerator& __urng) { return this->operator()(__urng, _M_param); } template result_type operator()(_UniformRandomNumberGenerator& __urng, const param_type& __p); template void __generate(_ForwardIterator __f, _ForwardIterator __t, _UniformRandomNumberGenerator& __urng) { this->__generate(__f, __t, __urng, _M_param); } template void __generate(_ForwardIterator __f, _ForwardIterator __t, _UniformRandomNumberGenerator& __urng, const param_type& __p) { this->__generate_impl(__f, __t, __urng, __p); } template void __generate(result_type* __f, result_type* __t, _UniformRandomNumberGenerator& __urng, const param_type& __p) { this->__generate_impl(__f, __t, __urng, __p); } /** * @brief Return true if two uniform integer distributions have * the same parameters. */ friend bool operator==(const uniform_int_distribution& __d1, const uniform_int_distribution& __d2) { return __d1._M_param == __d2._M_param; } private: template void __generate_impl(_ForwardIterator __f, _ForwardIterator __t, _UniformRandomNumberGenerator& __urng, const param_type& __p); param_type _M_param; // Lemire's nearly divisionless algorithm. // Returns an unbiased random number from __g downscaled to [0,__range) // using an unsigned type _Wp twice as wide as unsigned type _Up. template static _Up _S_nd(_Urbg& __g, _Up __range) { using __gnu_cxx::__int_traits; static_assert(!__int_traits<_Up>::__is_signed, "U must be unsigned"); static_assert(!__int_traits<_Wp>::__is_signed, "W must be unsigned"); // reference: Fast Random Integer Generation in an Interval // ACM Transactions on Modeling and Computer Simulation 29 (1), 2019 // https://arxiv.org/abs/1805.10941 _Wp __product = _Wp(__g()) * _Wp(__range); _Up __low = _Up(__product); if (__low < __range) { _Up __threshold = -__range % __range; while (__low < __threshold) { __product = _Wp(__g()) * _Wp(__range); __low = _Up(__product); } } return __product >> __gnu_cxx::__int_traits<_Up>::__digits; } }; template template typename uniform_int_distribution<_IntType>::result_type uniform_int_distribution<_IntType>:: operator()(_UniformRandomNumberGenerator& __urng, const param_type& __param) { typedef typename _UniformRandomNumberGenerator::result_type _Gresult_type; typedef typename std::make_unsigned::type __utype; typedef typename std::common_type<_Gresult_type, __utype>::type __uctype; const __uctype __urngmin = __urng.min(); const __uctype __urngmax = __urng.max(); const __uctype __urngrange = __urngmax - __urngmin; const __uctype __urange = __uctype(__param.b()) - __uctype(__param.a()); __uctype __ret; if (__urngrange > __urange) { // downscaling const __uctype __uerange = __urange + 1; // __urange can be zero using __gnu_cxx::__int_traits; #if __SIZEOF_INT128__ if (__int_traits<__uctype>::__digits == 64 && __urngrange == __int_traits<__uctype>::__max) { __ret = _S_nd(__urng, __uerange); } else #endif if (__int_traits<__uctype>::__digits == 32 && __urngrange == __int_traits<__uctype>::__max) { __ret = _S_nd<__UINT64_TYPE__>(__urng, __uerange); } else { // fallback case (2 divisions) const __uctype __scaling = __urngrange / __uerange; const __uctype __past = __uerange * __scaling; do __ret = __uctype(__urng()) - __urngmin; while (__ret >= __past); __ret /= __scaling; } } else if (__urngrange < __urange) { // upscaling /* Note that every value in [0, urange] can be written uniquely as (urngrange + 1) * high + low where high in [0, urange / (urngrange + 1)] and low in [0, urngrange]. */ __uctype __tmp; // wraparound control do { const __uctype __uerngrange = __urngrange + 1; __tmp = (__uerngrange * operator() (__urng, param_type(0, __urange / __uerngrange))); __ret = __tmp + (__uctype(__urng()) - __urngmin); } while (__ret > __urange || __ret < __tmp); } else __ret = __uctype(__urng()) - __urngmin; return __ret + __param.a(); } template template void uniform_int_distribution<_IntType>:: __generate_impl(_ForwardIterator __f, _ForwardIterator __t, _UniformRandomNumberGenerator& __urng, const param_type& __param) { __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) typedef typename _UniformRandomNumberGenerator::result_type _Gresult_type; typedef typename std::make_unsigned::type __utype; typedef typename std::common_type<_Gresult_type, __utype>::type __uctype; const __uctype __urngmin = __urng.min(); const __uctype __urngmax = __urng.max(); const __uctype __urngrange = __urngmax - __urngmin; const __uctype __urange = __uctype(__param.b()) - __uctype(__param.a()); __uctype __ret; if (__urngrange > __urange) { if (__detail::_Power_of_2(__urngrange + 1) && __detail::_Power_of_2(__urange + 1)) { while (__f != __t) { __ret = __uctype(__urng()) - __urngmin; *__f++ = (__ret & __urange) + __param.a(); } } else { // downscaling const __uctype __uerange = __urange + 1; // __urange can be zero const __uctype __scaling = __urngrange / __uerange; const __uctype __past = __uerange * __scaling; while (__f != __t) { do __ret = __uctype(__urng()) - __urngmin; while (__ret >= __past); *__f++ = __ret / __scaling + __param.a(); } } } else if (__urngrange < __urange) { // upscaling /* Note that every value in [0, urange] can be written uniquely as (urngrange + 1) * high + low where high in [0, urange / (urngrange + 1)] and low in [0, urngrange]. */ __uctype __tmp; // wraparound control while (__f != __t) { do { const __uctype __uerngrange = __urngrange + 1; __tmp = (__uerngrange * operator() (__urng, param_type(0, __urange / __uerngrange))); __ret = __tmp + (__uctype(__urng()) - __urngmin); } while (__ret > __urange || __ret < __tmp); *__f++ = __ret; } } else while (__f != __t) *__f++ = __uctype(__urng()) - __urngmin + __param.a(); } // operator!= and operator<< and operator>> are defined in _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif