// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build dragonfly || freebsd || linux // +build dragonfly freebsd linux package runtime import ( "runtime/internal/atomic" "unsafe" ) // For gccgo, while we still have C runtime code, use go:linkname to // export some functions. // //go:linkname lock //go:linkname unlock //go:linkname noteclear //go:linkname notewakeup //go:linkname notesleep //go:linkname notetsleep //go:linkname notetsleepg // This implementation depends on OS-specific implementations of // // futexsleep(addr *uint32, val uint32, ns int64) // Atomically, // if *addr == val { sleep } // Might be woken up spuriously; that's allowed. // Don't sleep longer than ns; ns < 0 means forever. // // futexwakeup(addr *uint32, cnt uint32) // If any procs are sleeping on addr, wake up at most cnt. const ( mutex_unlocked = 0 mutex_locked = 1 mutex_sleeping = 2 active_spin = 4 active_spin_cnt = 30 passive_spin = 1 ) // Possible lock states are mutex_unlocked, mutex_locked and mutex_sleeping. // mutex_sleeping means that there is presumably at least one sleeping thread. // Note that there can be spinning threads during all states - they do not // affect mutex's state. // We use the uintptr mutex.key and note.key as a uint32. //go:nosplit func key32(p *uintptr) *uint32 { return (*uint32)(unsafe.Pointer(p)) } func lock(l *mutex) { lockWithRank(l, getLockRank(l)) } func lock2(l *mutex) { gp := getg() if gp.m.locks < 0 { throw("runtime·lock: lock count") } gp.m.locks++ // Speculative grab for lock. v := atomic.Xchg(key32(&l.key), mutex_locked) if v == mutex_unlocked { return } // wait is either MUTEX_LOCKED or MUTEX_SLEEPING // depending on whether there is a thread sleeping // on this mutex. If we ever change l->key from // MUTEX_SLEEPING to some other value, we must be // careful to change it back to MUTEX_SLEEPING before // returning, to ensure that the sleeping thread gets // its wakeup call. wait := v // On uniprocessors, no point spinning. // On multiprocessors, spin for ACTIVE_SPIN attempts. spin := 0 if ncpu > 1 { spin = active_spin } for { // Try for lock, spinning. for i := 0; i < spin; i++ { for l.key == mutex_unlocked { if atomic.Cas(key32(&l.key), mutex_unlocked, wait) { return } } procyield(active_spin_cnt) } // Try for lock, rescheduling. for i := 0; i < passive_spin; i++ { for l.key == mutex_unlocked { if atomic.Cas(key32(&l.key), mutex_unlocked, wait) { return } } osyield() } // Sleep. v = atomic.Xchg(key32(&l.key), mutex_sleeping) if v == mutex_unlocked { return } wait = mutex_sleeping futexsleep(key32(&l.key), mutex_sleeping, -1) } } func unlock(l *mutex) { unlockWithRank(l) } func unlock2(l *mutex) { v := atomic.Xchg(key32(&l.key), mutex_unlocked) if v == mutex_unlocked { throw("unlock of unlocked lock") } if v == mutex_sleeping { futexwakeup(key32(&l.key), 1) } gp := getg() gp.m.locks-- if gp.m.locks < 0 { throw("runtime·unlock: lock count") } // if gp.m.locks == 0 && gp.preempt { // restore the preemption request in case we've cleared it in newstack // gp.stackguard0 = stackPreempt // } } // One-time notifications. func noteclear(n *note) { n.key = 0 } func notewakeup(n *note) { old := atomic.Xchg(key32(&n.key), 1) if old != 0 { print("notewakeup - double wakeup (", old, ")\n") throw("notewakeup - double wakeup") } futexwakeup(key32(&n.key), 1) } func notesleep(n *note) { gp := getg() if gp != gp.m.g0 { throw("notesleep not on g0") } ns := int64(-1) if *cgo_yield != nil { // Sleep for an arbitrary-but-moderate interval to poll libc interceptors. ns = 10e6 } for atomic.Load(key32(&n.key)) == 0 { gp.m.blocked = true futexsleep(key32(&n.key), 0, ns) if *cgo_yield != nil { asmcgocall(*cgo_yield, nil) } gp.m.blocked = false } } // May run with m.p==nil if called from notetsleep, so write barriers // are not allowed. // //go:nosplit //go:nowritebarrier func notetsleep_internal(n *note, ns int64) bool { gp := getg() if ns < 0 { if *cgo_yield != nil { // Sleep for an arbitrary-but-moderate interval to poll libc interceptors. ns = 10e6 } for atomic.Load(key32(&n.key)) == 0 { gp.m.blocked = true futexsleep(key32(&n.key), 0, ns) if *cgo_yield != nil { asmcgocall(*cgo_yield, nil) } gp.m.blocked = false } return true } if atomic.Load(key32(&n.key)) != 0 { return true } deadline := nanotime() + ns for { if *cgo_yield != nil && ns > 10e6 { ns = 10e6 } gp.m.blocked = true futexsleep(key32(&n.key), 0, ns) if *cgo_yield != nil { asmcgocall(*cgo_yield, nil) } gp.m.blocked = false if atomic.Load(key32(&n.key)) != 0 { break } now := nanotime() if now >= deadline { break } ns = deadline - now } return atomic.Load(key32(&n.key)) != 0 } func notetsleep(n *note, ns int64) bool { gp := getg() if gp != gp.m.g0 && gp.m.preemptoff != "" { throw("notetsleep not on g0") } return notetsleep_internal(n, ns) } // same as runtime·notetsleep, but called on user g (not g0) // calls only nosplit functions between entersyscallblock/exitsyscall func notetsleepg(n *note, ns int64) bool { gp := getg() if gp == gp.m.g0 { throw("notetsleepg on g0") } entersyscallblock() ok := notetsleep_internal(n, ns) exitsyscall() return ok } func beforeIdle(int64, int64) (*g, bool) { return nil, false } func checkTimeouts() {}