/* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by Andy Vaught F2003 I/O support contributed by Jerry DeLisle This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* Unix stream I/O module */ #include "io.h" #include "unix.h" #include #include #include #include #include #include #include #include /* For mingw, we don't identify files by their inode number, but by a 64-bit identifier created from a BY_HANDLE_FILE_INFORMATION. */ #ifdef __MINGW32__ #define WIN32_LEAN_AND_MEAN #include #define lseek _lseeki64 #define fstat _fstati64 #define stat _stati64 typedef struct _stati64 gfstat_t; #ifndef HAVE_WORKING_STAT static uint64_t id_from_handle (HANDLE hFile) { BY_HANDLE_FILE_INFORMATION FileInformation; if (hFile == INVALID_HANDLE_VALUE) return 0; memset (&FileInformation, 0, sizeof(FileInformation)); if (!GetFileInformationByHandle (hFile, &FileInformation)) return 0; return ((uint64_t) FileInformation.nFileIndexLow) | (((uint64_t) FileInformation.nFileIndexHigh) << 32); } static uint64_t id_from_path (const char *path) { HANDLE hFile; uint64_t res; if (!path || !*path || access (path, F_OK)) return (uint64_t) -1; hFile = CreateFile (path, 0, 0, NULL, OPEN_EXISTING, FILE_FLAG_BACKUP_SEMANTICS | FILE_ATTRIBUTE_READONLY, NULL); res = id_from_handle (hFile); CloseHandle (hFile); return res; } static uint64_t id_from_fd (const int fd) { return id_from_handle ((HANDLE) _get_osfhandle (fd)); } #endif #else typedef struct stat gfstat_t; #endif #ifndef PATH_MAX #define PATH_MAX 1024 #endif #ifndef PROT_READ #define PROT_READ 1 #endif #ifndef PROT_WRITE #define PROT_WRITE 2 #endif /* These flags aren't defined on all targets (mingw32), so provide them here. */ #ifndef S_IRGRP #define S_IRGRP 0 #endif #ifndef S_IWGRP #define S_IWGRP 0 #endif #ifndef S_IROTH #define S_IROTH 0 #endif #ifndef S_IWOTH #define S_IWOTH 0 #endif #ifndef HAVE_ACCESS #ifndef W_OK #define W_OK 2 #endif #ifndef R_OK #define R_OK 4 #endif #ifndef F_OK #define F_OK 0 #endif /* Fallback implementation of access() on systems that don't have it. Only modes R_OK, W_OK and F_OK are used in this file. */ static int fallback_access (const char *path, int mode) { if ((mode & R_OK) && open (path, O_RDONLY) < 0) return -1; if ((mode & W_OK) && open (path, O_WRONLY) < 0) return -1; if (mode == F_OK) { gfstat_t st; return stat (path, &st); } return 0; } #undef access #define access fallback_access #endif /* Unix and internal stream I/O module */ static const int BUFFER_SIZE = 8192; /* fix_fd()-- Given a file descriptor, make sure it is not one of the * standard descriptors, returning a non-standard descriptor. If the * user specifies that system errors should go to standard output, * then closes standard output, we don't want the system errors to a * file that has been given file descriptor 1 or 0. We want to send * the error to the invalid descriptor. */ static int fix_fd (int fd) { #ifdef HAVE_DUP int input, output, error; input = output = error = 0; /* Unix allocates the lowest descriptors first, so a loop is not required, but this order is. */ if (fd == STDIN_FILENO) { fd = dup (fd); input = 1; } if (fd == STDOUT_FILENO) { fd = dup (fd); output = 1; } if (fd == STDERR_FILENO) { fd = dup (fd); error = 1; } if (input) close (STDIN_FILENO); if (output) close (STDOUT_FILENO); if (error) close (STDERR_FILENO); #endif return fd; } /* If the stream corresponds to a preconnected unit, we flush the corresponding C stream. This is bugware for mixed C-Fortran codes where the C code doesn't flush I/O before returning. */ void flush_if_preconnected (stream * s) { int fd; fd = ((unix_stream *) s)->fd; if (fd == STDIN_FILENO) fflush (stdin); else if (fd == STDOUT_FILENO) fflush (stdout); else if (fd == STDERR_FILENO) fflush (stderr); } /* get_oserror()-- Get the most recent operating system error. For * unix, this is errno. */ const char * get_oserror (void) { return strerror (errno); } /******************************************************************** Raw I/O functions (read, write, seek, tell, truncate, close). These functions wrap the basic POSIX I/O syscalls. Any deviation in semantics is a bug, except the following: write restarts in case of being interrupted by a signal, and as the first argument the functions take the unix_stream struct rather than an integer file descriptor. Also, for POSIX read() and write() a nbyte argument larger than SSIZE_MAX is undefined; here the type of nbyte is ssize_t rather than size_t as for POSIX read/write. *********************************************************************/ static int raw_flush (unix_stream * s __attribute__ ((unused))) { return 0; } static ssize_t raw_read (unix_stream * s, void * buf, ssize_t nbyte) { /* For read we can't do I/O in a loop like raw_write does, because that will break applications that wait for interactive I/O. */ return read (s->fd, buf, nbyte); } static ssize_t raw_write (unix_stream * s, const void * buf, ssize_t nbyte) { ssize_t trans, bytes_left; char *buf_st; bytes_left = nbyte; buf_st = (char *) buf; /* We must write in a loop since some systems don't restart system calls in case of a signal. */ while (bytes_left > 0) { trans = write (s->fd, buf_st, bytes_left); if (trans < 0) { if (errno == EINTR) continue; else return trans; } buf_st += trans; bytes_left -= trans; } return nbyte - bytes_left; } static gfc_offset raw_seek (unix_stream * s, gfc_offset offset, int whence) { return lseek (s->fd, offset, whence); } static gfc_offset raw_tell (unix_stream * s) { return lseek (s->fd, 0, SEEK_CUR); } static int raw_truncate (unix_stream * s, gfc_offset length) { #ifdef __MINGW32__ HANDLE h; gfc_offset cur; if (isatty (s->fd)) { errno = EBADF; return -1; } h = (HANDLE) _get_osfhandle (s->fd); if (h == INVALID_HANDLE_VALUE) { errno = EBADF; return -1; } cur = lseek (s->fd, 0, SEEK_CUR); if (cur == -1) return -1; if (lseek (s->fd, length, SEEK_SET) == -1) goto error; if (!SetEndOfFile (h)) { errno = EBADF; goto error; } if (lseek (s->fd, cur, SEEK_SET) == -1) return -1; return 0; error: lseek (s->fd, cur, SEEK_SET); return -1; #elif defined HAVE_FTRUNCATE return ftruncate (s->fd, length); #elif defined HAVE_CHSIZE return chsize (s->fd, length); #else runtime_error ("required ftruncate or chsize support not present"); return -1; #endif } static int raw_close (unix_stream * s) { int retval; if (s->fd != STDOUT_FILENO && s->fd != STDERR_FILENO && s->fd != STDIN_FILENO) retval = close (s->fd); else retval = 0; free (s); return retval; } static int raw_init (unix_stream * s) { s->st.read = (void *) raw_read; s->st.write = (void *) raw_write; s->st.seek = (void *) raw_seek; s->st.tell = (void *) raw_tell; s->st.trunc = (void *) raw_truncate; s->st.close = (void *) raw_close; s->st.flush = (void *) raw_flush; s->buffer = NULL; return 0; } /********************************************************************* Buffered I/O functions. These functions have the same semantics as the raw I/O functions above, except that they are buffered in order to improve performance. The buffer must be flushed when switching from reading to writing and vice versa. *********************************************************************/ static int buf_flush (unix_stream * s) { int writelen; /* Flushing in read mode means discarding read bytes. */ s->active = 0; if (s->ndirty == 0) return 0; if (s->file_length != -1 && s->physical_offset != s->buffer_offset && lseek (s->fd, s->buffer_offset, SEEK_SET) < 0) return -1; writelen = raw_write (s, s->buffer, s->ndirty); s->physical_offset = s->buffer_offset + writelen; /* Don't increment file_length if the file is non-seekable. */ if (s->file_length != -1 && s->physical_offset > s->file_length) s->file_length = s->physical_offset; s->ndirty -= writelen; if (s->ndirty != 0) return -1; #ifdef _WIN32 _commit (s->fd); #endif return 0; } static ssize_t buf_read (unix_stream * s, void * buf, ssize_t nbyte) { if (s->active == 0) s->buffer_offset = s->logical_offset; /* Is the data we want in the buffer? */ if (s->logical_offset + nbyte <= s->buffer_offset + s->active && s->buffer_offset <= s->logical_offset) memcpy (buf, s->buffer + (s->logical_offset - s->buffer_offset), nbyte); else { /* First copy the active bytes if applicable, then read the rest either directly or filling the buffer. */ char *p; int nread = 0; ssize_t to_read, did_read; gfc_offset new_logical; p = (char *) buf; if (s->logical_offset >= s->buffer_offset && s->buffer_offset + s->active >= s->logical_offset) { nread = s->active - (s->logical_offset - s->buffer_offset); memcpy (buf, s->buffer + (s->logical_offset - s->buffer_offset), nread); p += nread; } /* At this point we consider all bytes in the buffer discarded. */ to_read = nbyte - nread; new_logical = s->logical_offset + nread; if (s->file_length != -1 && s->physical_offset != new_logical && lseek (s->fd, new_logical, SEEK_SET) < 0) return -1; s->buffer_offset = s->physical_offset = new_logical; if (to_read <= BUFFER_SIZE/2) { did_read = raw_read (s, s->buffer, BUFFER_SIZE); s->physical_offset += did_read; s->active = did_read; did_read = (did_read > to_read) ? to_read : did_read; memcpy (p, s->buffer, did_read); } else { did_read = raw_read (s, p, to_read); s->physical_offset += did_read; s->active = 0; } nbyte = did_read + nread; } s->logical_offset += nbyte; return nbyte; } static ssize_t buf_write (unix_stream * s, const void * buf, ssize_t nbyte) { if (s->ndirty == 0) s->buffer_offset = s->logical_offset; /* Does the data fit into the buffer? As a special case, if the buffer is empty and the request is bigger than BUFFER_SIZE/2, write directly. This avoids the case where the buffer would have to be flushed at every write. */ if (!(s->ndirty == 0 && nbyte > BUFFER_SIZE/2) && s->logical_offset + nbyte <= s->buffer_offset + BUFFER_SIZE && s->buffer_offset <= s->logical_offset && s->buffer_offset + s->ndirty >= s->logical_offset) { memcpy (s->buffer + (s->logical_offset - s->buffer_offset), buf, nbyte); int nd = (s->logical_offset - s->buffer_offset) + nbyte; if (nd > s->ndirty) s->ndirty = nd; } else { /* Flush, and either fill the buffer with the new data, or if the request is bigger than the buffer size, write directly bypassing the buffer. */ buf_flush (s); if (nbyte <= BUFFER_SIZE/2) { memcpy (s->buffer, buf, nbyte); s->buffer_offset = s->logical_offset; s->ndirty += nbyte; } else { if (s->file_length != -1 && s->physical_offset != s->logical_offset) { if (lseek (s->fd, s->logical_offset, SEEK_SET) < 0) return -1; s->physical_offset = s->logical_offset; } nbyte = raw_write (s, buf, nbyte); s->physical_offset += nbyte; } } s->logical_offset += nbyte; /* Don't increment file_length if the file is non-seekable. */ if (s->file_length != -1 && s->logical_offset > s->file_length) s->file_length = s->logical_offset; return nbyte; } static gfc_offset buf_seek (unix_stream * s, gfc_offset offset, int whence) { switch (whence) { case SEEK_SET: break; case SEEK_CUR: offset += s->logical_offset; break; case SEEK_END: offset += s->file_length; break; default: return -1; } if (offset < 0) { errno = EINVAL; return -1; } s->logical_offset = offset; return offset; } static gfc_offset buf_tell (unix_stream * s) { return s->logical_offset; } static int buf_truncate (unix_stream * s, gfc_offset length) { int r; if (buf_flush (s) != 0) return -1; r = raw_truncate (s, length); if (r == 0) s->file_length = length; return r; } static int buf_close (unix_stream * s) { if (buf_flush (s) != 0) return -1; free (s->buffer); return raw_close (s); } static int buf_init (unix_stream * s) { s->st.read = (void *) buf_read; s->st.write = (void *) buf_write; s->st.seek = (void *) buf_seek; s->st.tell = (void *) buf_tell; s->st.trunc = (void *) buf_truncate; s->st.close = (void *) buf_close; s->st.flush = (void *) buf_flush; s->buffer = get_mem (BUFFER_SIZE); return 0; } /********************************************************************* memory stream functions - These are used for internal files The idea here is that a single stream structure is created and all requests must be satisfied from it. The location and size of the buffer is the character variable supplied to the READ or WRITE statement. *********************************************************************/ char * mem_alloc_r (stream * strm, int * len) { unix_stream * s = (unix_stream *) strm; gfc_offset n; gfc_offset where = s->logical_offset; if (where < s->buffer_offset || where > s->buffer_offset + s->active) return NULL; n = s->buffer_offset + s->active - where; if (*len > n) *len = n; s->logical_offset = where + *len; return s->buffer + (where - s->buffer_offset); } char * mem_alloc_r4 (stream * strm, int * len) { unix_stream * s = (unix_stream *) strm; gfc_offset n; gfc_offset where = s->logical_offset; if (where < s->buffer_offset || where > s->buffer_offset + s->active) return NULL; n = s->buffer_offset + s->active - where; if (*len > n) *len = n; s->logical_offset = where + *len; return s->buffer + (where - s->buffer_offset) * 4; } char * mem_alloc_w (stream * strm, int * len) { unix_stream * s = (unix_stream *) strm; gfc_offset m; gfc_offset where = s->logical_offset; m = where + *len; if (where < s->buffer_offset) return NULL; if (m > s->file_length) return NULL; s->logical_offset = m; return s->buffer + (where - s->buffer_offset); } gfc_char4_t * mem_alloc_w4 (stream * strm, int * len) { unix_stream * s = (unix_stream *) strm; gfc_offset m; gfc_offset where = s->logical_offset; gfc_char4_t *result = (gfc_char4_t *) s->buffer; m = where + *len; if (where < s->buffer_offset) return NULL; if (m > s->file_length) return NULL; s->logical_offset = m; return &result[where - s->buffer_offset]; } /* Stream read function for character(kine=1) internal units. */ static ssize_t mem_read (stream * s, void * buf, ssize_t nbytes) { void *p; int nb = nbytes; p = mem_alloc_r (s, &nb); if (p) { memcpy (buf, p, nb); return (ssize_t) nb; } else return 0; } /* Stream read function for chracter(kind=4) internal units. */ static ssize_t mem_read4 (stream * s, void * buf, ssize_t nbytes) { void *p; int nb = nbytes; p = mem_alloc_r (s, &nb); if (p) { memcpy (buf, p, nb); return (ssize_t) nb; } else return 0; } /* Stream write function for character(kind=1) internal units. */ static ssize_t mem_write (stream * s, const void * buf, ssize_t nbytes) { void *p; int nb = nbytes; p = mem_alloc_w (s, &nb); if (p) { memcpy (p, buf, nb); return (ssize_t) nb; } else return 0; } /* Stream write function for character(kind=4) internal units. */ static ssize_t mem_write4 (stream * s, const void * buf, ssize_t nwords) { gfc_char4_t *p; int nw = nwords; p = mem_alloc_w4 (s, &nw); if (p) { while (nw--) *p++ = (gfc_char4_t) *((char *) buf); return nwords; } else return 0; } static gfc_offset mem_seek (stream * strm, gfc_offset offset, int whence) { unix_stream * s = (unix_stream *) strm; switch (whence) { case SEEK_SET: break; case SEEK_CUR: offset += s->logical_offset; break; case SEEK_END: offset += s->file_length; break; default: return -1; } /* Note that for internal array I/O it's actually possible to have a negative offset, so don't check for that. */ if (offset > s->file_length) { errno = EINVAL; return -1; } s->logical_offset = offset; /* Returning < 0 is the error indicator for sseek(), so return 0 if offset is negative. Thus if the return value is 0, the caller has to use stell() to get the real value of logical_offset. */ if (offset >= 0) return offset; return 0; } static gfc_offset mem_tell (stream * s) { return ((unix_stream *)s)->logical_offset; } static int mem_truncate (unix_stream * s __attribute__ ((unused)), gfc_offset length __attribute__ ((unused))) { return 0; } static int mem_flush (unix_stream * s __attribute__ ((unused))) { return 0; } static int mem_close (unix_stream * s) { if (s != NULL) free (s); return 0; } /********************************************************************* Public functions -- A reimplementation of this module needs to define functional equivalents of the following. *********************************************************************/ /* empty_internal_buffer()-- Zero the buffer of Internal file */ void empty_internal_buffer(stream *strm) { unix_stream * s = (unix_stream *) strm; memset(s->buffer, ' ', s->file_length); } /* open_internal()-- Returns a stream structure from a character(kind=1) internal file */ stream * open_internal (char *base, int length, gfc_offset offset) { unix_stream *s; s = get_mem (sizeof (unix_stream)); memset (s, '\0', sizeof (unix_stream)); s->buffer = base; s->buffer_offset = offset; s->logical_offset = 0; s->active = s->file_length = length; s->st.close = (void *) mem_close; s->st.seek = (void *) mem_seek; s->st.tell = (void *) mem_tell; s->st.trunc = (void *) mem_truncate; s->st.read = (void *) mem_read; s->st.write = (void *) mem_write; s->st.flush = (void *) mem_flush; return (stream *) s; } /* open_internal4()-- Returns a stream structure from a character(kind=4) internal file */ stream * open_internal4 (char *base, int length, gfc_offset offset) { unix_stream *s; s = get_mem (sizeof (unix_stream)); memset (s, '\0', sizeof (unix_stream)); s->buffer = base; s->buffer_offset = offset; s->logical_offset = 0; s->active = s->file_length = length; s->st.close = (void *) mem_close; s->st.seek = (void *) mem_seek; s->st.tell = (void *) mem_tell; s->st.trunc = (void *) mem_truncate; s->st.read = (void *) mem_read4; s->st.write = (void *) mem_write4; s->st.flush = (void *) mem_flush; return (stream *) s; } /* fd_to_stream()-- Given an open file descriptor, build a stream * around it. */ static stream * fd_to_stream (int fd, int prot) { gfstat_t statbuf; unix_stream *s; s = get_mem (sizeof (unix_stream)); memset (s, '\0', sizeof (unix_stream)); s->fd = fd; s->buffer_offset = 0; s->physical_offset = 0; s->logical_offset = 0; s->prot = prot; /* Get the current length of the file. */ fstat (fd, &statbuf); if (lseek (fd, 0, SEEK_CUR) == (gfc_offset) -1) s->file_length = -1; else s->file_length = S_ISREG (statbuf.st_mode) ? statbuf.st_size : -1; s->special_file = !S_ISREG (statbuf.st_mode); if (isatty (s->fd) || options.all_unbuffered ||(options.unbuffered_preconnected && (s->fd == STDIN_FILENO || s->fd == STDOUT_FILENO || s->fd == STDERR_FILENO))) raw_init (s); else buf_init (s); return (stream *) s; } /* Given the Fortran unit number, convert it to a C file descriptor. */ int unit_to_fd (int unit) { gfc_unit *us; int fd; us = find_unit (unit); if (us == NULL) return -1; fd = ((unix_stream *) us->s)->fd; unlock_unit (us); return fd; } /* unpack_filename()-- Given a fortran string and a pointer to a * buffer that is PATH_MAX characters, convert the fortran string to a * C string in the buffer. Returns nonzero if this is not possible. */ int unpack_filename (char *cstring, const char *fstring, int len) { len = fstrlen (fstring, len); if (len >= PATH_MAX) return 1; memmove (cstring, fstring, len); cstring[len] = '\0'; return 0; } /* tempfile()-- Generate a temporary filename for a scratch file and * open it. mkstemp() opens the file for reading and writing, but the * library mode prevents anything that is not allowed. The descriptor * is returned, which is -1 on error. The template is pointed to by * opp->file, which is copied into the unit structure * and freed later. */ static int tempfile (st_parameter_open *opp) { const char *tempdir; char *template; const char *slash = "/"; int fd; tempdir = getenv ("GFORTRAN_TMPDIR"); #ifdef __MINGW32__ if (tempdir == NULL) { char buffer[MAX_PATH + 1]; DWORD ret; ret = GetTempPath (MAX_PATH, buffer); /* If we are not able to get a temp-directory, we use current directory. */ if (ret > MAX_PATH || !ret) buffer[0] = 0; else buffer[ret] = 0; tempdir = strdup (buffer); } #else if (tempdir == NULL) tempdir = getenv ("TMP"); if (tempdir == NULL) tempdir = getenv ("TEMP"); if (tempdir == NULL) tempdir = DEFAULT_TEMPDIR; #endif /* Check for special case that tempdir contains slash or backslash at end. */ if (*tempdir == 0 || tempdir[strlen (tempdir) - 1] == '/' #ifdef __MINGW32__ || tempdir[strlen (tempdir) - 1] == '\\' #endif ) slash = ""; template = get_mem (strlen (tempdir) + 20); #ifdef HAVE_MKSTEMP sprintf (template, "%s%sgfortrantmpXXXXXX", tempdir, slash); fd = mkstemp (template); #else /* HAVE_MKSTEMP */ fd = -1; do { sprintf (template, "%s%sgfortrantmpXXXXXX", tempdir, slash); if (!mktemp (template)) break; #if defined(HAVE_CRLF) && defined(O_BINARY) fd = open (template, O_RDWR | O_CREAT | O_EXCL | O_BINARY, S_IREAD | S_IWRITE); #else fd = open (template, O_RDWR | O_CREAT | O_EXCL, S_IREAD | S_IWRITE); #endif } while (fd == -1 && errno == EEXIST); #endif /* HAVE_MKSTEMP */ if (fd < 0) free (template); else { opp->file = template; opp->file_len = strlen (template); /* Don't include trailing nul */ } return fd; } /* regular_file()-- Open a regular file. * Change flags->action if it is ACTION_UNSPECIFIED on entry, * unless an error occurs. * Returns the descriptor, which is less than zero on error. */ static int regular_file (st_parameter_open *opp, unit_flags *flags) { char path[PATH_MAX + 1]; int mode; int rwflag; int crflag; int fd; if (unpack_filename (path, opp->file, opp->file_len)) { errno = ENOENT; /* Fake an OS error */ return -1; } #ifdef __CYGWIN__ if (opp->file_len == 7) { if (strncmp (path, "CONOUT$", 7) == 0 || strncmp (path, "CONERR$", 7) == 0) { fd = open ("/dev/conout", O_WRONLY); flags->action = ACTION_WRITE; return fd; } } if (opp->file_len == 6 && strncmp (path, "CONIN$", 6) == 0) { fd = open ("/dev/conin", O_RDONLY); flags->action = ACTION_READ; return fd; } #endif #ifdef __MINGW32__ if (opp->file_len == 7) { if (strncmp (path, "CONOUT$", 7) == 0 || strncmp (path, "CONERR$", 7) == 0) { fd = open ("CONOUT$", O_WRONLY); flags->action = ACTION_WRITE; return fd; } } if (opp->file_len == 6 && strncmp (path, "CONIN$", 6) == 0) { fd = open ("CONIN$", O_RDONLY); flags->action = ACTION_READ; return fd; } #endif rwflag = 0; switch (flags->action) { case ACTION_READ: rwflag = O_RDONLY; break; case ACTION_WRITE: rwflag = O_WRONLY; break; case ACTION_READWRITE: case ACTION_UNSPECIFIED: rwflag = O_RDWR; break; default: internal_error (&opp->common, "regular_file(): Bad action"); } switch (flags->status) { case STATUS_NEW: crflag = O_CREAT | O_EXCL; break; case STATUS_OLD: /* open will fail if the file does not exist*/ crflag = 0; break; case STATUS_UNKNOWN: case STATUS_SCRATCH: crflag = O_CREAT; break; case STATUS_REPLACE: crflag = O_CREAT | O_TRUNC; break; default: internal_error (&opp->common, "regular_file(): Bad status"); } /* rwflag |= O_LARGEFILE; */ #if defined(HAVE_CRLF) && defined(O_BINARY) crflag |= O_BINARY; #endif mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH; fd = open (path, rwflag | crflag, mode); if (flags->action != ACTION_UNSPECIFIED) return fd; if (fd >= 0) { flags->action = ACTION_READWRITE; return fd; } if (errno != EACCES && errno != EROFS) return fd; /* retry for read-only access */ rwflag = O_RDONLY; fd = open (path, rwflag | crflag, mode); if (fd >=0) { flags->action = ACTION_READ; return fd; /* success */ } if (errno != EACCES) return fd; /* failure */ /* retry for write-only access */ rwflag = O_WRONLY; fd = open (path, rwflag | crflag, mode); if (fd >=0) { flags->action = ACTION_WRITE; return fd; /* success */ } return fd; /* failure */ } /* open_external()-- Open an external file, unix specific version. * Change flags->action if it is ACTION_UNSPECIFIED on entry. * Returns NULL on operating system error. */ stream * open_external (st_parameter_open *opp, unit_flags *flags) { int fd, prot; if (flags->status == STATUS_SCRATCH) { fd = tempfile (opp); if (flags->action == ACTION_UNSPECIFIED) flags->action = ACTION_READWRITE; #if HAVE_UNLINK_OPEN_FILE /* We can unlink scratch files now and it will go away when closed. */ if (fd >= 0) unlink (opp->file); #endif } else { /* regular_file resets flags->action if it is ACTION_UNSPECIFIED and * if it succeeds */ fd = regular_file (opp, flags); } if (fd < 0) return NULL; fd = fix_fd (fd); switch (flags->action) { case ACTION_READ: prot = PROT_READ; break; case ACTION_WRITE: prot = PROT_WRITE; break; case ACTION_READWRITE: prot = PROT_READ | PROT_WRITE; break; default: internal_error (&opp->common, "open_external(): Bad action"); } return fd_to_stream (fd, prot); } /* input_stream()-- Return a stream pointer to the default input stream. * Called on initialization. */ stream * input_stream (void) { return fd_to_stream (STDIN_FILENO, PROT_READ); } /* output_stream()-- Return a stream pointer to the default output stream. * Called on initialization. */ stream * output_stream (void) { stream * s; #if defined(HAVE_CRLF) && defined(HAVE_SETMODE) setmode (STDOUT_FILENO, O_BINARY); #endif s = fd_to_stream (STDOUT_FILENO, PROT_WRITE); return s; } /* error_stream()-- Return a stream pointer to the default error stream. * Called on initialization. */ stream * error_stream (void) { stream * s; #if defined(HAVE_CRLF) && defined(HAVE_SETMODE) setmode (STDERR_FILENO, O_BINARY); #endif s = fd_to_stream (STDERR_FILENO, PROT_WRITE); return s; } /* st_vprintf()-- vprintf function for error output. To avoid buffer overruns, we limit the length of the buffer to ST_VPRINTF_SIZE. 2k is big enough to completely fill a 80x25 terminal, so it shuld be OK. We use a direct write() because it is simpler and least likely to be clobbered by memory corruption. Writing an error message longer than that is an error. */ #define ST_VPRINTF_SIZE 2048 int st_vprintf (const char *format, va_list ap) { static char buffer[ST_VPRINTF_SIZE]; int written; int fd; fd = options.use_stderr ? STDERR_FILENO : STDOUT_FILENO; #ifdef HAVE_VSNPRINTF written = vsnprintf(buffer, ST_VPRINTF_SIZE, format, ap); #else written = vsprintf(buffer, format, ap); if (written >= ST_VPRINTF_SIZE-1) { /* The error message was longer than our buffer. Ouch. Because we may have messed up things badly, report the error and quit. */ #define ERROR_MESSAGE "Internal error: buffer overrun in st_vprintf()\n" write (fd, buffer, ST_VPRINTF_SIZE-1); write (fd, ERROR_MESSAGE, strlen(ERROR_MESSAGE)); sys_exit(2); #undef ERROR_MESSAGE } #endif written = write (fd, buffer, written); return written; } /* st_printf()-- printf() function for error output. This just calls st_vprintf() to do the actual work. */ int st_printf (const char *format, ...) { int written; va_list ap; va_start (ap, format); written = st_vprintf(format, ap); va_end (ap); return written; } /* compare_file_filename()-- Given an open stream and a fortran string * that is a filename, figure out if the file is the same as the * filename. */ int compare_file_filename (gfc_unit *u, const char *name, int len) { char path[PATH_MAX + 1]; gfstat_t st1; #ifdef HAVE_WORKING_STAT gfstat_t st2; #else # ifdef __MINGW32__ uint64_t id1, id2; # endif #endif if (unpack_filename (path, name, len)) return 0; /* Can't be the same */ /* If the filename doesn't exist, then there is no match with the * existing file. */ if (stat (path, &st1) < 0) return 0; #ifdef HAVE_WORKING_STAT fstat (((unix_stream *) (u->s))->fd, &st2); return (st1.st_dev == st2.st_dev) && (st1.st_ino == st2.st_ino); #else # ifdef __MINGW32__ /* We try to match files by a unique ID. On some filesystems (network fs and FAT), we can't generate this unique ID, and will simply compare filenames. */ id1 = id_from_path (path); id2 = id_from_fd (((unix_stream *) (u->s))->fd); if (id1 || id2) return (id1 == id2); # endif if (len != u->file_len) return 0; return (memcmp(path, u->file, len) == 0); #endif } #ifdef HAVE_WORKING_STAT # define FIND_FILE0_DECL gfstat_t *st # define FIND_FILE0_ARGS st #else # define FIND_FILE0_DECL uint64_t id, const char *file, gfc_charlen_type file_len # define FIND_FILE0_ARGS id, file, file_len #endif /* find_file0()-- Recursive work function for find_file() */ static gfc_unit * find_file0 (gfc_unit *u, FIND_FILE0_DECL) { gfc_unit *v; #if defined(__MINGW32__) && !HAVE_WORKING_STAT uint64_t id1; #endif if (u == NULL) return NULL; #ifdef HAVE_WORKING_STAT if (u->s != NULL && fstat (((unix_stream *) u->s)->fd, &st[1]) >= 0 && st[0].st_dev == st[1].st_dev && st[0].st_ino == st[1].st_ino) return u; #else # ifdef __MINGW32__ if (u->s && ((id1 = id_from_fd (((unix_stream *) u->s)->fd)) || id1)) { if (id == id1) return u; } else # endif if (compare_string (u->file_len, u->file, file_len, file) == 0) return u; #endif v = find_file0 (u->left, FIND_FILE0_ARGS); if (v != NULL) return v; v = find_file0 (u->right, FIND_FILE0_ARGS); if (v != NULL) return v; return NULL; } /* find_file()-- Take the current filename and see if there is a unit * that has the file already open. Returns a pointer to the unit if so. */ gfc_unit * find_file (const char *file, gfc_charlen_type file_len) { char path[PATH_MAX + 1]; gfstat_t st[2]; gfc_unit *u; #if defined(__MINGW32__) && !HAVE_WORKING_STAT uint64_t id = 0ULL; #endif if (unpack_filename (path, file, file_len)) return NULL; if (stat (path, &st[0]) < 0) return NULL; #if defined(__MINGW32__) && !HAVE_WORKING_STAT id = id_from_path (path); #endif __gthread_mutex_lock (&unit_lock); retry: u = find_file0 (unit_root, FIND_FILE0_ARGS); if (u != NULL) { /* Fast path. */ if (! __gthread_mutex_trylock (&u->lock)) { /* assert (u->closed == 0); */ __gthread_mutex_unlock (&unit_lock); return u; } inc_waiting_locked (u); } __gthread_mutex_unlock (&unit_lock); if (u != NULL) { __gthread_mutex_lock (&u->lock); if (u->closed) { __gthread_mutex_lock (&unit_lock); __gthread_mutex_unlock (&u->lock); if (predec_waiting_locked (u) == 0) free (u); goto retry; } dec_waiting_unlocked (u); } return u; } static gfc_unit * flush_all_units_1 (gfc_unit *u, int min_unit) { while (u != NULL) { if (u->unit_number > min_unit) { gfc_unit *r = flush_all_units_1 (u->left, min_unit); if (r != NULL) return r; } if (u->unit_number >= min_unit) { if (__gthread_mutex_trylock (&u->lock)) return u; if (u->s) sflush (u->s); __gthread_mutex_unlock (&u->lock); } u = u->right; } return NULL; } void flush_all_units (void) { gfc_unit *u; int min_unit = 0; __gthread_mutex_lock (&unit_lock); do { u = flush_all_units_1 (unit_root, min_unit); if (u != NULL) inc_waiting_locked (u); __gthread_mutex_unlock (&unit_lock); if (u == NULL) return; __gthread_mutex_lock (&u->lock); min_unit = u->unit_number + 1; if (u->closed == 0) { sflush (u->s); __gthread_mutex_lock (&unit_lock); __gthread_mutex_unlock (&u->lock); (void) predec_waiting_locked (u); } else { __gthread_mutex_lock (&unit_lock); __gthread_mutex_unlock (&u->lock); if (predec_waiting_locked (u) == 0) free (u); } } while (1); } /* delete_file()-- Given a unit structure, delete the file associated * with the unit. Returns nonzero if something went wrong. */ int delete_file (gfc_unit * u) { char path[PATH_MAX + 1]; if (unpack_filename (path, u->file, u->file_len)) { /* Shouldn't be possible */ errno = ENOENT; return 1; } return unlink (path); } /* file_exists()-- Returns nonzero if the current filename exists on * the system */ int file_exists (const char *file, gfc_charlen_type file_len) { char path[PATH_MAX + 1]; if (unpack_filename (path, file, file_len)) return 0; return !(access (path, F_OK)); } /* file_size()-- Returns the size of the file. */ GFC_IO_INT file_size (const char *file, gfc_charlen_type file_len) { char path[PATH_MAX + 1]; gfstat_t statbuf; if (unpack_filename (path, file, file_len)) return -1; if (stat (path, &statbuf) < 0) return -1; return (GFC_IO_INT) statbuf.st_size; } static const char yes[] = "YES", no[] = "NO", unknown[] = "UNKNOWN"; /* inquire_sequential()-- Given a fortran string, determine if the * file is suitable for sequential access. Returns a C-style * string. */ const char * inquire_sequential (const char *string, int len) { char path[PATH_MAX + 1]; gfstat_t statbuf; if (string == NULL || unpack_filename (path, string, len) || stat (path, &statbuf) < 0) return unknown; if (S_ISREG (statbuf.st_mode) || S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode)) return unknown; if (S_ISDIR (statbuf.st_mode) || S_ISBLK (statbuf.st_mode)) return no; return unknown; } /* inquire_direct()-- Given a fortran string, determine if the file is * suitable for direct access. Returns a C-style string. */ const char * inquire_direct (const char *string, int len) { char path[PATH_MAX + 1]; gfstat_t statbuf; if (string == NULL || unpack_filename (path, string, len) || stat (path, &statbuf) < 0) return unknown; if (S_ISREG (statbuf.st_mode) || S_ISBLK (statbuf.st_mode)) return unknown; if (S_ISDIR (statbuf.st_mode) || S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode)) return no; return unknown; } /* inquire_formatted()-- Given a fortran string, determine if the file * is suitable for formatted form. Returns a C-style string. */ const char * inquire_formatted (const char *string, int len) { char path[PATH_MAX + 1]; gfstat_t statbuf; if (string == NULL || unpack_filename (path, string, len) || stat (path, &statbuf) < 0) return unknown; if (S_ISREG (statbuf.st_mode) || S_ISBLK (statbuf.st_mode) || S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode)) return unknown; if (S_ISDIR (statbuf.st_mode)) return no; return unknown; } /* inquire_unformatted()-- Given a fortran string, determine if the file * is suitable for unformatted form. Returns a C-style string. */ const char * inquire_unformatted (const char *string, int len) { return inquire_formatted (string, len); } /* inquire_access()-- Given a fortran string, determine if the file is * suitable for access. */ static const char * inquire_access (const char *string, int len, int mode) { char path[PATH_MAX + 1]; if (string == NULL || unpack_filename (path, string, len) || access (path, mode) < 0) return no; return yes; } /* inquire_read()-- Given a fortran string, determine if the file is * suitable for READ access. */ const char * inquire_read (const char *string, int len) { return inquire_access (string, len, R_OK); } /* inquire_write()-- Given a fortran string, determine if the file is * suitable for READ access. */ const char * inquire_write (const char *string, int len) { return inquire_access (string, len, W_OK); } /* inquire_readwrite()-- Given a fortran string, determine if the file is * suitable for read and write access. */ const char * inquire_readwrite (const char *string, int len) { return inquire_access (string, len, R_OK | W_OK); } /* file_length()-- Return the file length in bytes, -1 if unknown */ gfc_offset file_length (stream * s) { gfc_offset curr, end; if (!is_seekable (s)) return -1; curr = stell (s); if (curr == -1) return curr; end = sseek (s, 0, SEEK_END); sseek (s, curr, SEEK_SET); return end; } /* is_seekable()-- Return nonzero if the stream is seekable, zero if * it is not */ int is_seekable (stream *s) { /* By convention, if file_length == -1, the file is not seekable. */ return ((unix_stream *) s)->file_length!=-1; } /* is_special()-- Return nonzero if the stream is not a regular file. */ int is_special (stream *s) { return ((unix_stream *) s)->special_file; } int stream_isatty (stream *s) { return isatty (((unix_stream *) s)->fd); } char * stream_ttyname (stream *s __attribute__ ((unused))) { #ifdef HAVE_TTYNAME return ttyname (((unix_stream *) s)->fd); #else return NULL; #endif } /* How files are stored: This is an operating-system specific issue, and therefore belongs here. There are three cases to consider. Direct Access: Records are written as block of bytes corresponding to the record length of the file. This goes for both formatted and unformatted records. Positioning is done explicitly for each data transfer, so positioning is not much of an issue. Sequential Formatted: Records are separated by newline characters. The newline character is prohibited from appearing in a string. If it does, this will be messed up on the next read. End of file is also the end of a record. Sequential Unformatted: In this case, we are merely copying bytes to and from main storage, yet we need to keep track of varying record lengths. We adopt the solution used by f2c. Each record contains a pair of length markers: Length of record n in bytes Data of record n Length of record n in bytes Length of record n+1 in bytes Data of record n+1 Length of record n+1 in bytes The length is stored at the end of a record to allow backspacing to the previous record. Between data transfer statements, the file pointer is left pointing to the first length of the current record. ENDFILE records are never explicitly stored. */