Float
represent primitive
* float
values.
*
* Additionally, this class provides various helper functions and variables
* related to floats.
*
* @author Paul Fisher
* @author Andrew Haley double
may represent
* is 3.4028235e+38f.
*/
public static final float MAX_VALUE = 3.4028235e+38f;
/**
* The minimum positive value a float
may represent
* is 1.4e-45.
*/
public static final float MIN_VALUE = 1.4e-45f;
/**
* The value of a float representation -1.0/0.0, negative infinity.
*/
public static final float NEGATIVE_INFINITY = -1.0f/0.0f;
/**
* The value of a float representation 1.0/0.0, positive infinity.
*/
public static final float POSITIVE_INFINITY = 1.0f/0.0f;
/**
* All IEEE 754 values of NaN have the same value in Java.
*/
public static final float NaN = 0.0f/0.0f;
/**
* The primitive type float
is represented by this
* Class
object.
*/
public static final Class TYPE = VMClassLoader.getPrimitiveClass('F');
/**
* The immutable value of this Float.
*/
private final float value;
private static final long serialVersionUID = -2671257302660747028L;
static
{
if (Configuration.INIT_LOAD_LIBRARY)
{
System.loadLibrary ("javalang");
}
}
/**
* Create a float
from the primitive Float
* specified.
*
* @param value the Float
argument
*/
public Float (float value)
{
this.value = value;
}
/**
* Create a Float
from the primitive double
* specified.
*
* @param value the double
argument
*/
public Float (double value)
{
this.value = (float)value;
}
/**
* Create a Float
from the specified String
.
*
* This method calls Float.parseFloat()
.
*
* @exception NumberFormatException when the String
cannot
* be parsed into a Float
.
* @param s the String
to convert
* @see #parseFloat(java.lang.String)
*/
public Float (String s) throws NumberFormatException
{
this.value = parseFloat (s);
}
/**
* Parse the specified String
as a float
.
*
* The number is really read as n * 10exponent. The
* first number is n, and if there is an "E
"
* ("e
" is also acceptable), then the integer after that is
* the exponent.
*
* Here are the possible forms the number can take:
*
*
Form | Examples |
---|---|
[+-]<number>[.] | 345., -10, 12 |
[+-]<number>.<number> | 40.2, 80.00, -12.30 |
[+-]<number>[.]E[+-]<number> | 80E12, -12e+7, 4.E-123 |
[+-]<number>.<number>E[+-]<number> | 6.02e-22, -40.2E+6, 12.3e9 |
[+-]
" means either a plus or minus sign may go there, or
* neither, in which case + is assumed.
* [.]
" means a dot may be placed here, but is optional.
* <number>
" means a string of digits (0-9), basically
* an integer. "<number>.<number>
" is basically
* a real number, a floating-point value.
*
* Remember that a float
has a limited range. If the
* number you specify is greater than Float.MAX_VALUE
or less
* than -Float.MAX_VALUE
, it will be set at
* Float.POSITIVE_INFINITY
or
* Float.NEGATIVE_INFINITY
, respectively.
*
*
* Note also that float
does not have perfect precision. Many
* numbers cannot be precisely represented. The number you specify
* will be rounded to the nearest representable value.
* Float.MIN_VALUE
is the margin of error for float
* values.
*
* If an unexpected character is found in the String
, a
* NumberFormatException
will be thrown. Spaces are not
* allowed and will cause this exception to be thrown.
*
* @XXX specify where/how we are not in accord with the spec.
*
* @param str the String
to convert
* @return the value of the String
as a float
.
* @exception NumberFormatException when the string cannot be parsed to a
* float
.
* @since JDK 1.2
* @see #MIN_VALUE
* @see #MAX_VALUE
* @see #POSITIVE_INFINITY
* @see #NEGATIVE_INFINITY
*/
public static float parseFloat (String s) throws NumberFormatException
{
// The spec says that parseFloat() should work like
// Double.valueOf(). This is equivalent, in our implementation,
// but more efficient.
return (float) Double.parseDouble (s);
}
/**
* Convert the float
value of this Float
* to a String
. This method calls
* Float.toString(float)
to do its dirty work.
*
* @return the String
representation of this Float
.
* @see #toString(float)
*/
public String toString ()
{
return toString (value);
}
/**
* If the Object
is not null
, is an
* instanceof
Float
, and represents
* the same primitive float
value return
* true
. Otherwise false
is returned.
*
* Note that there are two differences between ==
and
* equals()
. 0.0f == -0.0f
returns true
* but new Float(0.0f).equals(new Float(-0.0f))
returns
* false
. And Float.NaN == Float.NaN
returns
* false
, but
* new Float(Float.NaN).equals(new Float(Float.NaN))
returns
* true
.
*
* @param obj the object to compare to
* @return whether the objects are semantically equal.
*/
public boolean equals (Object obj)
{
if (!(obj instanceof Float))
return false;
float f = ((Float) obj).value;
// GCJ LOCAL: this implementation is probably faster than
// Classpath's, especially once we inline floatToIntBits.
return floatToIntBits (value) == floatToIntBits (f);
// END GCJ LOCAL
}
/**
* Return a hashcode representing this Object.
* Float
's hash code is calculated by calling the
* floatToIntBits()
function.
* @return this Object's hash code.
* @see java.lang.Float.floatToIntBits(float)
*/
public int hashCode ()
{
return floatToIntBits (value);
}
/**
* Return the value of this Double
when cast to an
* int
.
*/
public int intValue ()
{
return (int) value;
}
/**
* Return the value of this Double
when cast to a
* long
.
*/
public long longValue ()
{
return (long) value;
}
/**
* Return the value of this Double
when cast to a
* float
.
*/
public float floatValue ()
{
return (float) value;
}
/**
* Return the primitive double
value represented by this
* Double
.
*/
public double doubleValue ()
{
return (double) value;
}
/**
* Convert the float
to a String
.
*
*
* Floating-point string representation is fairly complex: here is a
* rundown of the possible values. "[-]
" indicates that a
* negative sign will be printed if the value (or exponent) is negative.
* "<number>
" means a string of digits (0-9).
* "<digit>
" means a single digit (0-9).
*
* *
Value of Float | String Representation |
---|---|
[+-] 0 | *[- ]0.0 |
*
Between [+-] 10-3 and 107 | *[-]number.number |
*
Other numeric value | *[-]<digit>.<number>E[-]<number> |
*
[+-] infinity | *[-]Infinity |
*
NaN | *NaN |
*
.
and at least one digit printed after
* it: even if the number is 3, it will be printed as 3.0
.
* After the ".", all digits will be printed except trailing zeros. No
* truncation or rounding is done by this function.
*
* @XXX specify where we are not in accord with the spec.
*
* @param f the float
to convert
* @return the String
representing the float
.
*/
public static String toString (float f)
{
return Double.toString ((double) f, true);
}
/**
* Return the result of calling new Float(java.lang.String)
.
*
* @param s the String
to convert to a Float
.
* @return a new Float
representing the String
's
* numeric value.
*
* @exception NumberFormatException thrown if String
cannot
* be parsed as a double
.
* @see #Float(java.lang.String)
* @see #parseFloat(java.lang.String)
*/
public static Float valueOf (String s) throws NumberFormatException
{
return new Float (s);
}
/**
* Return true
if the value of this Float
* is the same as NaN
, otherwise return false
.
* @return whether this Float
is NaN
.
*/
public boolean isNaN ()
{
return isNaN (value);
}
/**
* Return true
if the float
has the same
* value as NaN
, otherwise return false
.
*
* @param v the float
to compare
* @return whether the argument is NaN
.
*/
public static boolean isNaN (float v)
{
// This works since NaN != NaN is the only reflexive inequality
// comparison which returns true.
return v != v;
}
/**
* Return true
if the value of this Float
* is the same as NEGATIVE_INFINITY
or
* POSITIVE_INFINITY
, otherwise return false
.
*
* @return whether this Float
is (-/+) infinity.
*/
public boolean isInfinite ()
{
return isInfinite (value);
}
/**
* Return true
if the float
has a value
* equal to either NEGATIVE_INFINITY
or
* POSITIVE_INFINITY
, otherwise return false
.
*
* @param v the float
to compare
* @return whether the argument is (-/+) infinity.
*/
public static boolean isInfinite (float v)
{
return (v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY);
}
/**
* Return the int bits of the specified float
.
* The result of this function can be used as the argument to
* Float.intBitsToFloat(long)
to obtain the
* original float
value.
*
* @param value the float
to convert
* @return the bits of the float
.
*/
public static native int floatToIntBits (float value);
/**
* Return the int bits of the specified float
.
* The result of this function can be used as the argument to
* Float.intBitsToFloat(long)
to obtain the
* original float
value. The difference between
* this function and floatToIntBits
is that this
* function does not collapse NaN values.
*
* @param value the float
to convert
* @return the bits of the float
.
*/
public static native int floatToRawIntBits (float value);
/**
* Return the float
represented by the long
* bits specified.
*
* @param bits the long bits representing a double
* @return the float
represented by the bits.
*/
public static native float intBitsToFloat (int bits);
/**
* Returns 0 if the float
value of the argument is
* equal to the value of this Float
. Returns a number
* less than zero if the value of this Float
is less
* than the Float
value of the argument, and returns a
* number greater than zero if the value of this Float
* is greater than the float
value of the argument.
* Float.NaN
is greater than any number other than itself,
* even Float.POSITIVE_INFINITY
.
* 0.0
is greater than -0.0
.
*
* @param f the Float to compare to.
* @return 0 if the Float
s are the same, < 0 if this
* Float
is less than the Float
in
* in question, or > 0 if it is greater.
*
* @since 1.2
*/
public int compareTo (Float f)
{
return compare (value, f.value);
}
/**
* Returns 0 if the first argument is equal to the second argument.
* Returns a number less than zero if the first argument is less than the
* second argument, and returns a number greater than zero if the first
* argument is greater than the second argument.
* Float.NaN
is greater than any number other than itself,
* even Float.POSITIVE_INFINITY
.
* 0.0
is greater than -0.0
.
*
* @param x the first float to compare.
* @param y the second float to compare.
* @return 0 if the arguments are the same, < 0 if the
* first argument is less than the second argument in
* in question, or > 0 if it is greater.
* @since 1.4
*/
public static int compare (float x, float y)
{
if (isNaN (x))
return isNaN (y) ? 0 : 1;
if (isNaN (y))
return -1;
// recall that 0.0 == -0.0, so we convert to infinities and try again
if (x == 0 && y == 0)
return (int) (1 / x - 1 / y);
if (x == y)
return 0;
return x > y ? 1 : -1;
}
/**
* Compares the specified Object
to this Float
* if and only if the Object
is an instanceof
* Float
.
* Otherwise it throws a ClassCastException
*
* @param o the Object to compare to.
* @return 0 if the Float
s are the same, < 0 if this
* Float
is less than the Float
in
* in question, or > 0 if it is greater.
* @throws ClassCastException if the argument is not a Float
*
* @since 1.2
*/
public int compareTo (Object o)
{
return compareTo ((Float) o);
}
}