// Multiset implementation -*- C++ -*- // Copyright (C) 2001-2014 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file bits/stl_multiset.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. @headername{set} */ #ifndef _STL_MULTISET_H #define _STL_MULTISET_H 1 #include #if __cplusplus >= 201103L #include #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_CONTAINER /** * @brief A standard container made up of elements, which can be retrieved * in logarithmic time. * * @ingroup associative_containers * * * @tparam _Key Type of key objects. * @tparam _Compare Comparison function object type, defaults to less<_Key>. * @tparam _Alloc Allocator type, defaults to allocator<_Key>. * * Meets the requirements of a container, a * reversible container, and an * associative container (using equivalent * keys). For a @c multiset the key_type and value_type are Key. * * Multisets support bidirectional iterators. * * The private tree data is declared exactly the same way for set and * multiset; the distinction is made entirely in how the tree functions are * called (*_unique versus *_equal, same as the standard). */ template , typename _Alloc = std::allocator<_Key> > class multiset { // concept requirements typedef typename _Alloc::value_type _Alloc_value_type; __glibcxx_class_requires(_Key, _SGIAssignableConcept) __glibcxx_class_requires4(_Compare, bool, _Key, _Key, _BinaryFunctionConcept) __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept) public: // typedefs: typedef _Key key_type; typedef _Key value_type; typedef _Compare key_compare; typedef _Compare value_compare; typedef _Alloc allocator_type; private: /// This turns a red-black tree into a [multi]set. typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template rebind<_Key>::other _Key_alloc_type; typedef _Rb_tree, key_compare, _Key_alloc_type> _Rep_type; /// The actual tree structure. _Rep_type _M_t; typedef __gnu_cxx::__alloc_traits<_Key_alloc_type> _Alloc_traits; public: typedef typename _Alloc_traits::pointer pointer; typedef typename _Alloc_traits::const_pointer const_pointer; typedef typename _Alloc_traits::reference reference; typedef typename _Alloc_traits::const_reference const_reference; // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 103. set::iterator is required to be modifiable, // but this allows modification of keys. typedef typename _Rep_type::const_iterator iterator; typedef typename _Rep_type::const_iterator const_iterator; typedef typename _Rep_type::const_reverse_iterator reverse_iterator; typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; typedef typename _Rep_type::size_type size_type; typedef typename _Rep_type::difference_type difference_type; // allocation/deallocation /** * @brief Default constructor creates no elements. */ multiset() : _M_t() { } /** * @brief Creates a %multiset with no elements. * @param __comp Comparator to use. * @param __a An allocator object. */ explicit multiset(const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, _Key_alloc_type(__a)) { } /** * @brief Builds a %multiset from a range. * @param __first An input iterator. * @param __last An input iterator. * * Create a %multiset consisting of copies of the elements from * [first,last). This is linear in N if the range is already sorted, * and NlogN otherwise (where N is distance(__first,__last)). */ template multiset(_InputIterator __first, _InputIterator __last) : _M_t() { _M_t._M_insert_equal(__first, __last); } /** * @brief Builds a %multiset from a range. * @param __first An input iterator. * @param __last An input iterator. * @param __comp A comparison functor. * @param __a An allocator object. * * Create a %multiset consisting of copies of the elements from * [__first,__last). This is linear in N if the range is already sorted, * and NlogN otherwise (where N is distance(__first,__last)). */ template multiset(_InputIterator __first, _InputIterator __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, _Key_alloc_type(__a)) { _M_t._M_insert_equal(__first, __last); } /** * @brief %Multiset copy constructor. * @param __x A %multiset of identical element and allocator types. * * The newly-created %multiset uses a copy of the allocation object used * by @a __x. */ multiset(const multiset& __x) : _M_t(__x._M_t) { } #if __cplusplus >= 201103L /** * @brief %Multiset move constructor. * @param __x A %multiset of identical element and allocator types. * * The newly-created %multiset contains the exact contents of @a __x. * The contents of @a __x are a valid, but unspecified %multiset. */ multiset(multiset&& __x) noexcept(is_nothrow_copy_constructible<_Compare>::value) : _M_t(std::move(__x._M_t)) { } /** * @brief Builds a %multiset from an initializer_list. * @param __l An initializer_list. * @param __comp A comparison functor. * @param __a An allocator object. * * Create a %multiset consisting of copies of the elements from * the list. This is linear in N if the list is already sorted, * and NlogN otherwise (where N is @a __l.size()). */ multiset(initializer_list __l, const _Compare& __comp = _Compare(), const allocator_type& __a = allocator_type()) : _M_t(__comp, _Key_alloc_type(__a)) { _M_t._M_insert_equal(__l.begin(), __l.end()); } /// Allocator-extended default constructor. explicit multiset(const allocator_type& __a) : _M_t(_Compare(), _Key_alloc_type(__a)) { } /// Allocator-extended copy constructor. multiset(const multiset& __m, const allocator_type& __a) : _M_t(__m._M_t, _Key_alloc_type(__a)) { } /// Allocator-extended move constructor. multiset(multiset&& __m, const allocator_type& __a) noexcept(is_nothrow_copy_constructible<_Compare>::value && _Alloc_traits::_S_always_equal()) : _M_t(std::move(__m._M_t), _Key_alloc_type(__a)) { } /// Allocator-extended initialier-list constructor. multiset(initializer_list __l, const allocator_type& __a) : _M_t(_Compare(), _Key_alloc_type(__a)) { _M_t._M_insert_equal(__l.begin(), __l.end()); } /// Allocator-extended range constructor. template multiset(_InputIterator __first, _InputIterator __last, const allocator_type& __a) : _M_t(_Compare(), _Key_alloc_type(__a)) { _M_t._M_insert_equal(__first, __last); } #endif /** * @brief %Multiset assignment operator. * @param __x A %multiset of identical element and allocator types. * * All the elements of @a __x are copied, but unlike the copy * constructor, the allocator object is not copied. */ multiset& operator=(const multiset& __x) { _M_t = __x._M_t; return *this; } #if __cplusplus >= 201103L /// Move assignment operator. multiset& operator=(multiset&&) = default; /** * @brief %Multiset list assignment operator. * @param __l An initializer_list. * * This function fills a %multiset with copies of the elements in the * initializer list @a __l. * * Note that the assignment completely changes the %multiset and * that the resulting %multiset's size is the same as the number * of elements assigned. Old data may be lost. */ multiset& operator=(initializer_list __l) { _M_t._M_assign_equal(__l.begin(), __l.end()); return *this; } #endif // accessors: /// Returns the comparison object. key_compare key_comp() const { return _M_t.key_comp(); } /// Returns the comparison object. value_compare value_comp() const { return _M_t.key_comp(); } /// Returns the memory allocation object. allocator_type get_allocator() const _GLIBCXX_NOEXCEPT { return allocator_type(_M_t.get_allocator()); } /** * Returns a read-only (constant) iterator that points to the first * element in the %multiset. Iteration is done in ascending order * according to the keys. */ iterator begin() const _GLIBCXX_NOEXCEPT { return _M_t.begin(); } /** * Returns a read-only (constant) iterator that points one past the last * element in the %multiset. Iteration is done in ascending order * according to the keys. */ iterator end() const _GLIBCXX_NOEXCEPT { return _M_t.end(); } /** * Returns a read-only (constant) reverse iterator that points to the * last element in the %multiset. Iteration is done in descending order * according to the keys. */ reverse_iterator rbegin() const _GLIBCXX_NOEXCEPT { return _M_t.rbegin(); } /** * Returns a read-only (constant) reverse iterator that points to the * last element in the %multiset. Iteration is done in descending order * according to the keys. */ reverse_iterator rend() const _GLIBCXX_NOEXCEPT { return _M_t.rend(); } #if __cplusplus >= 201103L /** * Returns a read-only (constant) iterator that points to the first * element in the %multiset. Iteration is done in ascending order * according to the keys. */ iterator cbegin() const noexcept { return _M_t.begin(); } /** * Returns a read-only (constant) iterator that points one past the last * element in the %multiset. Iteration is done in ascending order * according to the keys. */ iterator cend() const noexcept { return _M_t.end(); } /** * Returns a read-only (constant) reverse iterator that points to the * last element in the %multiset. Iteration is done in descending order * according to the keys. */ reverse_iterator crbegin() const noexcept { return _M_t.rbegin(); } /** * Returns a read-only (constant) reverse iterator that points to the * last element in the %multiset. Iteration is done in descending order * according to the keys. */ reverse_iterator crend() const noexcept { return _M_t.rend(); } #endif /// Returns true if the %set is empty. bool empty() const _GLIBCXX_NOEXCEPT { return _M_t.empty(); } /// Returns the size of the %set. size_type size() const _GLIBCXX_NOEXCEPT { return _M_t.size(); } /// Returns the maximum size of the %set. size_type max_size() const _GLIBCXX_NOEXCEPT { return _M_t.max_size(); } /** * @brief Swaps data with another %multiset. * @param __x A %multiset of the same element and allocator types. * * This exchanges the elements between two multisets in constant time. * (It is only swapping a pointer, an integer, and an instance of the @c * Compare type (which itself is often stateless and empty), so it should * be quite fast.) * Note that the global std::swap() function is specialized such that * std::swap(s1,s2) will feed to this function. */ void swap(multiset& __x) #if __cplusplus >= 201103L noexcept(_Alloc_traits::_S_nothrow_swap()) #endif { _M_t.swap(__x._M_t); } // insert/erase #if __cplusplus >= 201103L /** * @brief Builds and inserts an element into the %multiset. * @param __args Arguments used to generate the element instance to be * inserted. * @return An iterator that points to the inserted element. * * This function inserts an element into the %multiset. Contrary * to a std::set the %multiset does not rely on unique keys and thus * multiple copies of the same element can be inserted. * * Insertion requires logarithmic time. */ template iterator emplace(_Args&&... __args) { return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); } /** * @brief Builds and inserts an element into the %multiset. * @param __pos An iterator that serves as a hint as to where the * element should be inserted. * @param __args Arguments used to generate the element instance to be * inserted. * @return An iterator that points to the inserted element. * * This function inserts an element into the %multiset. Contrary * to a std::set the %multiset does not rely on unique keys and thus * multiple copies of the same element can be inserted. * * Note that the first parameter is only a hint and can potentially * improve the performance of the insertion process. A bad hint would * cause no gains in efficiency. * * See https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints * for more on @a hinting. * * Insertion requires logarithmic time (if the hint is not taken). */ template iterator emplace_hint(const_iterator __pos, _Args&&... __args) { return _M_t._M_emplace_hint_equal(__pos, std::forward<_Args>(__args)...); } #endif /** * @brief Inserts an element into the %multiset. * @param __x Element to be inserted. * @return An iterator that points to the inserted element. * * This function inserts an element into the %multiset. Contrary * to a std::set the %multiset does not rely on unique keys and thus * multiple copies of the same element can be inserted. * * Insertion requires logarithmic time. */ iterator insert(const value_type& __x) { return _M_t._M_insert_equal(__x); } #if __cplusplus >= 201103L iterator insert(value_type&& __x) { return _M_t._M_insert_equal(std::move(__x)); } #endif /** * @brief Inserts an element into the %multiset. * @param __position An iterator that serves as a hint as to where the * element should be inserted. * @param __x Element to be inserted. * @return An iterator that points to the inserted element. * * This function inserts an element into the %multiset. Contrary * to a std::set the %multiset does not rely on unique keys and thus * multiple copies of the same element can be inserted. * * Note that the first parameter is only a hint and can potentially * improve the performance of the insertion process. A bad hint would * cause no gains in efficiency. * * See https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints * for more on @a hinting. * * Insertion requires logarithmic time (if the hint is not taken). */ iterator insert(const_iterator __position, const value_type& __x) { return _M_t._M_insert_equal_(__position, __x); } #if __cplusplus >= 201103L iterator insert(const_iterator __position, value_type&& __x) { return _M_t._M_insert_equal_(__position, std::move(__x)); } #endif /** * @brief A template function that tries to insert a range of elements. * @param __first Iterator pointing to the start of the range to be * inserted. * @param __last Iterator pointing to the end of the range. * * Complexity similar to that of the range constructor. */ template void insert(_InputIterator __first, _InputIterator __last) { _M_t._M_insert_equal(__first, __last); } #if __cplusplus >= 201103L /** * @brief Attempts to insert a list of elements into the %multiset. * @param __l A std::initializer_list of elements * to be inserted. * * Complexity similar to that of the range constructor. */ void insert(initializer_list __l) { this->insert(__l.begin(), __l.end()); } #endif #if __cplusplus >= 201103L // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 130. Associative erase should return an iterator. /** * @brief Erases an element from a %multiset. * @param __position An iterator pointing to the element to be erased. * @return An iterator pointing to the element immediately following * @a position prior to the element being erased. If no such * element exists, end() is returned. * * This function erases an element, pointed to by the given iterator, * from a %multiset. Note that this function only erases the element, * and that if the element is itself a pointer, the pointed-to memory is * not touched in any way. Managing the pointer is the user's * responsibility. */ _GLIBCXX_ABI_TAG_CXX11 iterator erase(const_iterator __position) { return _M_t.erase(__position); } #else /** * @brief Erases an element from a %multiset. * @param __position An iterator pointing to the element to be erased. * * This function erases an element, pointed to by the given iterator, * from a %multiset. Note that this function only erases the element, * and that if the element is itself a pointer, the pointed-to memory is * not touched in any way. Managing the pointer is the user's * responsibility. */ void erase(iterator __position) { _M_t.erase(__position); } #endif /** * @brief Erases elements according to the provided key. * @param __x Key of element to be erased. * @return The number of elements erased. * * This function erases all elements located by the given key from a * %multiset. * Note that this function only erases the element, and that if * the element is itself a pointer, the pointed-to memory is not touched * in any way. Managing the pointer is the user's responsibility. */ size_type erase(const key_type& __x) { return _M_t.erase(__x); } #if __cplusplus >= 201103L // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 130. Associative erase should return an iterator. /** * @brief Erases a [first,last) range of elements from a %multiset. * @param __first Iterator pointing to the start of the range to be * erased. * @param __last Iterator pointing to the end of the range to * be erased. * @return The iterator @a last. * * This function erases a sequence of elements from a %multiset. * Note that this function only erases the elements, and that if * the elements themselves are pointers, the pointed-to memory is not * touched in any way. Managing the pointer is the user's * responsibility. */ _GLIBCXX_ABI_TAG_CXX11 iterator erase(const_iterator __first, const_iterator __last) { return _M_t.erase(__first, __last); } #else /** * @brief Erases a [first,last) range of elements from a %multiset. * @param first Iterator pointing to the start of the range to be * erased. * @param last Iterator pointing to the end of the range to be erased. * * This function erases a sequence of elements from a %multiset. * Note that this function only erases the elements, and that if * the elements themselves are pointers, the pointed-to memory is not * touched in any way. Managing the pointer is the user's * responsibility. */ void erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); } #endif /** * Erases all elements in a %multiset. Note that this function only * erases the elements, and that if the elements themselves are pointers, * the pointed-to memory is not touched in any way. Managing the pointer * is the user's responsibility. */ void clear() _GLIBCXX_NOEXCEPT { _M_t.clear(); } // multiset operations: /** * @brief Finds the number of elements with given key. * @param __x Key of elements to be located. * @return Number of elements with specified key. */ size_type count(const key_type& __x) const { return _M_t.count(__x); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 214. set::find() missing const overload //@{ /** * @brief Tries to locate an element in a %set. * @param __x Element to be located. * @return Iterator pointing to sought-after element, or end() if not * found. * * This function takes a key and tries to locate the element with which * the key matches. If successful the function returns an iterator * pointing to the sought after element. If unsuccessful it returns the * past-the-end ( @c end() ) iterator. */ iterator find(const key_type& __x) { return _M_t.find(__x); } const_iterator find(const key_type& __x) const { return _M_t.find(__x); } //@} //@{ /** * @brief Finds the beginning of a subsequence matching given key. * @param __x Key to be located. * @return Iterator pointing to first element equal to or greater * than key, or end(). * * This function returns the first element of a subsequence of elements * that matches the given key. If unsuccessful it returns an iterator * pointing to the first element that has a greater value than given key * or end() if no such element exists. */ iterator lower_bound(const key_type& __x) { return _M_t.lower_bound(__x); } const_iterator lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); } //@} //@{ /** * @brief Finds the end of a subsequence matching given key. * @param __x Key to be located. * @return Iterator pointing to the first element * greater than key, or end(). */ iterator upper_bound(const key_type& __x) { return _M_t.upper_bound(__x); } const_iterator upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); } //@} //@{ /** * @brief Finds a subsequence matching given key. * @param __x Key to be located. * @return Pair of iterators that possibly points to the subsequence * matching given key. * * This function is equivalent to * @code * std::make_pair(c.lower_bound(val), * c.upper_bound(val)) * @endcode * (but is faster than making the calls separately). * * This function probably only makes sense for multisets. */ std::pair equal_range(const key_type& __x) { return _M_t.equal_range(__x); } std::pair equal_range(const key_type& __x) const { return _M_t.equal_range(__x); } //@} template friend bool operator==(const multiset<_K1, _C1, _A1>&, const multiset<_K1, _C1, _A1>&); template friend bool operator< (const multiset<_K1, _C1, _A1>&, const multiset<_K1, _C1, _A1>&); }; /** * @brief Multiset equality comparison. * @param __x A %multiset. * @param __y A %multiset of the same type as @a __x. * @return True iff the size and elements of the multisets are equal. * * This is an equivalence relation. It is linear in the size of the * multisets. * Multisets are considered equivalent if their sizes are equal, and if * corresponding elements compare equal. */ template inline bool operator==(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y) { return __x._M_t == __y._M_t; } /** * @brief Multiset ordering relation. * @param __x A %multiset. * @param __y A %multiset of the same type as @a __x. * @return True iff @a __x is lexicographically less than @a __y. * * This is a total ordering relation. It is linear in the size of the * sets. The elements must be comparable with @c <. * * See std::lexicographical_compare() for how the determination is made. */ template inline bool operator<(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y) { return __x._M_t < __y._M_t; } /// Returns !(x == y). template inline bool operator!=(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y) { return !(__x == __y); } /// Returns y < x. template inline bool operator>(const multiset<_Key,_Compare,_Alloc>& __x, const multiset<_Key,_Compare,_Alloc>& __y) { return __y < __x; } /// Returns !(y < x) template inline bool operator<=(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y) { return !(__y < __x); } /// Returns !(x < y) template inline bool operator>=(const multiset<_Key, _Compare, _Alloc>& __x, const multiset<_Key, _Compare, _Alloc>& __y) { return !(__x < __y); } /// See std::multiset::swap(). template inline void swap(multiset<_Key, _Compare, _Alloc>& __x, multiset<_Key, _Compare, _Alloc>& __y) { __x.swap(__y); } _GLIBCXX_END_NAMESPACE_CONTAINER } // namespace std #endif /* _STL_MULTISET_H */