/* Implementation of the SUM intrinsic Copyright 2002, 2007 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with libgfortran; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "libgfortran.h" #include #include #if defined (HAVE_GFC_COMPLEX_8) && defined (HAVE_GFC_COMPLEX_8) extern void sum_c8 (gfc_array_c8 * const restrict, gfc_array_c8 * const restrict, const index_type * const restrict); export_proto(sum_c8); void sum_c8 (gfc_array_c8 * const restrict retarray, gfc_array_c8 * const restrict array, const index_type * const restrict pdim) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride[GFC_MAX_DIMENSIONS]; const GFC_COMPLEX_8 * restrict base; GFC_COMPLEX_8 * restrict dest; index_type rank; index_type n; index_type len; index_type delta; index_type dim; /* Make dim zero based to avoid confusion. */ dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; delta = array->dim[dim].stride; for (n = 0; n < dim; n++) { sstride[n] = array->dim[n].stride; extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; if (extent[n] < 0) extent[n] = 0; } for (n = dim; n < rank; n++) { sstride[n] = array->dim[n + 1].stride; extent[n] = array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; if (extent[n] < 0) extent[n] = 0; } if (retarray->data == NULL) { size_t alloc_size; for (n = 0; n < rank; n++) { retarray->dim[n].lbound = 0; retarray->dim[n].ubound = extent[n]-1; if (n == 0) retarray->dim[n].stride = 1; else retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; } retarray->offset = 0; retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; alloc_size = sizeof (GFC_COMPLEX_8) * retarray->dim[rank-1].stride * extent[rank-1]; if (alloc_size == 0) { /* Make sure we have a zero-sized array. */ retarray->dim[0].lbound = 0; retarray->dim[0].ubound = -1; return; } else retarray->data = internal_malloc_size (alloc_size); } else { if (rank != GFC_DESCRIPTOR_RANK (retarray)) runtime_error ("rank of return array incorrect"); } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = retarray->dim[n].stride; if (extent[n] <= 0) len = 0; } base = array->data; dest = retarray->data; while (base) { const GFC_COMPLEX_8 * restrict src; GFC_COMPLEX_8 result; src = base; { result = 0; if (len <= 0) *dest = 0; else { for (n = 0; n < len; n++, src += delta) { result += *src; } *dest = result; } } /* Advance to the next element. */ count[0]++; base += sstride[0]; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; dest -= dstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the look. */ base = NULL; break; } else { count[n]++; base += sstride[n]; dest += dstride[n]; } } } } extern void msum_c8 (gfc_array_c8 * const restrict, gfc_array_c8 * const restrict, const index_type * const restrict, gfc_array_l1 * const restrict); export_proto(msum_c8); void msum_c8 (gfc_array_c8 * const restrict retarray, gfc_array_c8 * const restrict array, const index_type * const restrict pdim, gfc_array_l1 * const restrict mask) { index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type dstride[GFC_MAX_DIMENSIONS]; index_type mstride[GFC_MAX_DIMENSIONS]; GFC_COMPLEX_8 * restrict dest; const GFC_COMPLEX_8 * restrict base; const GFC_LOGICAL_1 * restrict mbase; int rank; int dim; index_type n; index_type len; index_type delta; index_type mdelta; int mask_kind; dim = (*pdim) - 1; rank = GFC_DESCRIPTOR_RANK (array) - 1; len = array->dim[dim].ubound + 1 - array->dim[dim].lbound; if (len <= 0) return; mbase = mask->data; mask_kind = GFC_DESCRIPTOR_SIZE (mask); if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind); else runtime_error ("Funny sized logical array"); delta = array->dim[dim].stride; mdelta = mask->dim[dim].stride * mask_kind; for (n = 0; n < dim; n++) { sstride[n] = array->dim[n].stride; mstride[n] = mask->dim[n].stride * mask_kind; extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound; if (extent[n] < 0) extent[n] = 0; } for (n = dim; n < rank; n++) { sstride[n] = array->dim[n + 1].stride; mstride[n] = mask->dim[n + 1].stride * mask_kind; extent[n] = array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound; if (extent[n] < 0) extent[n] = 0; } if (retarray->data == NULL) { size_t alloc_size; for (n = 0; n < rank; n++) { retarray->dim[n].lbound = 0; retarray->dim[n].ubound = extent[n]-1; if (n == 0) retarray->dim[n].stride = 1; else retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1]; } alloc_size = sizeof (GFC_COMPLEX_8) * retarray->dim[rank-1].stride * extent[rank-1]; retarray->offset = 0; retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank; if (alloc_size == 0) { /* Make sure we have a zero-sized array. */ retarray->dim[0].lbound = 0; retarray->dim[0].ubound = -1; return; } else retarray->data = internal_malloc_size (alloc_size); } else { if (rank != GFC_DESCRIPTOR_RANK (retarray)) runtime_error ("rank of return array incorrect"); } for (n = 0; n < rank; n++) { count[n] = 0; dstride[n] = retarray->dim[n].stride; if (extent[n] <= 0) return; } dest = retarray->data; base = array->data; while (base) { const GFC_COMPLEX_8 * restrict src; const GFC_LOGICAL_1 * restrict msrc; GFC_COMPLEX_8 result; src = base; msrc = mbase; { result = 0; if (len <= 0) *dest = 0; else { for (n = 0; n < len; n++, src += delta, msrc += mdelta) { if (*msrc) result += *src; } *dest = result; } } /* Advance to the next element. */ count[0]++; base += sstride[0]; mbase += mstride[0]; dest += dstride[0]; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ base -= sstride[n] * extent[n]; mbase -= mstride[n] * extent[n]; dest -= dstride[n] * extent[n]; n++; if (n == rank) { /* Break out of the look. */ base = NULL; break; } else { count[n]++; base += sstride[n]; mbase += mstride[n]; dest += dstride[n]; } } } } extern void ssum_c8 (gfc_array_c8 * const restrict, gfc_array_c8 * const restrict, const index_type * const restrict, GFC_LOGICAL_4 *); export_proto(ssum_c8); void ssum_c8 (gfc_array_c8 * const restrict retarray, gfc_array_c8 * const restrict array, const index_type * const restrict pdim, GFC_LOGICAL_4 * mask) { index_type rank; index_type n; index_type dstride; GFC_COMPLEX_8 *dest; if (*mask) { sum_c8 (retarray, array, pdim); return; } rank = GFC_DESCRIPTOR_RANK (array); if (rank <= 0) runtime_error ("Rank of array needs to be > 0"); if (retarray->data == NULL) { retarray->dim[0].lbound = 0; retarray->dim[0].ubound = rank-1; retarray->dim[0].stride = 1; retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1; retarray->offset = 0; retarray->data = internal_malloc_size (sizeof (GFC_COMPLEX_8) * rank); } else { if (GFC_DESCRIPTOR_RANK (retarray) != 1) runtime_error ("rank of return array does not equal 1"); if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank) runtime_error ("dimension of return array incorrect"); } dstride = retarray->dim[0].stride; dest = retarray->data; for (n = 0; n < rank; n++) dest[n * dstride] = 0 ; } #endif