// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // See malloc.h for overview. // // TODO(rsc): double-check stats. package runtime #include #include #include #include "go-alloc.h" #include "runtime.h" #include "arch.h" #include "malloc.h" #include "go-string.h" #include "interface.h" #include "go-type.h" MHeap runtime_mheap; extern MStats mstats; // defined in extern.go extern volatile int32 runtime_MemProfileRate __asm__ ("libgo_runtime.runtime.MemProfileRate"); // Allocate an object of at least size bytes. // Small objects are allocated from the per-thread cache's free lists. // Large objects (> 32 kB) are allocated straight from the heap. void* runtime_mallocgc(uintptr size, uint32 flag, int32 dogc, int32 zeroed) { M *m; G *g; int32 sizeclass, rate; MCache *c; uintptr npages; MSpan *s; void *v; m = runtime_m(); g = runtime_g(); if(g->status == Gsyscall) dogc = 0; if(runtime_gcwaiting && g != m->g0 && m->locks == 0 && g->status != Gsyscall) { runtime_gosched(); m = runtime_m(); } if(m->mallocing) runtime_throw("malloc/free - deadlock"); m->mallocing = 1; if(size == 0) size = 1; c = m->mcache; c->local_nmalloc++; if(size <= MaxSmallSize) { // Allocate from mcache free lists. sizeclass = runtime_SizeToClass(size); size = runtime_class_to_size[sizeclass]; v = runtime_MCache_Alloc(c, sizeclass, size, zeroed); if(v == nil) runtime_throw("out of memory"); c->local_alloc += size; c->local_total_alloc += size; c->local_by_size[sizeclass].nmalloc++; } else { // TODO(rsc): Report tracebacks for very large allocations. // Allocate directly from heap. npages = size >> PageShift; if((size & PageMask) != 0) npages++; s = runtime_MHeap_Alloc(&runtime_mheap, npages, 0, !(flag & FlagNoGC)); if(s == nil) runtime_throw("out of memory"); size = npages<local_alloc += size; c->local_total_alloc += size; v = (void*)(s->start << PageShift); // setup for mark sweep runtime_markspan(v, 0, 0, true); } if(!(flag & FlagNoGC)) runtime_markallocated(v, size, (flag&FlagNoPointers) != 0); m->mallocing = 0; if(!(flag & FlagNoProfiling) && (rate = runtime_MemProfileRate) > 0) { if(size >= (uint32) rate) goto profile; if((uint32) m->mcache->next_sample > size) m->mcache->next_sample -= size; else { // pick next profile time // If you change this, also change allocmcache. if(rate > 0x3fffffff) // make 2*rate not overflow rate = 0x3fffffff; m->mcache->next_sample = runtime_fastrand1() % (2*rate); profile: runtime_setblockspecial(v, true); runtime_MProf_Malloc(v, size); } } if(dogc && mstats.heap_alloc >= mstats.next_gc) runtime_gc(0); return v; } void* __go_alloc(uintptr size) { return runtime_mallocgc(size, 0, 0, 1); } // Free the object whose base pointer is v. void __go_free(void *v) { M *m; int32 sizeclass; MSpan *s; MCache *c; uint32 prof; uintptr size; if(v == nil) return; // If you change this also change mgc0.c:/^sweepspan, // which has a copy of the guts of free. m = runtime_m(); if(m->mallocing) runtime_throw("malloc/free - deadlock"); m->mallocing = 1; if(!runtime_mlookup(v, nil, nil, &s)) { // runtime_printf("free %p: not an allocated block\n", v); runtime_throw("free runtime_mlookup"); } prof = runtime_blockspecial(v); // Find size class for v. sizeclass = s->sizeclass; c = m->mcache; if(sizeclass == 0) { // Large object. size = s->npages<start< sizeof(uintptr)) ((uintptr*)v)[1] = 1; // mark as "needs to be zeroed" // Must mark v freed before calling MCache_Free: // it might coalesce v and other blocks into a bigger span // and change the bitmap further. runtime_markfreed(v, size); c->local_by_size[sizeclass].nfree++; runtime_MCache_Free(c, v, sizeclass, size); } c->local_alloc -= size; if(prof) runtime_MProf_Free(v, size); m->mallocing = 0; } int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **sp) { uintptr n, i; byte *p; MSpan *s; runtime_m()->mcache->local_nlookup++; s = runtime_MHeap_LookupMaybe(&runtime_mheap, v); if(sp) *sp = s; if(s == nil) { runtime_checkfreed(v, 1); if(base) *base = nil; if(size) *size = 0; return 0; } p = (byte*)((uintptr)s->start<sizeclass == 0) { // Large object. if(base) *base = p; if(size) *size = s->npages<= (byte*)s->limit) { // pointers past the last block do not count as pointers. return 0; } n = runtime_class_to_size[s->sizeclass]; if(base) { i = ((byte*)v - p)/n; *base = p + i*n; } if(size) *size = n; return 1; } MCache* runtime_allocmcache(void) { int32 rate; MCache *c; runtime_lock(&runtime_mheap); c = runtime_FixAlloc_Alloc(&runtime_mheap.cachealloc); mstats.mcache_inuse = runtime_mheap.cachealloc.inuse; mstats.mcache_sys = runtime_mheap.cachealloc.sys; runtime_unlock(&runtime_mheap); // Set first allocation sample size. rate = runtime_MemProfileRate; if(rate > 0x3fffffff) // make 2*rate not overflow rate = 0x3fffffff; if(rate != 0) c->next_sample = runtime_fastrand1() % (2*rate); return c; } void runtime_purgecachedstats(M* m) { MCache *c; // Protected by either heap or GC lock. c = m->mcache; mstats.heap_alloc += c->local_cachealloc; c->local_cachealloc = 0; mstats.heap_objects += c->local_objects; c->local_objects = 0; mstats.nmalloc += c->local_nmalloc; c->local_nmalloc = 0; mstats.nfree += c->local_nfree; c->local_nfree = 0; mstats.nlookup += c->local_nlookup; c->local_nlookup = 0; mstats.alloc += c->local_alloc; c->local_alloc= 0; mstats.total_alloc += c->local_total_alloc; c->local_total_alloc= 0; } extern uintptr runtime_sizeof_C_MStats __asm__ ("libgo_runtime.runtime.Sizeof_C_MStats"); #define MaxArena32 (2U<<30) void runtime_mallocinit(void) { byte *p; uintptr arena_size, bitmap_size; extern byte end[]; byte *want; runtime_sizeof_C_MStats = sizeof(MStats); runtime_InitSizes(); // Set up the allocation arena, a contiguous area of memory where // allocated data will be found. The arena begins with a bitmap large // enough to hold 4 bits per allocated word. if(sizeof(void*) == 8) { // On a 64-bit machine, allocate from a single contiguous reservation. // 16 GB should be big enough for now. // // The code will work with the reservation at any address, but ask // SysReserve to use 0x000000f800000000 if possible. // Allocating a 16 GB region takes away 36 bits, and the amd64 // doesn't let us choose the top 17 bits, so that leaves the 11 bits // in the middle of 0x00f8 for us to choose. Choosing 0x00f8 means // that the valid memory addresses will begin 0x00f8, 0x00f9, 0x00fa, 0x00fb. // None of the bytes f8 f9 fa fb can appear in valid UTF-8, and // they are otherwise as far from ff (likely a common byte) as possible. // Choosing 0x00 for the leading 6 bits was more arbitrary, but it // is not a common ASCII code point either. Using 0x11f8 instead // caused out of memory errors on OS X during thread allocations. // These choices are both for debuggability and to reduce the // odds of the conservative garbage collector not collecting memory // because some non-pointer block of memory had a bit pattern // that matched a memory address. // // Actually we reserve 17 GB (because the bitmap ends up being 1 GB) // but it hardly matters: fc is not valid UTF-8 either, and we have to // allocate 15 GB before we get that far. arena_size = (uintptr)(16LL<<30); bitmap_size = arena_size / (sizeof(void*)*8/4); p = runtime_SysReserve((void*)(0x00f8ULL<<32), bitmap_size + arena_size); if(p == nil) runtime_throw("runtime: cannot reserve arena virtual address space"); } else { // On a 32-bit machine, we can't typically get away // with a giant virtual address space reservation. // Instead we map the memory information bitmap // immediately after the data segment, large enough // to handle another 2GB of mappings (256 MB), // along with a reservation for another 512 MB of memory. // When that gets used up, we'll start asking the kernel // for any memory anywhere and hope it's in the 2GB // following the bitmap (presumably the executable begins // near the bottom of memory, so we'll have to use up // most of memory before the kernel resorts to giving out // memory before the beginning of the text segment). // // Alternatively we could reserve 512 MB bitmap, enough // for 4GB of mappings, and then accept any memory the // kernel threw at us, but normally that's a waste of 512 MB // of address space, which is probably too much in a 32-bit world. bitmap_size = MaxArena32 / (sizeof(void*)*8/4); arena_size = 512<<20; // SysReserve treats the address we ask for, end, as a hint, // not as an absolute requirement. If we ask for the end // of the data segment but the operating system requires // a little more space before we can start allocating, it will // give out a slightly higher pointer. Except QEMU, which // is buggy, as usual: it won't adjust the pointer upward. // So adjust it upward a little bit ourselves: 1/4 MB to get // away from the running binary image and then round up // to a MB boundary. want = (byte*)(((uintptr)end + (1<<18) + (1<<20) - 1)&~((1<<20)-1)); if(0xffffffff - (uintptr)want <= bitmap_size + arena_size) want = 0; p = runtime_SysReserve(want, bitmap_size + arena_size); if(p == nil) runtime_throw("runtime: cannot reserve arena virtual address space"); } if((uintptr)p & (((uintptr)1<mcache = runtime_allocmcache(); // See if it works. runtime_free(runtime_malloc(1)); } void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n) { byte *p; if(n <= (uintptr)(h->arena_end - h->arena_used)) { // Keep taking from our reservation. p = h->arena_used; runtime_SysMap(p, n); h->arena_used += n; runtime_MHeap_MapBits(h); return p; } // On 64-bit, our reservation is all we have. if(sizeof(void*) == 8) return nil; // On 32-bit, once the reservation is gone we can // try to get memory at a location chosen by the OS // and hope that it is in the range we allocated bitmap for. p = runtime_SysAlloc(n); if(p == nil) return nil; if(p < h->arena_start || (uintptr)(p+n - h->arena_start) >= MaxArena32) { runtime_printf("runtime: memory allocated by OS not in usable range\n"); runtime_SysFree(p, n); return nil; } if(p+n > h->arena_used) { h->arena_used = p+n; if(h->arena_used > h->arena_end) h->arena_end = h->arena_used; runtime_MHeap_MapBits(h); } return p; } // Runtime stubs. void* runtime_mal(uintptr n) { return runtime_mallocgc(n, 0, 1, 1); } func new(typ *Type) (ret *uint8) { uint32 flag = typ->__code&GO_NO_POINTERS ? FlagNoPointers : 0; ret = runtime_mallocgc(typ->__size, flag, 1, 1); } func Alloc(n uintptr) (p *byte) { p = runtime_malloc(n); } func Free(p *byte) { runtime_free(p); } func Lookup(p *byte) (base *byte, size uintptr) { runtime_mlookup(p, &base, &size, nil); } func GC() { runtime_gc(1); } func SetFinalizer(obj Eface, finalizer Eface) { byte *base; uintptr size; const FuncType *ft; if(obj.__type_descriptor == nil) { // runtime·printf("runtime.SetFinalizer: first argument is nil interface\n"); goto throw; } if(obj.__type_descriptor->__code != GO_PTR) { // runtime_printf("runtime.SetFinalizer: first argument is %S, not pointer\n", *obj.type->string); goto throw; } if(!runtime_mlookup(obj.__object, &base, &size, nil) || obj.__object != base) { // runtime_printf("runtime.SetFinalizer: pointer not at beginning of allocated block\n"); goto throw; } ft = nil; if(finalizer.__type_descriptor != nil) { if(finalizer.__type_descriptor->__code != GO_FUNC) goto badfunc; ft = (const FuncType*)finalizer.__type_descriptor; if(ft->__dotdotdot || ft->__in.__count != 1 || !__go_type_descriptors_equal(*(Type**)ft->__in.__values, obj.__type_descriptor)) goto badfunc; } if(!runtime_addfinalizer(obj.__object, finalizer.__type_descriptor != nil ? *(void**)finalizer.__object : nil, ft)) { runtime_printf("runtime.SetFinalizer: finalizer already set\n"); goto throw; } return; badfunc: // runtime_printf("runtime.SetFinalizer: second argument is %S, not func(%S)\n", *finalizer.type->string, *obj.type->string); throw: runtime_throw("runtime.SetFinalizer"); }