/* Copyright (C) 2002-2021 Free Software Foundation, Inc. Contributed by Andy Vaught F2003 I/O support contributed by Jerry DeLisle This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* Unix stream I/O module */ #include "io.h" #include "unix.h" #include "async.h" #include #ifdef HAVE_UNISTD_H #include #endif #include #include #include #include /* For mingw, we don't identify files by their inode number, but by a 64-bit identifier created from a BY_HANDLE_FILE_INFORMATION. */ #ifdef __MINGW32__ #define WIN32_LEAN_AND_MEAN #include #if !defined(_FILE_OFFSET_BITS) || _FILE_OFFSET_BITS != 64 #undef lseek #define lseek _lseeki64 #undef fstat #define fstat _fstati64 #undef stat #define stat _stati64 #endif #ifndef HAVE_WORKING_STAT static uint64_t id_from_handle (HANDLE hFile) { BY_HANDLE_FILE_INFORMATION FileInformation; if (hFile == INVALID_HANDLE_VALUE) return 0; memset (&FileInformation, 0, sizeof(FileInformation)); if (!GetFileInformationByHandle (hFile, &FileInformation)) return 0; return ((uint64_t) FileInformation.nFileIndexLow) | (((uint64_t) FileInformation.nFileIndexHigh) << 32); } static uint64_t id_from_path (const char *path) { HANDLE hFile; uint64_t res; if (!path || !*path || access (path, F_OK)) return (uint64_t) -1; hFile = CreateFile (path, 0, 0, NULL, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_ATTRIBUTE_READONLY, NULL); res = id_from_handle (hFile); CloseHandle (hFile); return res; } static uint64_t id_from_fd (const int fd) { return id_from_handle ((HANDLE) _get_osfhandle (fd)); } #endif /* HAVE_WORKING_STAT */ /* On mingw, we don't use umask in tempfile_open(), because it doesn't support the user/group/other-based permissions. */ #undef HAVE_UMASK #endif /* __MINGW32__ */ /* These flags aren't defined on all targets (mingw32), so provide them here. */ #ifndef S_IRGRP #define S_IRGRP 0 #endif #ifndef S_IWGRP #define S_IWGRP 0 #endif #ifndef S_IROTH #define S_IROTH 0 #endif #ifndef S_IWOTH #define S_IWOTH 0 #endif #ifndef HAVE_ACCESS #ifndef W_OK #define W_OK 2 #endif #ifndef R_OK #define R_OK 4 #endif #ifndef F_OK #define F_OK 0 #endif /* Fallback implementation of access() on systems that don't have it. Only modes R_OK, W_OK and F_OK are used in this file. */ static int fallback_access (const char *path, int mode) { int fd; if (mode & R_OK) { if ((fd = open (path, O_RDONLY)) < 0) return -1; else close (fd); } if (mode & W_OK) { if ((fd = open (path, O_WRONLY)) < 0) return -1; else close (fd); } if (mode == F_OK) { struct stat st; return stat (path, &st); } return 0; } #undef access #define access fallback_access #endif /* Fallback directory for creating temporary files. P_tmpdir is defined on many POSIX platforms. */ #ifndef P_tmpdir #ifdef _P_tmpdir #define P_tmpdir _P_tmpdir /* MinGW */ #else #define P_tmpdir "/tmp" #endif #endif /* Unix and internal stream I/O module */ static const int FORMATTED_BUFFER_SIZE_DEFAULT = 8192; static const int UNFORMATTED_BUFFER_SIZE_DEFAULT = 128*1024; typedef struct { stream st; gfc_offset buffer_offset; /* File offset of the start of the buffer */ gfc_offset physical_offset; /* Current physical file offset */ gfc_offset logical_offset; /* Current logical file offset */ gfc_offset file_length; /* Length of the file. */ char *buffer; /* Pointer to the buffer. */ ssize_t buffer_size; /* Length of the buffer. */ int fd; /* The POSIX file descriptor. */ int active; /* Length of valid bytes in the buffer */ int ndirty; /* Dirty bytes starting at buffer_offset */ /* Cached stat(2) values. */ dev_t st_dev; ino_t st_ino; bool unbuffered; /* Buffer should be flushed after each I/O statement. */ } unix_stream; /* fix_fd()-- Given a file descriptor, make sure it is not one of the standard descriptors, returning a non-standard descriptor. If the user specifies that system errors should go to standard output, then closes standard output, we don't want the system errors to a file that has been given file descriptor 1 or 0. We want to send the error to the invalid descriptor. */ static int fix_fd (int fd) { #ifdef HAVE_DUP int input, output, error; input = output = error = 0; /* Unix allocates the lowest descriptors first, so a loop is not required, but this order is. */ if (fd == STDIN_FILENO) { fd = dup (fd); input = 1; } if (fd == STDOUT_FILENO) { fd = dup (fd); output = 1; } if (fd == STDERR_FILENO) { fd = dup (fd); error = 1; } if (input) close (STDIN_FILENO); if (output) close (STDOUT_FILENO); if (error) close (STDERR_FILENO); #endif return fd; } /* If the stream corresponds to a preconnected unit, we flush the corresponding C stream. This is bugware for mixed C-Fortran codes where the C code doesn't flush I/O before returning. */ void flush_if_preconnected (stream *s) { int fd; fd = ((unix_stream *) s)->fd; if (fd == STDIN_FILENO) fflush (stdin); else if (fd == STDOUT_FILENO) fflush (stdout); else if (fd == STDERR_FILENO) fflush (stderr); } /******************************************************************** Raw I/O functions (read, write, seek, tell, truncate, close). These functions wrap the basic POSIX I/O syscalls. Any deviation in semantics is a bug, except the following: write restarts in case of being interrupted by a signal, and as the first argument the functions take the unix_stream struct rather than an integer file descriptor. Also, for POSIX read() and write() a nbyte argument larger than SSIZE_MAX is undefined; here the type of nbyte is ssize_t rather than size_t as for POSIX read/write. *********************************************************************/ static int raw_flush (unix_stream *s __attribute__ ((unused))) { return 0; } /* Write/read at most 2 GB - 4k chunks at a time. Linux never reads or writes more than this, and there are reports that macOS fails for larger than 2 GB as well. */ #define MAX_CHUNK 2147479552 static ssize_t raw_read (unix_stream *s, void *buf, ssize_t nbyte) { /* For read we can't do I/O in a loop like raw_write does, because that will break applications that wait for interactive I/O. We still can loop around EINTR, though. This however causes a problem for large reads which must be chunked, see comment above. So assume that if the size is larger than the chunk size, we're reading from a file and not the terminal. */ if (nbyte <= MAX_CHUNK) { while (true) { ssize_t trans = read (s->fd, buf, nbyte); if (trans == -1 && errno == EINTR) continue; return trans; } } else { ssize_t bytes_left = nbyte; char *buf_st = buf; while (bytes_left > 0) { ssize_t to_read = bytes_left < MAX_CHUNK ? bytes_left: MAX_CHUNK; ssize_t trans = read (s->fd, buf_st, to_read); if (trans == -1) { if (errno == EINTR) continue; else return trans; } buf_st += trans; bytes_left -= trans; } return nbyte - bytes_left; } } static ssize_t raw_write (unix_stream *s, const void *buf, ssize_t nbyte) { ssize_t trans, bytes_left; char *buf_st; bytes_left = nbyte; buf_st = (char *) buf; /* We must write in a loop since some systems don't restart system calls in case of a signal. Also some systems might fail outright if we try to write more than 2 GB in a single syscall, so chunk up large writes. */ while (bytes_left > 0) { ssize_t to_write = bytes_left < MAX_CHUNK ? bytes_left: MAX_CHUNK; trans = write (s->fd, buf_st, to_write); if (trans == -1) { if (errno == EINTR) continue; else return trans; } buf_st += trans; bytes_left -= trans; } return nbyte - bytes_left; } static gfc_offset raw_seek (unix_stream *s, gfc_offset offset, int whence) { while (true) { gfc_offset off = lseek (s->fd, offset, whence); if (off == (gfc_offset) -1 && errno == EINTR) continue; return off; } } static gfc_offset raw_tell (unix_stream *s) { while (true) { gfc_offset off = lseek (s->fd, 0, SEEK_CUR); if (off == (gfc_offset) -1 && errno == EINTR) continue; return off; } } static gfc_offset raw_size (unix_stream *s) { struct stat statbuf; if (TEMP_FAILURE_RETRY (fstat (s->fd, &statbuf)) == -1) return -1; if (S_ISREG (statbuf.st_mode)) return statbuf.st_size; else return 0; } static int raw_truncate (unix_stream *s, gfc_offset length) { #ifdef __MINGW32__ HANDLE h; gfc_offset cur; if (isatty (s->fd)) { errno = EBADF; return -1; } h = (HANDLE) _get_osfhandle (s->fd); if (h == INVALID_HANDLE_VALUE) { errno = EBADF; return -1; } cur = lseek (s->fd, 0, SEEK_CUR); if (cur == -1) return -1; if (lseek (s->fd, length, SEEK_SET) == -1) goto error; if (!SetEndOfFile (h)) { errno = EBADF; goto error; } if (lseek (s->fd, cur, SEEK_SET) == -1) return -1; return 0; error: lseek (s->fd, cur, SEEK_SET); return -1; #elif defined HAVE_FTRUNCATE if (TEMP_FAILURE_RETRY (ftruncate (s->fd, length)) == -1) return -1; return 0; #elif defined HAVE_CHSIZE return chsize (s->fd, length); #else runtime_error ("required ftruncate or chsize support not present"); return -1; #endif } static int raw_close (unix_stream *s) { int retval; if (s->fd == -1) retval = -1; else if (s->fd != STDOUT_FILENO && s->fd != STDERR_FILENO && s->fd != STDIN_FILENO) { retval = close (s->fd); /* close() and EINTR is special, as the file descriptor is deallocated before doing anything that might cause the operation to be interrupted. Thus if we get EINTR the best we can do is ignore it and continue (otherwise if we try again the file descriptor may have been allocated again to some other file). */ if (retval == -1 && errno == EINTR) retval = errno = 0; } else retval = 0; free (s); return retval; } static int raw_markeor (unix_stream *s __attribute__ ((unused))) { return 0; } static const struct stream_vtable raw_vtable = { .read = (void *) raw_read, .write = (void *) raw_write, .seek = (void *) raw_seek, .tell = (void *) raw_tell, .size = (void *) raw_size, .trunc = (void *) raw_truncate, .close = (void *) raw_close, .flush = (void *) raw_flush, .markeor = (void *) raw_markeor }; static int raw_init (unix_stream *s) { s->st.vptr = &raw_vtable; s->buffer = NULL; return 0; } /********************************************************************* Buffered I/O functions. These functions have the same semantics as the raw I/O functions above, except that they are buffered in order to improve performance. The buffer must be flushed when switching from reading to writing and vice versa. *********************************************************************/ static int buf_flush (unix_stream *s) { int writelen; /* Flushing in read mode means discarding read bytes. */ s->active = 0; if (s->ndirty == 0) return 0; if (s->physical_offset != s->buffer_offset && raw_seek (s, s->buffer_offset, SEEK_SET) < 0) return -1; writelen = raw_write (s, s->buffer, s->ndirty); s->physical_offset = s->buffer_offset + writelen; if (s->physical_offset > s->file_length) s->file_length = s->physical_offset; s->ndirty -= writelen; if (s->ndirty != 0) return -1; return 0; } static ssize_t buf_read (unix_stream *s, void *buf, ssize_t nbyte) { if (s->active == 0) s->buffer_offset = s->logical_offset; /* Is the data we want in the buffer? */ if (s->logical_offset + nbyte <= s->buffer_offset + s->active && s->buffer_offset <= s->logical_offset) { /* When nbyte == 0, buf can be NULL which would lead to undefined behavior if we called memcpy(). */ if (nbyte != 0) memcpy (buf, s->buffer + (s->logical_offset - s->buffer_offset), nbyte); } else { /* First copy the active bytes if applicable, then read the rest either directly or filling the buffer. */ char *p; int nread = 0; ssize_t to_read, did_read; gfc_offset new_logical; p = (char *) buf; if (s->logical_offset >= s->buffer_offset && s->buffer_offset + s->active >= s->logical_offset) { nread = s->active - (s->logical_offset - s->buffer_offset); memcpy (buf, s->buffer + (s->logical_offset - s->buffer_offset), nread); p += nread; } /* At this point we consider all bytes in the buffer discarded. */ to_read = nbyte - nread; new_logical = s->logical_offset + nread; if (s->physical_offset != new_logical && raw_seek (s, new_logical, SEEK_SET) < 0) return -1; s->buffer_offset = s->physical_offset = new_logical; if (to_read <= s->buffer_size/2) { did_read = raw_read (s, s->buffer, s->buffer_size); if (likely (did_read >= 0)) { s->physical_offset += did_read; s->active = did_read; did_read = (did_read > to_read) ? to_read : did_read; memcpy (p, s->buffer, did_read); } else return did_read; } else { did_read = raw_read (s, p, to_read); if (likely (did_read >= 0)) { s->physical_offset += did_read; s->active = 0; } else return did_read; } nbyte = did_read + nread; } s->logical_offset += nbyte; return nbyte; } static ssize_t buf_write (unix_stream *s, const void *buf, ssize_t nbyte) { if (nbyte == 0) return 0; if (s->ndirty == 0) s->buffer_offset = s->logical_offset; /* Does the data fit into the buffer? As a special case, if the buffer is empty and the request is bigger than s->buffer_size/2, write directly. This avoids the case where the buffer would have to be flushed at every write. */ if (!(s->ndirty == 0 && nbyte > s->buffer_size/2) && s->logical_offset + nbyte <= s->buffer_offset + s->buffer_size && s->buffer_offset <= s->logical_offset && s->buffer_offset + s->ndirty >= s->logical_offset) { memcpy (s->buffer + (s->logical_offset - s->buffer_offset), buf, nbyte); int nd = (s->logical_offset - s->buffer_offset) + nbyte; if (nd > s->ndirty) s->ndirty = nd; } else { /* Flush, and either fill the buffer with the new data, or if the request is bigger than the buffer size, write directly bypassing the buffer. */ buf_flush (s); if (nbyte <= s->buffer_size/2) { memcpy (s->buffer, buf, nbyte); s->buffer_offset = s->logical_offset; s->ndirty += nbyte; } else { if (s->physical_offset != s->logical_offset) { if (raw_seek (s, s->logical_offset, SEEK_SET) < 0) return -1; s->physical_offset = s->logical_offset; } nbyte = raw_write (s, buf, nbyte); s->physical_offset += nbyte; } } s->logical_offset += nbyte; if (s->logical_offset > s->file_length) s->file_length = s->logical_offset; return nbyte; } /* "Unbuffered" really means I/O statement buffering. For formatted I/O, the fbuf manages this, and then uses raw I/O. For unformatted I/O, buffered I/O is used, and the buffer is flushed at the end of each I/O statement, where this function is called. Alternatively, the buffer is flushed at the end of the record if the buffer is more than half full; this prevents needless seeking back and forth when writing sequential unformatted. */ static int buf_markeor (unix_stream *s) { if (s->unbuffered || s->ndirty >= s->buffer_size / 2) return buf_flush (s); return 0; } static gfc_offset buf_seek (unix_stream *s, gfc_offset offset, int whence) { switch (whence) { case SEEK_SET: break; case SEEK_CUR: offset += s->logical_offset; break; case SEEK_END: offset += s->file_length; break; default: return -1; } if (offset < 0) { errno = EINVAL; return -1; } s->logical_offset = offset; return offset; } static gfc_offset buf_tell (unix_stream *s) { return buf_seek (s, 0, SEEK_CUR); } static gfc_offset buf_size (unix_stream *s) { return s->file_length; } static int buf_truncate (unix_stream *s, gfc_offset length) { int r; if (buf_flush (s) != 0) return -1; r = raw_truncate (s, length); if (r == 0) s->file_length = length; return r; } static int buf_close (unix_stream *s) { if (buf_flush (s) != 0) return -1; free (s->buffer); return raw_close (s); } static const struct stream_vtable buf_vtable = { .read = (void *) buf_read, .write = (void *) buf_write, .seek = (void *) buf_seek, .tell = (void *) buf_tell, .size = (void *) buf_size, .trunc = (void *) buf_truncate, .close = (void *) buf_close, .flush = (void *) buf_flush, .markeor = (void *) buf_markeor }; static int buf_init (unix_stream *s, bool unformatted) { s->st.vptr = &buf_vtable; /* Try to guess a good value for the buffer size. For formatted I/O, we use so many CPU cycles converting the data that there is more sense in converving memory and especially cache. For unformatted, a bigger block can have a large impact in some environments. */ if (unformatted) { if (options.unformatted_buffer_size > 0) s->buffer_size = options.unformatted_buffer_size; else s->buffer_size = UNFORMATTED_BUFFER_SIZE_DEFAULT; } else { if (options.formatted_buffer_size > 0) s->buffer_size = options.formatted_buffer_size; else s->buffer_size = FORMATTED_BUFFER_SIZE_DEFAULT; } s->buffer = xmalloc (s->buffer_size); return 0; } /********************************************************************* memory stream functions - These are used for internal files The idea here is that a single stream structure is created and all requests must be satisfied from it. The location and size of the buffer is the character variable supplied to the READ or WRITE statement. *********************************************************************/ char * mem_alloc_r (stream *strm, size_t *len) { unix_stream *s = (unix_stream *) strm; gfc_offset n; gfc_offset where = s->logical_offset; if (where < s->buffer_offset || where > s->buffer_offset + s->active) return NULL; n = s->buffer_offset + s->active - where; if ((gfc_offset) *len > n) *len = n; s->logical_offset = where + *len; return s->buffer + (where - s->buffer_offset); } char * mem_alloc_r4 (stream *strm, size_t *len) { unix_stream *s = (unix_stream *) strm; gfc_offset n; gfc_offset where = s->logical_offset; if (where < s->buffer_offset || where > s->buffer_offset + s->active) return NULL; n = s->buffer_offset + s->active - where; if ((gfc_offset) *len > n) *len = n; s->logical_offset = where + *len; return s->buffer + (where - s->buffer_offset) * 4; } char * mem_alloc_w (stream *strm, size_t *len) { unix_stream *s = (unix_stream *)strm; gfc_offset m; gfc_offset where = s->logical_offset; m = where + *len; if (where < s->buffer_offset) return NULL; if (m > s->file_length) return NULL; s->logical_offset = m; return s->buffer + (where - s->buffer_offset); } gfc_char4_t * mem_alloc_w4 (stream *strm, size_t *len) { unix_stream *s = (unix_stream *)strm; gfc_offset m; gfc_offset where = s->logical_offset; gfc_char4_t *result = (gfc_char4_t *) s->buffer; m = where + *len; if (where < s->buffer_offset) return NULL; if (m > s->file_length) return NULL; s->logical_offset = m; return &result[where - s->buffer_offset]; } /* Stream read function for character(kind=1) internal units. */ static ssize_t mem_read (stream *s, void *buf, ssize_t nbytes) { void *p; size_t nb = nbytes; p = mem_alloc_r (s, &nb); if (p) { memcpy (buf, p, nb); return (ssize_t) nb; } else return 0; } /* Stream read function for chracter(kind=4) internal units. */ static ssize_t mem_read4 (stream *s, void *buf, ssize_t nbytes) { void *p; size_t nb = nbytes; p = mem_alloc_r4 (s, &nb); if (p) { memcpy (buf, p, nb * 4); return (ssize_t) nb; } else return 0; } /* Stream write function for character(kind=1) internal units. */ static ssize_t mem_write (stream *s, const void *buf, ssize_t nbytes) { void *p; size_t nb = nbytes; p = mem_alloc_w (s, &nb); if (p) { memcpy (p, buf, nb); return (ssize_t) nb; } else return 0; } /* Stream write function for character(kind=4) internal units. */ static ssize_t mem_write4 (stream *s, const void *buf, ssize_t nwords) { gfc_char4_t *p; size_t nw = nwords; p = mem_alloc_w4 (s, &nw); if (p) { while (nw--) *p++ = (gfc_char4_t) *((char *) buf); return nwords; } else return 0; } static gfc_offset mem_seek (stream *strm, gfc_offset offset, int whence) { unix_stream *s = (unix_stream *)strm; switch (whence) { case SEEK_SET: break; case SEEK_CUR: offset += s->logical_offset; break; case SEEK_END: offset += s->file_length; break; default: return -1; } /* Note that for internal array I/O it's actually possible to have a negative offset, so don't check for that. */ if (offset > s->file_length) { errno = EINVAL; return -1; } s->logical_offset = offset; /* Returning < 0 is the error indicator for sseek(), so return 0 if offset is negative. Thus if the return value is 0, the caller has to use stell() to get the real value of logical_offset. */ if (offset >= 0) return offset; return 0; } static gfc_offset mem_tell (stream *s) { return ((unix_stream *)s)->logical_offset; } static int mem_truncate (unix_stream *s __attribute__ ((unused)), gfc_offset length __attribute__ ((unused))) { return 0; } static int mem_flush (unix_stream *s __attribute__ ((unused))) { return 0; } static int mem_close (unix_stream *s) { if (s) free (s); return 0; } static const struct stream_vtable mem_vtable = { .read = (void *) mem_read, .write = (void *) mem_write, .seek = (void *) mem_seek, .tell = (void *) mem_tell, /* buf_size is not a typo, we just reuse an identical implementation. */ .size = (void *) buf_size, .trunc = (void *) mem_truncate, .close = (void *) mem_close, .flush = (void *) mem_flush, .markeor = (void *) raw_markeor }; static const struct stream_vtable mem4_vtable = { .read = (void *) mem_read4, .write = (void *) mem_write4, .seek = (void *) mem_seek, .tell = (void *) mem_tell, /* buf_size is not a typo, we just reuse an identical implementation. */ .size = (void *) buf_size, .trunc = (void *) mem_truncate, .close = (void *) mem_close, .flush = (void *) mem_flush, .markeor = (void *) raw_markeor }; /********************************************************************* Public functions -- A reimplementation of this module needs to define functional equivalents of the following. *********************************************************************/ /* open_internal()-- Returns a stream structure from a character(kind=1) internal file */ stream * open_internal (char *base, size_t length, gfc_offset offset) { unix_stream *s; s = xcalloc (1, sizeof (unix_stream)); s->buffer = base; s->buffer_offset = offset; s->active = s->file_length = length; s->st.vptr = &mem_vtable; return (stream *) s; } /* open_internal4()-- Returns a stream structure from a character(kind=4) internal file */ stream * open_internal4 (char *base, size_t length, gfc_offset offset) { unix_stream *s; s = xcalloc (1, sizeof (unix_stream)); s->buffer = base; s->buffer_offset = offset; s->active = s->file_length = length * sizeof (gfc_char4_t); s->st.vptr = &mem4_vtable; return (stream *)s; } /* fd_to_stream()-- Given an open file descriptor, build a stream around it. */ static stream * fd_to_stream (int fd, bool unformatted) { struct stat statbuf; unix_stream *s; s = xcalloc (1, sizeof (unix_stream)); s->fd = fd; /* Get the current length of the file. */ if (TEMP_FAILURE_RETRY (fstat (fd, &statbuf)) == -1) { s->st_dev = s->st_ino = -1; s->file_length = 0; if (errno == EBADF) s->fd = -1; raw_init (s); return (stream *) s; } s->st_dev = statbuf.st_dev; s->st_ino = statbuf.st_ino; s->file_length = statbuf.st_size; /* Only use buffered IO for regular files. */ if (S_ISREG (statbuf.st_mode) && !options.all_unbuffered && !(options.unbuffered_preconnected && (s->fd == STDIN_FILENO || s->fd == STDOUT_FILENO || s->fd == STDERR_FILENO))) buf_init (s, unformatted); else { if (unformatted) { s->unbuffered = true; buf_init (s, unformatted); } else raw_init (s); } return (stream *) s; } /* Given the Fortran unit number, convert it to a C file descriptor. */ int unit_to_fd (int unit) { gfc_unit *us; int fd; us = find_unit (unit); if (us == NULL) return -1; fd = ((unix_stream *) us->s)->fd; unlock_unit (us); return fd; } /* Set the close-on-exec flag for an existing fd, if the system supports such. */ static void __attribute__ ((unused)) set_close_on_exec (int fd __attribute__ ((unused))) { /* Mingw does not define F_SETFD. */ #if defined(HAVE_FCNTL) && defined(F_SETFD) && defined(FD_CLOEXEC) if (fd >= 0) fcntl(fd, F_SETFD, FD_CLOEXEC); #endif } /* Helper function for tempfile(). Tries to open a temporary file in the directory specified by tempdir. If successful, the file name is stored in fname and the descriptor returned. Returns -1 on failure. */ static int tempfile_open (const char *tempdir, char **fname) { int fd; const char *slash = "/"; #if defined(HAVE_UMASK) && defined(HAVE_MKSTEMP) mode_t mode_mask; #endif if (!tempdir) return -1; /* Check for the special case that tempdir ends with a slash or backslash. */ size_t tempdirlen = strlen (tempdir); if (*tempdir == 0 || tempdir[tempdirlen - 1] == '/' #ifdef __MINGW32__ || tempdir[tempdirlen - 1] == '\\' #endif ) slash = ""; /* Take care that the template is longer in the mktemp() branch. */ char *template = xmalloc (tempdirlen + 23); #ifdef HAVE_MKSTEMP snprintf (template, tempdirlen + 23, "%s%sgfortrantmpXXXXXX", tempdir, slash); #ifdef HAVE_UMASK /* Temporarily set the umask such that the file has 0600 permissions. */ mode_mask = umask (S_IXUSR | S_IRWXG | S_IRWXO); #endif #if defined(HAVE_MKOSTEMP) && defined(O_CLOEXEC) TEMP_FAILURE_RETRY (fd = mkostemp (template, O_CLOEXEC)); #else TEMP_FAILURE_RETRY (fd = mkstemp (template)); set_close_on_exec (fd); #endif #ifdef HAVE_UMASK (void) umask (mode_mask); #endif #else /* HAVE_MKSTEMP */ fd = -1; int count = 0; size_t slashlen = strlen (slash); int flags = O_RDWR | O_CREAT | O_EXCL; #if defined(HAVE_CRLF) && defined(O_BINARY) flags |= O_BINARY; #endif #ifdef O_CLOEXEC flags |= O_CLOEXEC; #endif do { snprintf (template, tempdirlen + 23, "%s%sgfortrantmpaaaXXXXXX", tempdir, slash); if (count > 0) { int c = count; template[tempdirlen + slashlen + 13] = 'a' + (c% 26); c /= 26; template[tempdirlen + slashlen + 12] = 'a' + (c % 26); c /= 26; template[tempdirlen + slashlen + 11] = 'a' + (c % 26); if (c >= 26) break; } if (!mktemp (template)) { errno = EEXIST; count++; continue; } TEMP_FAILURE_RETRY (fd = open (template, flags, S_IRUSR | S_IWUSR)); } while (fd == -1 && errno == EEXIST); #ifndef O_CLOEXEC set_close_on_exec (fd); #endif #endif /* HAVE_MKSTEMP */ *fname = template; return fd; } /* tempfile()-- Generate a temporary filename for a scratch file and open it. mkstemp() opens the file for reading and writing, but the library mode prevents anything that is not allowed. The descriptor is returned, which is -1 on error. The template is pointed to by opp->file, which is copied into the unit structure and freed later. */ static int tempfile (st_parameter_open *opp) { const char *tempdir; char *fname; int fd = -1; tempdir = secure_getenv ("TMPDIR"); fd = tempfile_open (tempdir, &fname); #ifdef __MINGW32__ if (fd == -1) { char buffer[MAX_PATH + 1]; DWORD ret; ret = GetTempPath (MAX_PATH, buffer); /* If we are not able to get a temp-directory, we use current directory. */ if (ret > MAX_PATH || !ret) buffer[0] = 0; else buffer[ret] = 0; tempdir = strdup (buffer); fd = tempfile_open (tempdir, &fname); } #elif defined(__CYGWIN__) if (fd == -1) { tempdir = secure_getenv ("TMP"); fd = tempfile_open (tempdir, &fname); } if (fd == -1) { tempdir = secure_getenv ("TEMP"); fd = tempfile_open (tempdir, &fname); } #endif if (fd == -1) fd = tempfile_open (P_tmpdir, &fname); opp->file = fname; opp->file_len = strlen (fname); /* Don't include trailing nul */ return fd; } /* regular_file2()-- Open a regular file. Change flags->action if it is ACTION_UNSPECIFIED on entry, unless an error occurs. Returns the descriptor, which is less than zero on error. */ static int regular_file2 (const char *path, st_parameter_open *opp, unit_flags *flags) { int mode; int rwflag; int crflag, crflag2; int fd; #ifdef __CYGWIN__ if (opp->file_len == 7) { if (strncmp (path, "CONOUT$", 7) == 0 || strncmp (path, "CONERR$", 7) == 0) { fd = open ("/dev/conout", O_WRONLY); flags->action = ACTION_WRITE; return fd; } } if (opp->file_len == 6 && strncmp (path, "CONIN$", 6) == 0) { fd = open ("/dev/conin", O_RDONLY); flags->action = ACTION_READ; return fd; } #endif #ifdef __MINGW32__ if (opp->file_len == 7) { if (strncmp (path, "CONOUT$", 7) == 0 || strncmp (path, "CONERR$", 7) == 0) { fd = open ("CONOUT$", O_WRONLY); flags->action = ACTION_WRITE; return fd; } } if (opp->file_len == 6 && strncmp (path, "CONIN$", 6) == 0) { fd = open ("CONIN$", O_RDONLY); flags->action = ACTION_READ; return fd; } #endif switch (flags->action) { case ACTION_READ: rwflag = O_RDONLY; break; case ACTION_WRITE: rwflag = O_WRONLY; break; case ACTION_READWRITE: case ACTION_UNSPECIFIED: rwflag = O_RDWR; break; default: internal_error (&opp->common, "regular_file(): Bad action"); } switch (flags->status) { case STATUS_NEW: crflag = O_CREAT | O_EXCL; break; case STATUS_OLD: /* open will fail if the file does not exist*/ crflag = 0; break; case STATUS_UNKNOWN: if (rwflag == O_RDONLY) crflag = 0; else crflag = O_CREAT; break; case STATUS_REPLACE: crflag = O_CREAT | O_TRUNC; break; default: /* Note: STATUS_SCRATCH is handled by tempfile () and should never be seen here. */ internal_error (&opp->common, "regular_file(): Bad status"); } /* rwflag |= O_LARGEFILE; */ #if defined(HAVE_CRLF) && defined(O_BINARY) crflag |= O_BINARY; #endif #ifdef O_CLOEXEC crflag |= O_CLOEXEC; #endif mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH; TEMP_FAILURE_RETRY (fd = open (path, rwflag | crflag, mode)); if (flags->action != ACTION_UNSPECIFIED) return fd; if (fd >= 0) { flags->action = ACTION_READWRITE; return fd; } if (errno != EACCES && errno != EPERM && errno != EROFS) return fd; /* retry for read-only access */ rwflag = O_RDONLY; if (flags->status == STATUS_UNKNOWN) crflag2 = crflag & ~(O_CREAT); else crflag2 = crflag; TEMP_FAILURE_RETRY (fd = open (path, rwflag | crflag2, mode)); if (fd >=0) { flags->action = ACTION_READ; return fd; /* success */ } if (errno != EACCES && errno != EPERM && errno != ENOENT) return fd; /* failure */ /* retry for write-only access */ rwflag = O_WRONLY; TEMP_FAILURE_RETRY (fd = open (path, rwflag | crflag, mode)); if (fd >=0) { flags->action = ACTION_WRITE; return fd; /* success */ } return fd; /* failure */ } /* Lock the file, if necessary, based on SHARE flags. */ #if defined(HAVE_FCNTL) && defined(F_SETLK) && defined(F_UNLCK) static int open_share (st_parameter_open *opp, int fd, unit_flags *flags) { int r = 0; struct flock f; if (fd == STDOUT_FILENO || fd == STDERR_FILENO || fd == STDIN_FILENO) return 0; f.l_start = 0; f.l_len = 0; f.l_whence = SEEK_SET; switch (flags->share) { case SHARE_DENYNONE: f.l_type = F_RDLCK; r = fcntl (fd, F_SETLK, &f); break; case SHARE_DENYRW: /* Must be writable to hold write lock. */ if (flags->action == ACTION_READ) { generate_error (&opp->common, LIBERROR_BAD_ACTION, "Cannot set write lock on file opened for READ"); return -1; } f.l_type = F_WRLCK; r = fcntl (fd, F_SETLK, &f); break; case SHARE_UNSPECIFIED: default: break; } return r; } #else static int open_share (st_parameter_open *opp __attribute__ ((unused)), int fd __attribute__ ((unused)), unit_flags *flags __attribute__ ((unused))) { return 0; } #endif /* defined(HAVE_FCNTL) ... */ /* Wrapper around regular_file2, to make sure we free the path after we're done. */ static int regular_file (st_parameter_open *opp, unit_flags *flags) { char *path = fc_strdup (opp->file, opp->file_len); int fd = regular_file2 (path, opp, flags); free (path); return fd; } /* open_external()-- Open an external file, unix specific version. Change flags->action if it is ACTION_UNSPECIFIED on entry. Returns NULL on operating system error. */ stream * open_external (st_parameter_open *opp, unit_flags *flags) { int fd; if (flags->status == STATUS_SCRATCH) { fd = tempfile (opp); if (flags->action == ACTION_UNSPECIFIED) flags->action = flags->readonly ? ACTION_READ : ACTION_READWRITE; #if HAVE_UNLINK_OPEN_FILE /* We can unlink scratch files now and it will go away when closed. */ if (fd >= 0) unlink (opp->file); #endif } else { /* regular_file resets flags->action if it is ACTION_UNSPECIFIED and if it succeeds */ fd = regular_file (opp, flags); #ifndef O_CLOEXEC set_close_on_exec (fd); #endif } if (fd < 0) return NULL; fd = fix_fd (fd); if (open_share (opp, fd, flags) < 0) return NULL; return fd_to_stream (fd, flags->form == FORM_UNFORMATTED); } /* input_stream()-- Return a stream pointer to the default input stream. Called on initialization. */ stream * input_stream (void) { return fd_to_stream (STDIN_FILENO, false); } /* output_stream()-- Return a stream pointer to the default output stream. Called on initialization. */ stream * output_stream (void) { stream *s; #if defined(HAVE_CRLF) && defined(HAVE_SETMODE) setmode (STDOUT_FILENO, O_BINARY); #endif s = fd_to_stream (STDOUT_FILENO, false); return s; } /* error_stream()-- Return a stream pointer to the default error stream. Called on initialization. */ stream * error_stream (void) { stream *s; #if defined(HAVE_CRLF) && defined(HAVE_SETMODE) setmode (STDERR_FILENO, O_BINARY); #endif s = fd_to_stream (STDERR_FILENO, false); return s; } /* compare_file_filename()-- Given an open stream and a fortran string that is a filename, figure out if the file is the same as the filename. */ int compare_file_filename (gfc_unit *u, const char *name, gfc_charlen_type len) { struct stat st; int ret; #ifdef HAVE_WORKING_STAT unix_stream *s; #else # ifdef __MINGW32__ uint64_t id1, id2; # endif #endif char *path = fc_strdup (name, len); /* If the filename doesn't exist, then there is no match with the existing file. */ if (TEMP_FAILURE_RETRY (stat (path, &st)) < 0) { ret = 0; goto done; } #ifdef HAVE_WORKING_STAT s = (unix_stream *) (u->s); ret = (st.st_dev == s->st_dev) && (st.st_ino == s->st_ino); goto done; #else # ifdef __MINGW32__ /* We try to match files by a unique ID. On some filesystems (network fs and FAT), we can't generate this unique ID, and will simply compare filenames. */ id1 = id_from_path (path); id2 = id_from_fd (((unix_stream *) (u->s))->fd); if (id1 || id2) { ret = (id1 == id2); goto done; } # endif if (u->filename) ret = (strcmp(path, u->filename) == 0); else ret = 0; #endif done: free (path); return ret; } #ifdef HAVE_WORKING_STAT # define FIND_FILE0_DECL struct stat *st # define FIND_FILE0_ARGS st #else # define FIND_FILE0_DECL uint64_t id, const char *path # define FIND_FILE0_ARGS id, path #endif /* find_file0()-- Recursive work function for find_file() */ static gfc_unit * find_file0 (gfc_unit *u, FIND_FILE0_DECL) { gfc_unit *v; #if defined(__MINGW32__) && !HAVE_WORKING_STAT uint64_t id1; #endif if (u == NULL) return NULL; #ifdef HAVE_WORKING_STAT if (u->s != NULL) { unix_stream *s = (unix_stream *) (u->s); if (st[0].st_dev == s->st_dev && st[0].st_ino == s->st_ino) return u; } #else # ifdef __MINGW32__ if (u->s && ((id1 = id_from_fd (((unix_stream *) u->s)->fd)) || id1)) { if (id == id1) return u; } else # endif if (u->filename && strcmp (u->filename, path) == 0) return u; #endif v = find_file0 (u->left, FIND_FILE0_ARGS); if (v != NULL) return v; v = find_file0 (u->right, FIND_FILE0_ARGS); if (v != NULL) return v; return NULL; } /* find_file()-- Take the current filename and see if there is a unit that has the file already open. Returns a pointer to the unit if so. */ gfc_unit * find_file (const char *file, gfc_charlen_type file_len) { struct stat st[1]; gfc_unit *u; #if defined(__MINGW32__) && !HAVE_WORKING_STAT uint64_t id = 0ULL; #endif char *path = fc_strdup (file, file_len); if (TEMP_FAILURE_RETRY (stat (path, &st[0])) < 0) { u = NULL; goto done; } #if defined(__MINGW32__) && !HAVE_WORKING_STAT id = id_from_path (path); #endif LOCK (&unit_lock); retry: u = find_file0 (unit_root, FIND_FILE0_ARGS); if (u != NULL) { /* Fast path. */ if (! __gthread_mutex_trylock (&u->lock)) { /* assert (u->closed == 0); */ UNLOCK (&unit_lock); goto done; } inc_waiting_locked (u); } UNLOCK (&unit_lock); if (u != NULL) { LOCK (&u->lock); if (u->closed) { LOCK (&unit_lock); UNLOCK (&u->lock); if (predec_waiting_locked (u) == 0) free (u); goto retry; } dec_waiting_unlocked (u); } done: free (path); return u; } static gfc_unit * flush_all_units_1 (gfc_unit *u, int min_unit) { while (u != NULL) { if (u->unit_number > min_unit) { gfc_unit *r = flush_all_units_1 (u->left, min_unit); if (r != NULL) return r; } if (u->unit_number >= min_unit) { if (__gthread_mutex_trylock (&u->lock)) return u; if (u->s) sflush (u->s); UNLOCK (&u->lock); } u = u->right; } return NULL; } void flush_all_units (void) { gfc_unit *u; int min_unit = 0; LOCK (&unit_lock); do { u = flush_all_units_1 (unit_root, min_unit); if (u != NULL) inc_waiting_locked (u); UNLOCK (&unit_lock); if (u == NULL) return; LOCK (&u->lock); min_unit = u->unit_number + 1; if (u->closed == 0) { sflush (u->s); LOCK (&unit_lock); UNLOCK (&u->lock); (void) predec_waiting_locked (u); } else { LOCK (&unit_lock); UNLOCK (&u->lock); if (predec_waiting_locked (u) == 0) free (u); } } while (1); } /* Unlock the unit if necessary, based on SHARE flags. */ int close_share (gfc_unit *u __attribute__ ((unused))) { int r = 0; #if defined(HAVE_FCNTL) && defined(F_SETLK) && defined(F_UNLCK) unix_stream *s = (unix_stream *) u->s; int fd = s->fd; struct flock f; switch (u->flags.share) { case SHARE_DENYRW: case SHARE_DENYNONE: if (fd != STDOUT_FILENO && fd != STDERR_FILENO && fd != STDIN_FILENO) { f.l_start = 0; f.l_len = 0; f.l_whence = SEEK_SET; f.l_type = F_UNLCK; r = fcntl (fd, F_SETLK, &f); } break; case SHARE_UNSPECIFIED: default: break; } #endif return r; } /* file_exists()-- Returns nonzero if the current filename exists on the system */ int file_exists (const char *file, gfc_charlen_type file_len) { char *path = fc_strdup (file, file_len); int res = !(access (path, F_OK)); free (path); return res; } /* file_size()-- Returns the size of the file. */ GFC_IO_INT file_size (const char *file, gfc_charlen_type file_len) { char *path = fc_strdup (file, file_len); struct stat statbuf; int err; TEMP_FAILURE_RETRY (err = stat (path, &statbuf)); free (path); if (err == -1) return -1; return (GFC_IO_INT) statbuf.st_size; } static const char yes[] = "YES", no[] = "NO", unknown[] = "UNKNOWN"; /* inquire_sequential()-- Given a fortran string, determine if the file is suitable for sequential access. Returns a C-style string. */ const char * inquire_sequential (const char *string, gfc_charlen_type len) { struct stat statbuf; if (string == NULL) return unknown; char *path = fc_strdup (string, len); int err; TEMP_FAILURE_RETRY (err = stat (path, &statbuf)); free (path); if (err == -1) return unknown; if (S_ISREG (statbuf.st_mode) || S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode)) return unknown; if (S_ISDIR (statbuf.st_mode) || S_ISBLK (statbuf.st_mode)) return no; return unknown; } /* inquire_direct()-- Given a fortran string, determine if the file is suitable for direct access. Returns a C-style string. */ const char * inquire_direct (const char *string, gfc_charlen_type len) { struct stat statbuf; if (string == NULL) return unknown; char *path = fc_strdup (string, len); int err; TEMP_FAILURE_RETRY (err = stat (path, &statbuf)); free (path); if (err == -1) return unknown; if (S_ISREG (statbuf.st_mode) || S_ISBLK (statbuf.st_mode)) return unknown; if (S_ISDIR (statbuf.st_mode) || S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode)) return no; return unknown; } /* inquire_formatted()-- Given a fortran string, determine if the file is suitable for formatted form. Returns a C-style string. */ const char * inquire_formatted (const char *string, gfc_charlen_type len) { struct stat statbuf; if (string == NULL) return unknown; char *path = fc_strdup (string, len); int err; TEMP_FAILURE_RETRY (err = stat (path, &statbuf)); free (path); if (err == -1) return unknown; if (S_ISREG (statbuf.st_mode) || S_ISBLK (statbuf.st_mode) || S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode)) return unknown; if (S_ISDIR (statbuf.st_mode)) return no; return unknown; } /* inquire_unformatted()-- Given a fortran string, determine if the file is suitable for unformatted form. Returns a C-style string. */ const char * inquire_unformatted (const char *string, gfc_charlen_type len) { return inquire_formatted (string, len); } /* inquire_access()-- Given a fortran string, determine if the file is suitable for access. */ static const char * inquire_access (const char *string, gfc_charlen_type len, int mode) { if (string == NULL) return no; char *path = fc_strdup (string, len); int res = access (path, mode); free (path); if (res == -1) return no; return yes; } /* inquire_read()-- Given a fortran string, determine if the file is suitable for READ access. */ const char * inquire_read (const char *string, gfc_charlen_type len) { return inquire_access (string, len, R_OK); } /* inquire_write()-- Given a fortran string, determine if the file is suitable for READ access. */ const char * inquire_write (const char *string, gfc_charlen_type len) { return inquire_access (string, len, W_OK); } /* inquire_readwrite()-- Given a fortran string, determine if the file is suitable for read and write access. */ const char * inquire_readwrite (const char *string, gfc_charlen_type len) { return inquire_access (string, len, R_OK | W_OK); } int stream_isatty (stream *s) { return isatty (((unix_stream *) s)->fd); } int stream_ttyname (stream *s __attribute__ ((unused)), char *buf __attribute__ ((unused)), size_t buflen __attribute__ ((unused))) { #ifdef HAVE_TTYNAME_R return ttyname_r (((unix_stream *)s)->fd, buf, buflen); #elif defined HAVE_TTYNAME char *p; size_t plen; p = ttyname (((unix_stream *)s)->fd); if (!p) return errno; plen = strlen (p); if (buflen < plen) plen = buflen; memcpy (buf, p, plen); return 0; #else return ENOSYS; #endif } /* How files are stored: This is an operating-system specific issue, and therefore belongs here. There are three cases to consider. Direct Access: Records are written as block of bytes corresponding to the record length of the file. This goes for both formatted and unformatted records. Positioning is done explicitly for each data transfer, so positioning is not much of an issue. Sequential Formatted: Records are separated by newline characters. The newline character is prohibited from appearing in a string. If it does, this will be messed up on the next read. End of file is also the end of a record. Sequential Unformatted: In this case, we are merely copying bytes to and from main storage, yet we need to keep track of varying record lengths. We adopt the solution used by f2c. Each record contains a pair of length markers: Length of record n in bytes Data of record n Length of record n in bytes Length of record n+1 in bytes Data of record n+1 Length of record n+1 in bytes The length is stored at the end of a record to allow backspacing to the previous record. Between data transfer statements, the file pointer is left pointing to the first length of the current record. ENDFILE records are never explicitly stored. */