/* Copyright (C) 2007-2019 Free Software Foundation, Inc. Contributed by Andy Vaught Write float code factoring to this file by Jerry DeLisle F2003 I/O support contributed by Jerry DeLisle This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "config.h" typedef enum { S_NONE, S_MINUS, S_PLUS } sign_t; /* Given a flag that indicates if a value is negative or not, return a sign_t that gives the sign that we need to produce. */ static sign_t calculate_sign (st_parameter_dt *dtp, int negative_flag) { sign_t s = S_NONE; if (negative_flag) s = S_MINUS; else switch (dtp->u.p.sign_status) { case SIGN_SP: /* Show sign. */ s = S_PLUS; break; case SIGN_SS: /* Suppress sign. */ s = S_NONE; break; case SIGN_S: /* Processor defined. */ case SIGN_UNSPECIFIED: s = options.optional_plus ? S_PLUS : S_NONE; break; } return s; } /* Determine the precision except for EN format. For G format, determines an upper bound to be used for sizing the buffer. */ static int determine_precision (st_parameter_dt * dtp, const fnode * f, int len) { int precision = f->u.real.d; switch (f->format) { case FMT_F: case FMT_G: precision += dtp->u.p.scale_factor; break; case FMT_ES: /* Scale factor has no effect on output. */ break; case FMT_E: case FMT_D: /* See F2008 10.7.2.3.3.6 */ if (dtp->u.p.scale_factor <= 0) precision += dtp->u.p.scale_factor - 1; break; default: return -1; } /* If the scale factor has a large negative value, we must do our own rounding? Use ROUND='NEAREST', which should be what snprintf is using as well. */ if (precision < 0 && (dtp->u.p.current_unit->round_status == ROUND_UNSPECIFIED || dtp->u.p.current_unit->round_status == ROUND_PROCDEFINED)) dtp->u.p.current_unit->round_status = ROUND_NEAREST; /* Add extra guard digits up to at least full precision when we do our own rounding. */ if (dtp->u.p.current_unit->round_status != ROUND_UNSPECIFIED && dtp->u.p.current_unit->round_status != ROUND_PROCDEFINED) { precision += 2 * len + 4; if (precision < 0) precision = 0; } return precision; } /* Build a real number according to its format which is FMT_G free. */ static void build_float_string (st_parameter_dt *dtp, const fnode *f, char *buffer, size_t size, int nprinted, int precision, int sign_bit, bool zero_flag, int npad, int default_width, char *result, size_t *len) { char *put; char *digits; int e, w, d, p, i; char expchar, rchar; format_token ft; /* Number of digits before the decimal point. */ int nbefore; /* Number of zeros after the decimal point. */ int nzero; /* Number of digits after the decimal point. */ int nafter; int leadzero; int nblanks; int ndigits, edigits; sign_t sign; ft = f->format; if (f->u.real.w == DEFAULT_WIDTH) /* This codepath can only be reached with -fdec-format-defaults. */ { w = default_width; d = precision; } else { w = f->u.real.w; d = f->u.real.d; } p = dtp->u.p.scale_factor; *len = 0; rchar = '5'; /* We should always know the field width and precision. */ if (d < 0) internal_error (&dtp->common, "Unspecified precision"); sign = calculate_sign (dtp, sign_bit); /* Calculate total number of digits. */ if (ft == FMT_F) ndigits = nprinted - 2; else ndigits = precision + 1; /* Read the exponent back in. */ if (ft != FMT_F) e = atoi (&buffer[ndigits + 3]) + 1; else e = 0; /* Make sure zero comes out as 0.0e0. */ if (zero_flag) e = 0; /* Normalize the fractional component. */ if (ft != FMT_F) { buffer[2] = buffer[1]; digits = &buffer[2]; } else digits = &buffer[1]; /* Figure out where to place the decimal point. */ switch (ft) { case FMT_F: nbefore = ndigits - precision; if ((w > 0) && (nbefore > (int) size)) { *len = w; star_fill (result, w); result[w] = '\0'; return; } /* Make sure the decimal point is a '.'; depending on the locale, this might not be the case otherwise. */ digits[nbefore] = '.'; if (p != 0) { if (p > 0) { memmove (digits + nbefore, digits + nbefore + 1, p); digits[nbefore + p] = '.'; nbefore += p; nafter = d; nzero = 0; } else /* p < 0 */ { if (nbefore + p >= 0) { nzero = 0; memmove (digits + nbefore + p + 1, digits + nbefore + p, -p); nbefore += p; digits[nbefore] = '.'; nafter = d; } else { nzero = -(nbefore + p); memmove (digits + 1, digits, nbefore); nafter = d - nzero; if (nafter == 0 && d > 0) { /* This is needed to get the correct rounding. */ memmove (digits + 1, digits, ndigits - 1); digits[1] = '0'; nafter = 1; nzero = d - 1; } else if (nafter < 0) { /* Reset digits to 0 in order to get correct rounding towards infinity. */ for (i = 0; i < ndigits; i++) digits[i] = '0'; digits[ndigits - 1] = '1'; nafter = d; nzero = 0; } nbefore = 0; } } } else { nzero = 0; nafter = d; } while (digits[0] == '0' && nbefore > 0) { digits++; nbefore--; ndigits--; } expchar = 0; /* If we need to do rounding ourselves, get rid of the dot by moving the fractional part. */ if (dtp->u.p.current_unit->round_status != ROUND_UNSPECIFIED && dtp->u.p.current_unit->round_status != ROUND_PROCDEFINED) memmove (digits + nbefore, digits + nbefore + 1, ndigits - nbefore); break; case FMT_E: case FMT_D: i = dtp->u.p.scale_factor; if (d <= 0 && p == 0) { generate_error (&dtp->common, LIBERROR_FORMAT, "Precision not " "greater than zero in format specifier 'E' or 'D'"); return; } if (p <= -d || p >= d + 2) { generate_error (&dtp->common, LIBERROR_FORMAT, "Scale factor " "out of range in format specifier 'E' or 'D'"); return; } if (!zero_flag) e -= p; if (p < 0) { nbefore = 0; nzero = -p; nafter = d + p; } else if (p > 0) { nbefore = p; nzero = 0; nafter = (d - p) + 1; } else /* p == 0 */ { nbefore = 0; nzero = 0; nafter = d; } if (ft == FMT_E) expchar = 'E'; else expchar = 'D'; break; case FMT_EN: /* The exponent must be a multiple of three, with 1-3 digits before the decimal point. */ if (!zero_flag) e--; if (e >= 0) nbefore = e % 3; else { nbefore = (-e) % 3; if (nbefore != 0) nbefore = 3 - nbefore; } e -= nbefore; nbefore++; nzero = 0; nafter = d; expchar = 'E'; break; case FMT_ES: if (!zero_flag) e--; nbefore = 1; nzero = 0; nafter = d; expchar = 'E'; break; default: /* Should never happen. */ internal_error (&dtp->common, "Unexpected format token"); } if (zero_flag) goto skip; /* Round the value. The value being rounded is an unsigned magnitude. */ switch (dtp->u.p.current_unit->round_status) { /* For processor defined and unspecified rounding we use snprintf to print the exact number of digits needed, and thus let snprintf handle the rounding. On system claiming support for IEEE 754, this ought to be round to nearest, ties to even, corresponding to the Fortran ROUND='NEAREST'. */ case ROUND_PROCDEFINED: case ROUND_UNSPECIFIED: case ROUND_ZERO: /* Do nothing and truncation occurs. */ goto skip; case ROUND_UP: if (sign_bit) goto skip; goto updown; case ROUND_DOWN: if (!sign_bit) goto skip; goto updown; case ROUND_NEAREST: /* Round compatible unless there is a tie. A tie is a 5 with all trailing zero's. */ i = nafter + nbefore; if (digits[i] == '5') { for(i++ ; i < ndigits; i++) { if (digits[i] != '0') goto do_rnd; } /* It is a tie so round to even. */ switch (digits[nafter + nbefore - 1]) { case '1': case '3': case '5': case '7': case '9': /* If odd, round away from zero to even. */ break; default: /* If even, skip rounding, truncate to even. */ goto skip; } } /* Fall through. */ /* The ROUND_COMPATIBLE is rounding away from zero when there is a tie. */ case ROUND_COMPATIBLE: rchar = '5'; goto do_rnd; } updown: rchar = '0'; if (ft != FMT_F && w > 0 && d == 0 && p == 0) nbefore = 1; /* Scan for trailing zeros to see if we really need to round it. */ for(i = nbefore + nafter; i < ndigits; i++) { if (digits[i] != '0') goto do_rnd; } goto skip; do_rnd: if (nbefore + nafter == 0) /* Handle the case Fw.0 and value < 1.0 */ { ndigits = 0; if (digits[0] >= rchar) { /* We rounded to zero but shouldn't have */ nbefore = 1; digits--; digits[0] = '1'; ndigits = 1; } } else if (nbefore + nafter < ndigits) { i = ndigits = nbefore + nafter; if (digits[i] >= rchar) { /* Propagate the carry. */ for (i--; i >= 0; i--) { if (digits[i] != '9') { digits[i]++; break; } digits[i] = '0'; } if (i < 0) { /* The carry overflowed. Fortunately we have some spare space at the start of the buffer. We may discard some digits, but this is ok because we already know they are zero. */ digits--; digits[0] = '1'; if (ft == FMT_F) { if (nzero > 0) { nzero--; nafter++; } else nbefore++; } else if (ft == FMT_EN) { nbefore++; if (nbefore == 4) { nbefore = 1; e += 3; } } else e++; } } } skip: /* Calculate the format of the exponent field. */ if (expchar && !(dtp->u.p.g0_no_blanks && e == 0)) { edigits = 1; for (i = abs (e); i >= 10; i /= 10) edigits++; if (f->u.real.e < 0) { /* Width not specified. Must be no more than 3 digits. */ if (e > 999 || e < -999) edigits = -1; else { edigits = 4; if (e > 99 || e < -99) expchar = ' '; } } else { /* Exponent width specified, check it is wide enough. */ if (edigits > f->u.real.e) edigits = -1; else edigits = f->u.real.e + 2; } } else edigits = 0; /* Scan the digits string and count the number of zeros. If we make it all the way through the loop, we know the value is zero after the rounding completed above. */ int hasdot = 0; for (i = 0; i < ndigits + hasdot; i++) { if (digits[i] == '.') hasdot = 1; else if (digits[i] != '0') break; } /* To format properly, we need to know if the rounded result is zero and if so, we set the zero_flag which may have been already set for actual zero. */ if (i == ndigits + hasdot) { zero_flag = true; /* The output is zero, so set the sign according to the sign bit unless -fno-sign-zero was specified. */ if (compile_options.sign_zero == 1) sign = calculate_sign (dtp, sign_bit); else sign = calculate_sign (dtp, 0); } /* Pick a field size if none was specified, taking into account small values that may have been rounded to zero. */ if (w <= 0) { if (zero_flag) w = d + (sign != S_NONE ? 2 : 1) + (d == 0 ? 1 : 0); else { w = nbefore + nzero + nafter + (sign != S_NONE ? 2 : 1); w = w == 1 ? 2 : w; } } /* Work out how much padding is needed. */ nblanks = w - (nbefore + nzero + nafter + edigits + 1); if (sign != S_NONE) nblanks--; /* See if we have space for a zero before the decimal point. */ if (nbefore == 0 && nblanks > 0) { leadzero = 1; nblanks--; } else leadzero = 0; if (dtp->u.p.g0_no_blanks) { w -= nblanks; nblanks = 0; } /* Create the final float string. */ *len = w + npad; put = result; /* Check the value fits in the specified field width. */ if (nblanks < 0 || edigits == -1 || w == 1 || (w == 2 && sign != S_NONE)) { star_fill (put, *len); return; } /* Pad to full field width. */ if ( ( nblanks > 0 ) && !dtp->u.p.no_leading_blank) { memset (put, ' ', nblanks); put += nblanks; } /* Set the initial sign (if any). */ if (sign == S_PLUS) *(put++) = '+'; else if (sign == S_MINUS) *(put++) = '-'; /* Set an optional leading zero. */ if (leadzero) *(put++) = '0'; /* Set the part before the decimal point, padding with zeros. */ if (nbefore > 0) { if (nbefore > ndigits) { i = ndigits; memcpy (put, digits, i); ndigits = 0; while (i < nbefore) put[i++] = '0'; } else { i = nbefore; memcpy (put, digits, i); ndigits -= i; } digits += i; put += nbefore; } /* Set the decimal point. */ *(put++) = dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? '.' : ','; if (ft == FMT_F && (dtp->u.p.current_unit->round_status == ROUND_UNSPECIFIED || dtp->u.p.current_unit->round_status == ROUND_PROCDEFINED)) digits++; /* Set leading zeros after the decimal point. */ if (nzero > 0) { for (i = 0; i < nzero; i++) *(put++) = '0'; } /* Set digits after the decimal point, padding with zeros. */ if (ndigits >= 0 && nafter > 0) { if (nafter > ndigits) i = ndigits; else i = nafter; if (i > 0) memcpy (put, digits, i); while (i < nafter) put[i++] = '0'; digits += i; ndigits -= i; put += nafter; } /* Set the exponent. */ if (expchar && !(dtp->u.p.g0_no_blanks && e == 0)) { if (expchar != ' ') { *(put++) = expchar; edigits--; } snprintf (buffer, size, "%+0*d", edigits, e); memcpy (put, buffer, edigits); put += edigits; } if (dtp->u.p.no_leading_blank) { memset (put , ' ' , nblanks); dtp->u.p.no_leading_blank = 0; put += nblanks; } if (npad > 0 && !dtp->u.p.g0_no_blanks) { memset (put , ' ' , npad); put += npad; } /* NULL terminate the string. */ *put = '\0'; return; } /* Write "Infinite" or "Nan" as appropriate for the given format. */ static void build_infnan_string (st_parameter_dt *dtp, const fnode *f, int isnan_flag, int sign_bit, char *p, size_t *len) { char fin; int nb = 0; sign_t sign; int mark; if (f->format != FMT_B && f->format != FMT_O && f->format != FMT_Z) { sign = calculate_sign (dtp, sign_bit); mark = (sign == S_PLUS || sign == S_MINUS) ? 8 : 7; nb = f->u.real.w; *len = nb; /* If the field width is zero, the processor must select a width not zero. 4 is chosen to allow output of '-Inf' or '+Inf' */ if ((nb == 0) || dtp->u.p.g0_no_blanks) { if (isnan_flag) nb = 3; else nb = (sign == S_PLUS || sign == S_MINUS) ? 4 : 3; *len = nb; } p[*len] = '\0'; if (nb < 3) { memset (p, '*', nb); return; } memset(p, ' ', nb); if (!isnan_flag) { if (sign_bit) { /* If the sign is negative and the width is 3, there is insufficient room to output '-Inf', so output asterisks */ if (nb == 3) { memset (p, '*', nb); return; } /* The negative sign is mandatory */ fin = '-'; } else /* The positive sign is optional, but we output it for consistency */ fin = '+'; if (nb > mark) /* We have room, so output 'Infinity' */ memcpy(p + nb - 8, "Infinity", 8); else /* For the case of width equals 8, there is not enough room for the sign and 'Infinity' so we go with 'Inf' */ memcpy(p + nb - 3, "Inf", 3); if (sign == S_PLUS || sign == S_MINUS) { if (nb < 9 && nb > 3) p[nb - 4] = fin; /* Put the sign in front of Inf */ else if (nb > 8) p[nb - 9] = fin; /* Put the sign in front of Infinity */ } } else memcpy(p + nb - 3, "NaN", 3); } } /* Returns the value of 10**d. */ #define CALCULATE_EXP(x) \ static GFC_REAL_ ## x \ calculate_exp_ ## x (int d)\ {\ int i;\ GFC_REAL_ ## x r = 1.0;\ for (i = 0; i< (d >= 0 ? d : -d); i++)\ r *= 10;\ r = (d >= 0) ? r : 1.0 / r;\ return r;\ } CALCULATE_EXP(4) CALCULATE_EXP(8) #ifdef HAVE_GFC_REAL_10 CALCULATE_EXP(10) #endif #ifdef HAVE_GFC_REAL_16 CALCULATE_EXP(16) #endif #undef CALCULATE_EXP /* Define macros to build code for format_float. */ /* Note: Before output_float is called, snprintf is used to print to buffer the number in the format +D.DDDDe+ddd. # The result will always contain a decimal point, even if no digits follow it - The converted value is to be left adjusted on the field boundary + A sign (+ or -) always be placed before a number * prec is used as the precision e format: [-]d.ddde±dd where there is one digit before the decimal-point character and the number of digits after it is equal to the precision. The exponent always contains at least two digits; if the value is zero, the exponent is 00. */ #define TOKENPASTE(x, y) TOKENPASTE2(x, y) #define TOKENPASTE2(x, y) x ## y #define DTOA(suff,prec,val) TOKENPASTE(DTOA2,suff)(prec,val) #define DTOA2(prec,val) \ snprintf (buffer, size, "%+-#.*e", (prec), (val)) #define DTOA2L(prec,val) \ snprintf (buffer, size, "%+-#.*Le", (prec), (val)) #if defined(GFC_REAL_16_IS_FLOAT128) #define DTOA2Q(prec,val) \ quadmath_snprintf (buffer, size, "%+-#.*Qe", (prec), (val)) #endif #define FDTOA(suff,prec,val) TOKENPASTE(FDTOA2,suff)(prec,val) /* For F format, we print to the buffer with f format. */ #define FDTOA2(prec,val) \ snprintf (buffer, size, "%+-#.*f", (prec), (val)) #define FDTOA2L(prec,val) \ snprintf (buffer, size, "%+-#.*Lf", (prec), (val)) #if defined(GFC_REAL_16_IS_FLOAT128) #define FDTOA2Q(prec,val) \ quadmath_snprintf (buffer, size, "%+-#.*Qf", \ (prec), (val)) #endif /* EN format is tricky since the number of significant digits depends on the magnitude. Solve it by first printing a temporary value and figure out the number of significant digits from the printed exponent. Values y, 0.95*10.0**e <= y <10.0**e, are rounded to 10.0**e even when the final result will not be rounded to 10.0**e. For these values the exponent returned by atoi has to be decremented by one. The values y in the ranges (1000.0-0.5*10.0**(-d))*10.0**(3*n) <= y < 10.0*(3*(n+1)) (100.0-0.5*10.0**(-d))*10.0**(3*n) <= y < 10.0*(3*n+2) (10.0-0.5*10.0**(-d))*10.0**(3*n) <= y < 10.0*(3*n+1) are correctly rounded respectively to 1.0...0*10.0*(3*(n+1)), 100.0...0*10.0*(3*n), and 10.0...0*10.0*(3*n), where 0...0 represents d zeroes, by the lines 279 to 297. */ #define EN_PREC(x,y)\ {\ volatile GFC_REAL_ ## x tmp, one = 1.0;\ tmp = * (GFC_REAL_ ## x *)source;\ if (isfinite (tmp))\ {\ nprinted = DTOA(y,0,tmp);\ int e = atoi (&buffer[4]);\ if (buffer[1] == '1')\ {\ tmp = (calculate_exp_ ## x (-e)) * tmp;\ tmp = one - (tmp < 0 ? -tmp : tmp);\ if (tmp > 0)\ e = e - 1;\ }\ nbefore = e%3;\ if (nbefore < 0)\ nbefore = 3 + nbefore;\ }\ else\ nprinted = -1;\ }\ static int determine_en_precision (st_parameter_dt *dtp, const fnode *f, const char *source, int len) { int nprinted; char buffer[10]; const size_t size = 10; int nbefore; /* digits before decimal point - 1. */ switch (len) { case 4: EN_PREC(4,) break; case 8: EN_PREC(8,) break; #ifdef HAVE_GFC_REAL_10 case 10: EN_PREC(10,L) break; #endif #ifdef HAVE_GFC_REAL_16 case 16: # ifdef GFC_REAL_16_IS_FLOAT128 EN_PREC(16,Q) # else EN_PREC(16,L) # endif break; #endif default: internal_error (NULL, "bad real kind"); } if (nprinted == -1) return -1; int prec = f->u.real.d + nbefore; if (dtp->u.p.current_unit->round_status != ROUND_UNSPECIFIED && dtp->u.p.current_unit->round_status != ROUND_PROCDEFINED) prec += 2 * len + 4; return prec; } /* Generate corresponding I/O format. and output. The rules to translate FMT_G to FMT_E or FMT_F from DEC fortran LRM (table 11-2, Chapter 11, "I/O Formatting", P11-25) is: Data Magnitude Equivalent Conversion 0< m < 0.1-0.5*10**(-d-1) Ew.d[Ee] m = 0 F(w-n).(d-1), n' ' 0.1-0.5*10**(-d-1)<= m < 1-0.5*10**(-d) F(w-n).d, n' ' 1-0.5*10**(-d)<= m < 10-0.5*10**(-d+1) F(w-n).(d-1), n' ' 10-0.5*10**(-d+1)<= m < 100-0.5*10**(-d+2) F(w-n).(d-2), n' ' ................ .......... 10**(d-1)-0.5*10**(-1)<= m <10**d-0.5 F(w-n).0,n(' ') m >= 10**d-0.5 Ew.d[Ee] notes: for Gw.d , n' ' means 4 blanks for Gw.dEe, n' ' means e+2 blanks for rounding modes adjustment, r, See Fortran F2008 10.7.5.2.2 the asm volatile is required for 32-bit x86 platforms. */ #define FORMAT_FLOAT(x,y)\ {\ int npad = 0;\ GFC_REAL_ ## x m;\ m = * (GFC_REAL_ ## x *)source;\ sign_bit = signbit (m);\ if (!isfinite (m))\ { \ build_infnan_string (dtp, f, isnan (m), sign_bit, result, res_len);\ return;\ }\ m = sign_bit ? -m : m;\ zero_flag = (m == 0.0);\ if (f->format == FMT_G)\ {\ int e = f->u.real.e;\ int d = f->u.real.d;\ int w = f->u.real.w;\ fnode newf;\ GFC_REAL_ ## x exp_d, r = 0.5, r_sc;\ int low, high, mid;\ int ubound, lbound;\ int save_scale_factor;\ volatile GFC_REAL_ ## x temp;\ save_scale_factor = dtp->u.p.scale_factor;\ if (w == DEFAULT_WIDTH)\ {\ w = default_width;\ d = precision;\ }\ switch (dtp->u.p.current_unit->round_status)\ {\ case ROUND_ZERO:\ r = sign_bit ? 1.0 : 0.0;\ break;\ case ROUND_UP:\ r = 1.0;\ break;\ case ROUND_DOWN:\ r = 0.0;\ break;\ default:\ break;\ }\ exp_d = calculate_exp_ ## x (d);\ r_sc = (1 - r / exp_d);\ temp = 0.1 * r_sc;\ if ((m > 0.0 && ((m < temp) || (r >= (exp_d - m))))\ || ((m == 0.0) && !(compile_options.allow_std\ & (GFC_STD_F2003 | GFC_STD_F2008)))\ || d == 0)\ { \ newf.format = FMT_E;\ newf.u.real.w = w;\ newf.u.real.d = d - comp_d;\ newf.u.real.e = e;\ npad = 0;\ precision = determine_precision (dtp, &newf, x);\ nprinted = DTOA(y,precision,m);\ }\ else \ {\ mid = 0;\ low = 0;\ high = d + 1;\ lbound = 0;\ ubound = d + 1;\ while (low <= high)\ {\ mid = (low + high) / 2;\ temp = (calculate_exp_ ## x (mid - 1) * r_sc);\ if (m < temp)\ { \ ubound = mid;\ if (ubound == lbound + 1)\ break;\ high = mid - 1;\ }\ else if (m > temp)\ { \ lbound = mid;\ if (ubound == lbound + 1)\ { \ mid ++;\ break;\ }\ low = mid + 1;\ }\ else\ {\ mid++;\ break;\ }\ }\ npad = e <= 0 ? 4 : e + 2;\ npad = npad >= w ? w - 1 : npad;\ npad = dtp->u.p.g0_no_blanks ? 0 : npad;\ newf.format = FMT_F;\ newf.u.real.w = w - npad;\ newf.u.real.d = m == 0.0 ? d - 1 : -(mid - d - 1) ;\ dtp->u.p.scale_factor = 0;\ precision = determine_precision (dtp, &newf, x);\ nprinted = FDTOA(y,precision,m);\ }\ build_float_string (dtp, &newf, buffer, size, nprinted, precision,\ sign_bit, zero_flag, npad, default_width,\ result, res_len);\ dtp->u.p.scale_factor = save_scale_factor;\ }\ else\ {\ if (f->format == FMT_F)\ nprinted = FDTOA(y,precision,m);\ else\ nprinted = DTOA(y,precision,m);\ build_float_string (dtp, f, buffer, size, nprinted, precision,\ sign_bit, zero_flag, npad, default_width,\ result, res_len);\ }\ }\ /* Output a real number according to its format. */ static void get_float_string (st_parameter_dt *dtp, const fnode *f, const char *source, int kind, int comp_d, char *buffer, int precision, size_t size, char *result, size_t *res_len) { int sign_bit, nprinted; bool zero_flag; int default_width = 0; if (f->u.real.w == DEFAULT_WIDTH) /* This codepath can only be reached with -fdec-format-defaults. The default * values are based on those used in the Oracle Fortran compiler. */ { default_width = default_width_for_float (kind); precision = default_precision_for_float (kind); } switch (kind) { case 4: FORMAT_FLOAT(4,) break; case 8: FORMAT_FLOAT(8,) break; #ifdef HAVE_GFC_REAL_10 case 10: FORMAT_FLOAT(10,L) break; #endif #ifdef HAVE_GFC_REAL_16 case 16: # ifdef GFC_REAL_16_IS_FLOAT128 FORMAT_FLOAT(16,Q) # else FORMAT_FLOAT(16,L) # endif break; #endif default: internal_error (NULL, "bad real kind"); } return; }