// -*- C++ -*- header. // Copyright (C) 2008, 2009 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file bits/atomic_2.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _GLIBCXX_ATOMIC_2_H #define _GLIBCXX_ATOMIC_2_H 1 #pragma GCC system_header // _GLIBCXX_BEGIN_NAMESPACE(std) // 2 == __atomic2 == Always lock-free // Assumed: // _GLIBCXX_ATOMIC_BUILTINS_1 // _GLIBCXX_ATOMIC_BUILTINS_2 // _GLIBCXX_ATOMIC_BUILTINS_4 // _GLIBCXX_ATOMIC_BUILTINS_8 namespace __atomic2 { /// atomic_flag struct atomic_flag : public __atomic_flag_base { atomic_flag() = default; ~atomic_flag() = default; atomic_flag(const atomic_flag&) = delete; atomic_flag& operator=(const atomic_flag&) = delete; // Conversion to ATOMIC_FLAG_INIT. atomic_flag(bool __i): __atomic_flag_base({ __i }) { } bool test_and_set(memory_order __m = memory_order_seq_cst) volatile { // Redundant synchronize if built-in for lock is a full barrier. if (__m != memory_order_acquire && __m != memory_order_acq_rel) __sync_synchronize(); return __sync_lock_test_and_set(&_M_i, 1); } void clear(memory_order __m = memory_order_seq_cst) volatile { __glibcxx_assert(__m != memory_order_consume); __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __sync_lock_release(&_M_i); if (__m != memory_order_acquire && __m != memory_order_acq_rel) __sync_synchronize(); } }; /// 29.4.2, address types struct atomic_address { private: void* _M_i; public: atomic_address() = default; ~atomic_address() = default; atomic_address(const atomic_address&) = delete; atomic_address& operator=(const atomic_address&) = delete; atomic_address(void* __v) { _M_i = __v; } bool is_lock_free() const volatile { return true; } void store(void* __v, memory_order __m = memory_order_seq_cst) volatile { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume); if (__m == memory_order_relaxed) _M_i = __v; else { // write_mem_barrier(); _M_i = __v; if (__m = memory_order_seq_cst) __sync_synchronize(); } } void* load(memory_order __m = memory_order_seq_cst) const volatile { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel); __sync_synchronize(); void* __ret = _M_i; __sync_synchronize(); return __ret; } void* exchange(void* __v, memory_order __m = memory_order_seq_cst) volatile { // XXX built-in assumes memory_order_acquire. return __sync_lock_test_and_set(&_M_i, __v); } bool compare_exchange_weak(void*& __v1, void* __v2, memory_order __m1, memory_order __m2) volatile { return compare_exchange_strong(__v1, __v2, __m1, __m2); } bool compare_exchange_weak(void*& __v1, void* __v2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_weak(__v1, __v2, __m, __calculate_memory_order(__m)); } bool compare_exchange_strong(void*& __v1, void* __v2, memory_order __m1, memory_order __m2) volatile { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); void* __v1o = __v1; void* __v1n = __sync_val_compare_and_swap(&_M_i, __v1o, __v2); // Assume extra stores (of same value) allowed in true case. __v1 = __v1n; return __v1o == __v1n; } bool compare_exchange_strong(void*& __v1, void* __v2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_strong(__v1, __v2, __m, __calculate_memory_order(__m)); } void* fetch_add(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_add(&_M_i, __d); } void* fetch_sub(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_sub(&_M_i, __d); } operator void*() const volatile { return load(); } void* operator=(void* __v) // XXX volatile { store(__v); return __v; } void* operator+=(ptrdiff_t __d) volatile { return __sync_add_and_fetch(&_M_i, __d); } void* operator-=(ptrdiff_t __d) volatile { return __sync_sub_and_fetch(&_M_i, __d); } }; // 29.3.1 atomic integral types // For each of the integral types, define atomic_[integral type] struct // // atomic_bool bool // atomic_char char // atomic_schar signed char // atomic_uchar unsigned char // atomic_short short // atomic_ushort unsigned short // atomic_int int // atomic_uint unsigned int // atomic_long long // atomic_ulong unsigned long // atomic_llong long long // atomic_ullong unsigned long long // atomic_char16_t char16_t // atomic_char32_t char32_t // atomic_wchar_t wchar_t // Base type. // NB: Assuming _ITp is an integral scalar type that is 1, 2, 4, or 8 bytes, // since that is what GCC built-in functions for atomic memory access work on. template struct __atomic_base { private: typedef _ITp __integral_type; __integral_type _M_i; public: __atomic_base() = default; ~__atomic_base() = default; __atomic_base(const __atomic_base&) = delete; __atomic_base& operator=(const __atomic_base&) = delete; // Requires __integral_type convertible to _M_base._M_i. __atomic_base(__integral_type __i) { _M_i = __i; } operator __integral_type() const volatile { return load(); } __integral_type operator=(__integral_type __i) // XXX volatile { store(__i); return __i; } __integral_type operator++(int) volatile { return fetch_add(1); } __integral_type operator--(int) volatile { return fetch_sub(1); } __integral_type operator++() volatile { return __sync_add_and_fetch(&_M_i, 1); } __integral_type operator--() volatile { return __sync_sub_and_fetch(&_M_i, 1); } __integral_type operator+=(__integral_type __i) volatile { return __sync_add_and_fetch(&_M_i, __i); } __integral_type operator-=(__integral_type __i) volatile { return __sync_sub_and_fetch(&_M_i, __i); } __integral_type operator&=(__integral_type __i) volatile { return __sync_and_and_fetch(&_M_i, __i); } __integral_type operator|=(__integral_type __i) volatile { return __sync_or_and_fetch(&_M_i, __i); } __integral_type operator^=(__integral_type __i) volatile { return __sync_xor_and_fetch(&_M_i, __i); } bool is_lock_free() const volatile { return true; } void store(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume); if (__m == memory_order_relaxed) _M_i = __i; else { // write_mem_barrier(); _M_i = __i; if (__m = memory_order_seq_cst) __sync_synchronize(); } } __integral_type load(memory_order __m = memory_order_seq_cst) const volatile { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel); __sync_synchronize(); __integral_type __ret = _M_i; __sync_synchronize(); return __ret; } __integral_type exchange(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { // XXX built-in assumes memory_order_acquire. return __sync_lock_test_and_set(&_M_i, __i); } bool compare_exchange_weak(__integral_type& __i1, __integral_type __i2, memory_order __m1, memory_order __m2) volatile { return compare_exchange_strong(__i1, __i2, __m1, __m2); } bool compare_exchange_weak(__integral_type& __i1, __integral_type __i2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_weak(__i1, __i2, __m, __calculate_memory_order(__m)); } bool compare_exchange_strong(__integral_type& __i1, __integral_type __i2, memory_order __m1, memory_order __m2) volatile { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1); __integral_type __i1o = __i1; __integral_type __i1n = __sync_val_compare_and_swap(&_M_i, __i1o, __i2); // Assume extra stores (of same value) allowed in true case. __i1 = __i1n; return __i1o == __i1n; } bool compare_exchange_strong(__integral_type& __i1, __integral_type __i2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_strong(__i1, __i2, __m, __calculate_memory_order(__m)); } __integral_type fetch_add(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_add(&_M_i, __i); } __integral_type fetch_sub(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_sub(&_M_i, __i); } __integral_type fetch_and(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_and(&_M_i, __i); } __integral_type fetch_or(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_or(&_M_i, __i); } __integral_type fetch_xor(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_xor(&_M_i, __i); } }; /// atomic_bool // NB: No operators or fetch-operations for this type. struct atomic_bool { private: __atomic_base _M_base; public: atomic_bool() = default; ~atomic_bool() = default; atomic_bool(const atomic_bool&) = delete; atomic_bool& operator=(const atomic_bool&) = delete; atomic_bool(bool __i) : _M_base(__i) { } bool operator=(bool __i) // XXX volatile { return _M_base.operator=(__i); } operator bool() const volatile { return _M_base.load(); } bool is_lock_free() const volatile { return _M_base.is_lock_free(); } void store(bool __i, memory_order __m = memory_order_seq_cst) volatile { _M_base.store(__i, __m); } bool load(memory_order __m = memory_order_seq_cst) const volatile { return _M_base.load(__m); } bool exchange(bool __i, memory_order __m = memory_order_seq_cst) volatile { return _M_base.exchange(__i, __m); } bool compare_exchange_weak(bool& __i1, bool __i2, memory_order __m1, memory_order __m2) volatile { return _M_base.compare_exchange_weak(__i1, __i2, __m1, __m2); } bool compare_exchange_weak(bool& __i1, bool __i2, memory_order __m = memory_order_seq_cst) volatile { return _M_base.compare_exchange_weak(__i1, __i2, __m); } bool compare_exchange_strong(bool& __i1, bool __i2, memory_order __m1, memory_order __m2) volatile { return _M_base.compare_exchange_strong(__i1, __i2, __m1, __m2); } bool compare_exchange_strong(bool& __i1, bool __i2, memory_order __m = memory_order_seq_cst) volatile { return _M_base.compare_exchange_strong(__i1, __i2, __m); } }; } // namespace __atomic2 // _GLIBCXX_END_NAMESPACE #endif