//===-- sanitizer_atomic_clang_x86.h ----------------------------*- C++ -*-===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer/AddressSanitizer runtime. // Not intended for direct inclusion. Include sanitizer_atomic.h. // //===----------------------------------------------------------------------===// #ifndef SANITIZER_ATOMIC_CLANG_X86_H #define SANITIZER_ATOMIC_CLANG_X86_H namespace __sanitizer { INLINE void proc_yield(int cnt) { __asm__ __volatile__("" ::: "memory"); for (int i = 0; i < cnt; i++) __asm__ __volatile__("pause"); __asm__ __volatile__("" ::: "memory"); } template<typename T> INLINE typename T::Type atomic_load( const volatile T *a, memory_order mo) { DCHECK(mo & (memory_order_relaxed | memory_order_consume | memory_order_acquire | memory_order_seq_cst)); DCHECK(!((uptr)a % sizeof(*a))); typename T::Type v; if (sizeof(*a) < 8 || sizeof(void*) == 8) { // Assume that aligned loads are atomic. if (mo == memory_order_relaxed) { v = a->val_dont_use; } else if (mo == memory_order_consume) { // Assume that processor respects data dependencies // (and that compiler won't break them). __asm__ __volatile__("" ::: "memory"); v = a->val_dont_use; __asm__ __volatile__("" ::: "memory"); } else if (mo == memory_order_acquire) { __asm__ __volatile__("" ::: "memory"); v = a->val_dont_use; // On x86 loads are implicitly acquire. __asm__ __volatile__("" ::: "memory"); } else { // seq_cst // On x86 plain MOV is enough for seq_cst store. __asm__ __volatile__("" ::: "memory"); v = a->val_dont_use; __asm__ __volatile__("" ::: "memory"); } } else { // 64-bit load on 32-bit platform. __asm__ __volatile__( "movq %1, %%mm0;" // Use mmx reg for 64-bit atomic moves "movq %%mm0, %0;" // (ptr could be read-only) "emms;" // Empty mmx state/Reset FP regs : "=m" (v) : "m" (a->val_dont_use) : // mark the FP stack and mmx registers as clobbered "st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)", #ifdef __MMX__ "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", #endif // #ifdef __MMX__ "memory"); } return v; } template<typename T> INLINE void atomic_store(volatile T *a, typename T::Type v, memory_order mo) { DCHECK(mo & (memory_order_relaxed | memory_order_release | memory_order_seq_cst)); DCHECK(!((uptr)a % sizeof(*a))); if (sizeof(*a) < 8 || sizeof(void*) == 8) { // Assume that aligned loads are atomic. if (mo == memory_order_relaxed) { a->val_dont_use = v; } else if (mo == memory_order_release) { // On x86 stores are implicitly release. __asm__ __volatile__("" ::: "memory"); a->val_dont_use = v; __asm__ __volatile__("" ::: "memory"); } else { // seq_cst // On x86 stores are implicitly release. __asm__ __volatile__("" ::: "memory"); a->val_dont_use = v; __sync_synchronize(); } } else { // 64-bit store on 32-bit platform. __asm__ __volatile__( "movq %1, %%mm0;" // Use mmx reg for 64-bit atomic moves "movq %%mm0, %0;" "emms;" // Empty mmx state/Reset FP regs : "=m" (a->val_dont_use) : "m" (v) : // mark the FP stack and mmx registers as clobbered "st", "st(1)", "st(2)", "st(3)", "st(4)", "st(5)", "st(6)", "st(7)", #ifdef __MMX__ "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7", #endif // #ifdef __MMX__ "memory"); if (mo == memory_order_seq_cst) __sync_synchronize(); } } } // namespace __sanitizer #endif // #ifndef SANITIZER_ATOMIC_CLANG_X86_H