/* -*- Mode: Asm -*- */ /* Copyright (C) 1998-2016 Free Software Foundation, Inc. Contributed by Denis Chertykov This file is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #if defined (__AVR_TINY__) #define __zero_reg__ r17 #define __tmp_reg__ r16 #else #define __zero_reg__ r1 #define __tmp_reg__ r0 #endif #define __SREG__ 0x3f #if defined (__AVR_HAVE_SPH__) #define __SP_H__ 0x3e #endif #define __SP_L__ 0x3d #define __RAMPZ__ 0x3B #define __EIND__ 0x3C /* Most of the functions here are called directly from avr.md patterns, instead of using the standard libcall mechanisms. This can make better code because GCC knows exactly which of the call-used registers (not all of them) are clobbered. */ /* FIXME: At present, there is no SORT directive in the linker script so that we must not assume that different modules in the same input section like .libgcc.text.mul will be located close together. Therefore, we cannot use RCALL/RJMP to call a function like __udivmodhi4 from __divmodhi4 and have to use lengthy XCALL/XJMP even though they are in the same input section and all same input sections together are small enough to reach every location with a RCALL/RJMP instruction. */ #if defined (__AVR_HAVE_EIJMP_EICALL__) && !defined (__AVR_HAVE_ELPMX__) #error device not supported #endif .macro mov_l r_dest, r_src #if defined (__AVR_HAVE_MOVW__) movw \r_dest, \r_src #else mov \r_dest, \r_src #endif .endm .macro mov_h r_dest, r_src #if defined (__AVR_HAVE_MOVW__) ; empty #else mov \r_dest, \r_src #endif .endm .macro wmov r_dest, r_src #if defined (__AVR_HAVE_MOVW__) movw \r_dest, \r_src #else mov \r_dest, \r_src mov \r_dest+1, \r_src+1 #endif .endm #if defined (__AVR_HAVE_JMP_CALL__) #define XCALL call #define XJMP jmp #else #define XCALL rcall #define XJMP rjmp #endif #if defined (__AVR_HAVE_EIJMP_EICALL__) #define XICALL eicall #define XIJMP eijmp #else #define XICALL icall #define XIJMP ijmp #endif ;; Prologue stuff .macro do_prologue_saves n_pushed n_frame=0 ldi r26, lo8(\n_frame) ldi r27, hi8(\n_frame) ldi r30, lo8(gs(.L_prologue_saves.\@)) ldi r31, hi8(gs(.L_prologue_saves.\@)) XJMP __prologue_saves__ + ((18 - (\n_pushed)) * 2) .L_prologue_saves.\@: .endm ;; Epilogue stuff .macro do_epilogue_restores n_pushed n_frame=0 in r28, __SP_L__ #ifdef __AVR_HAVE_SPH__ in r29, __SP_H__ .if \n_frame > 63 subi r28, lo8(-\n_frame) sbci r29, hi8(-\n_frame) .elseif \n_frame > 0 adiw r28, \n_frame .endif #else clr r29 .if \n_frame > 0 subi r28, lo8(-\n_frame) .endif #endif /* HAVE SPH */ ldi r30, \n_pushed XJMP __epilogue_restores__ + ((18 - (\n_pushed)) * 2) .endm ;; Support function entry and exit for convenience .macro wsubi r_arg1, i_arg2 #if defined (__AVR_TINY__) subi \r_arg1, lo8(\i_arg2) sbci \r_arg1+1, hi8(\i_arg2) #else sbiw \r_arg1, \i_arg2 #endif .endm .macro waddi r_arg1, i_arg2 #if defined (__AVR_TINY__) subi \r_arg1, lo8(-\i_arg2) sbci \r_arg1+1, hi8(-\i_arg2) #else adiw \r_arg1, \i_arg2 #endif .endm .macro DEFUN name .global \name .func \name \name: .endm .macro ENDF name .size \name, .-\name .endfunc .endm .macro FALIAS name .global \name .func \name \name: .size \name, .-\name .endfunc .endm ;; Skip next instruction, typically a jump target #if defined(__AVR_TINY__) #define skip cpse 0,0 #else #define skip cpse 16,16 #endif ;; Negate a 2-byte value held in consecutive registers .macro NEG2 reg com \reg+1 neg \reg sbci \reg+1, -1 .endm ;; Negate a 4-byte value held in consecutive registers ;; Sets the V flag for signed overflow tests if REG >= 16 .macro NEG4 reg com \reg+3 com \reg+2 com \reg+1 .if \reg >= 16 neg \reg sbci \reg+1, -1 sbci \reg+2, -1 sbci \reg+3, -1 .else com \reg adc \reg, __zero_reg__ adc \reg+1, __zero_reg__ adc \reg+2, __zero_reg__ adc \reg+3, __zero_reg__ .endif .endm #define exp_lo(N) hlo8 ((N) << 23) #define exp_hi(N) hhi8 ((N) << 23) .section .text.libgcc.mul, "ax", @progbits ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; /* Note: mulqi3, mulhi3 are open-coded on the enhanced core. */ #if !defined (__AVR_HAVE_MUL__) /******************************************************* Multiplication 8 x 8 without MUL *******************************************************/ #if defined (L_mulqi3) #define r_arg2 r22 /* multiplicand */ #define r_arg1 r24 /* multiplier */ #define r_res __tmp_reg__ /* result */ DEFUN __mulqi3 clr r_res ; clear result __mulqi3_loop: sbrc r_arg1,0 add r_res,r_arg2 add r_arg2,r_arg2 ; shift multiplicand breq __mulqi3_exit ; while multiplicand != 0 lsr r_arg1 ; brne __mulqi3_loop ; exit if multiplier = 0 __mulqi3_exit: mov r_arg1,r_res ; result to return register ret ENDF __mulqi3 #undef r_arg2 #undef r_arg1 #undef r_res #endif /* defined (L_mulqi3) */ /******************************************************* Widening Multiplication 16 = 8 x 8 without MUL Multiplication 16 x 16 without MUL *******************************************************/ #define A0 22 #define A1 23 #define B0 24 #define BB0 20 #define B1 25 ;; Output overlaps input, thus expand result in CC0/1 #define C0 24 #define C1 25 #define CC0 __tmp_reg__ #define CC1 21 #if defined (L_umulqihi3) ;;; R25:R24 = (unsigned int) R22 * (unsigned int) R24 ;;; (C1:C0) = (unsigned int) A0 * (unsigned int) B0 ;;; Clobbers: __tmp_reg__, R21..R23 DEFUN __umulqihi3 clr A1 clr B1 XJMP __mulhi3 ENDF __umulqihi3 #endif /* L_umulqihi3 */ #if defined (L_mulqihi3) ;;; R25:R24 = (signed int) R22 * (signed int) R24 ;;; (C1:C0) = (signed int) A0 * (signed int) B0 ;;; Clobbers: __tmp_reg__, R20..R23 DEFUN __mulqihi3 ;; Sign-extend B0 clr B1 sbrc B0, 7 com B1 ;; The multiplication runs twice as fast if A1 is zero, thus: ;; Zero-extend A0 clr A1 #ifdef __AVR_HAVE_JMP_CALL__ ;; Store B0 * sign of A clr BB0 sbrc A0, 7 mov BB0, B0 call __mulhi3 #else /* have no CALL */ ;; Skip sign-extension of A if A >= 0 ;; Same size as with the first alternative but avoids errata skip ;; and is faster if A >= 0 sbrs A0, 7 rjmp __mulhi3 ;; If A < 0 store B mov BB0, B0 rcall __mulhi3 #endif /* HAVE_JMP_CALL */ ;; 1-extend A after the multiplication sub C1, BB0 ret ENDF __mulqihi3 #endif /* L_mulqihi3 */ #if defined (L_mulhi3) ;;; R25:R24 = R23:R22 * R25:R24 ;;; (C1:C0) = (A1:A0) * (B1:B0) ;;; Clobbers: __tmp_reg__, R21..R23 DEFUN __mulhi3 ;; Clear result clr CC0 clr CC1 rjmp 3f 1: ;; Bit n of A is 1 --> C += B << n add CC0, B0 adc CC1, B1 2: lsl B0 rol B1 3: ;; If B == 0 we are ready wsubi B0, 0 breq 9f ;; Carry = n-th bit of A lsr A1 ror A0 ;; If bit n of A is set, then go add B * 2^n to C brcs 1b ;; Carry = 0 --> The ROR above acts like CP A0, 0 ;; Thus, it is sufficient to CPC the high part to test A against 0 cpc A1, __zero_reg__ ;; Only proceed if A != 0 brne 2b 9: ;; Move Result into place mov C0, CC0 mov C1, CC1 ret ENDF __mulhi3 #endif /* L_mulhi3 */ #undef A0 #undef A1 #undef B0 #undef BB0 #undef B1 #undef C0 #undef C1 #undef CC0 #undef CC1 #define A0 22 #define A1 A0+1 #define A2 A0+2 #define A3 A0+3 #define B0 18 #define B1 B0+1 #define B2 B0+2 #define B3 B0+3 #define CC0 26 #define CC1 CC0+1 #define CC2 30 #define CC3 CC2+1 #define C0 22 #define C1 C0+1 #define C2 C0+2 #define C3 C0+3 /******************************************************* Widening Multiplication 32 = 16 x 16 without MUL *******************************************************/ #if defined (L_umulhisi3) DEFUN __umulhisi3 wmov B0, 24 ;; Zero-extend B clr B2 clr B3 ;; Zero-extend A wmov A2, B2 XJMP __mulsi3 ENDF __umulhisi3 #endif /* L_umulhisi3 */ #if defined (L_mulhisi3) DEFUN __mulhisi3 wmov B0, 24 ;; Sign-extend B lsl r25 sbc B2, B2 mov B3, B2 #ifdef __AVR_ERRATA_SKIP_JMP_CALL__ ;; Sign-extend A clr A2 sbrc A1, 7 com A2 mov A3, A2 XJMP __mulsi3 #else /* no __AVR_ERRATA_SKIP_JMP_CALL__ */ ;; Zero-extend A and __mulsi3 will run at least twice as fast ;; compared to a sign-extended A. clr A2 clr A3 sbrs A1, 7 XJMP __mulsi3 ;; If A < 0 then perform the B * 0xffff.... before the ;; very multiplication by initializing the high part of the ;; result CC with -B. wmov CC2, A2 sub CC2, B0 sbc CC3, B1 XJMP __mulsi3_helper #endif /* __AVR_ERRATA_SKIP_JMP_CALL__ */ ENDF __mulhisi3 #endif /* L_mulhisi3 */ /******************************************************* Multiplication 32 x 32 without MUL *******************************************************/ #if defined (L_mulsi3) DEFUN __mulsi3 #if defined (__AVR_TINY__) in r26, __SP_L__ ; safe to use X, as it is CC0/CC1 in r27, __SP_H__ subi r26, lo8(-3) ; Add 3 to point past return address sbci r27, hi8(-3) push B0 ; save callee saved regs push B1 ld B0, X+ ; load from caller stack ld B1, X+ ld B2, X+ ld B3, X #endif ;; Clear result clr CC2 clr CC3 ;; FALLTHRU ENDF __mulsi3 DEFUN __mulsi3_helper clr CC0 clr CC1 rjmp 3f 1: ;; If bit n of A is set, then add B * 2^n to the result in CC ;; CC += B add CC0,B0 $ adc CC1,B1 $ adc CC2,B2 $ adc CC3,B3 2: ;; B <<= 1 lsl B0 $ rol B1 $ rol B2 $ rol B3 3: ;; A >>= 1: Carry = n-th bit of A lsr A3 $ ror A2 $ ror A1 $ ror A0 brcs 1b ;; Only continue if A != 0 sbci A1, 0 brne 2b wsubi A2, 0 brne 2b ;; All bits of A are consumed: Copy result to return register C wmov C0, CC0 wmov C2, CC2 #if defined (__AVR_TINY__) pop B1 ; restore callee saved regs pop B0 #endif /* defined (__AVR_TINY__) */ ret ENDF __mulsi3_helper #endif /* L_mulsi3 */ #undef A0 #undef A1 #undef A2 #undef A3 #undef B0 #undef B1 #undef B2 #undef B3 #undef C0 #undef C1 #undef C2 #undef C3 #undef CC0 #undef CC1 #undef CC2 #undef CC3 #endif /* !defined (__AVR_HAVE_MUL__) */ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; #if defined (__AVR_HAVE_MUL__) #define A0 26 #define B0 18 #define C0 22 #define A1 A0+1 #define B1 B0+1 #define B2 B0+2 #define B3 B0+3 #define C1 C0+1 #define C2 C0+2 #define C3 C0+3 /******************************************************* Widening Multiplication 32 = 16 x 16 with MUL *******************************************************/ #if defined (L_mulhisi3) ;;; R25:R22 = (signed long) R27:R26 * (signed long) R19:R18 ;;; C3:C0 = (signed long) A1:A0 * (signed long) B1:B0 ;;; Clobbers: __tmp_reg__ DEFUN __mulhisi3 XCALL __umulhisi3 ;; Sign-extend B tst B1 brpl 1f sub C2, A0 sbc C3, A1 1: ;; Sign-extend A XJMP __usmulhisi3_tail ENDF __mulhisi3 #endif /* L_mulhisi3 */ #if defined (L_usmulhisi3) ;;; R25:R22 = (signed long) R27:R26 * (unsigned long) R19:R18 ;;; C3:C0 = (signed long) A1:A0 * (unsigned long) B1:B0 ;;; Clobbers: __tmp_reg__ DEFUN __usmulhisi3 XCALL __umulhisi3 ;; FALLTHRU ENDF __usmulhisi3 DEFUN __usmulhisi3_tail ;; Sign-extend A sbrs A1, 7 ret sub C2, B0 sbc C3, B1 ret ENDF __usmulhisi3_tail #endif /* L_usmulhisi3 */ #if defined (L_umulhisi3) ;;; R25:R22 = (unsigned long) R27:R26 * (unsigned long) R19:R18 ;;; C3:C0 = (unsigned long) A1:A0 * (unsigned long) B1:B0 ;;; Clobbers: __tmp_reg__ DEFUN __umulhisi3 mul A0, B0 movw C0, r0 mul A1, B1 movw C2, r0 mul A0, B1 #ifdef __AVR_HAVE_JMP_CALL__ ;; This function is used by many other routines, often multiple times. ;; Therefore, if the flash size is not too limited, avoid the RCALL ;; and inverst 6 Bytes to speed things up. add C1, r0 adc C2, r1 clr __zero_reg__ adc C3, __zero_reg__ #else rcall 1f #endif mul A1, B0 1: add C1, r0 adc C2, r1 clr __zero_reg__ adc C3, __zero_reg__ ret ENDF __umulhisi3 #endif /* L_umulhisi3 */ /******************************************************* Widening Multiplication 32 = 16 x 32 with MUL *******************************************************/ #if defined (L_mulshisi3) ;;; R25:R22 = (signed long) R27:R26 * R21:R18 ;;; (C3:C0) = (signed long) A1:A0 * B3:B0 ;;; Clobbers: __tmp_reg__ DEFUN __mulshisi3 #ifdef __AVR_ERRATA_SKIP_JMP_CALL__ ;; Some cores have problem skipping 2-word instruction tst A1 brmi __mulohisi3 #else sbrs A1, 7 #endif /* __AVR_HAVE_JMP_CALL__ */ XJMP __muluhisi3 ;; FALLTHRU ENDF __mulshisi3 ;;; R25:R22 = (one-extended long) R27:R26 * R21:R18 ;;; (C3:C0) = (one-extended long) A1:A0 * B3:B0 ;;; Clobbers: __tmp_reg__ DEFUN __mulohisi3 XCALL __muluhisi3 ;; One-extend R27:R26 (A1:A0) sub C2, B0 sbc C3, B1 ret ENDF __mulohisi3 #endif /* L_mulshisi3 */ #if defined (L_muluhisi3) ;;; R25:R22 = (unsigned long) R27:R26 * R21:R18 ;;; (C3:C0) = (unsigned long) A1:A0 * B3:B0 ;;; Clobbers: __tmp_reg__ DEFUN __muluhisi3 XCALL __umulhisi3 mul A0, B3 add C3, r0 mul A1, B2 add C3, r0 mul A0, B2 add C2, r0 adc C3, r1 clr __zero_reg__ ret ENDF __muluhisi3 #endif /* L_muluhisi3 */ /******************************************************* Multiplication 32 x 32 with MUL *******************************************************/ #if defined (L_mulsi3) ;;; R25:R22 = R25:R22 * R21:R18 ;;; (C3:C0) = C3:C0 * B3:B0 ;;; Clobbers: R26, R27, __tmp_reg__ DEFUN __mulsi3 movw A0, C0 push C2 push C3 XCALL __muluhisi3 pop A1 pop A0 ;; A1:A0 now contains the high word of A mul A0, B0 add C2, r0 adc C3, r1 mul A0, B1 add C3, r0 mul A1, B0 add C3, r0 clr __zero_reg__ ret ENDF __mulsi3 #endif /* L_mulsi3 */ #undef A0 #undef A1 #undef B0 #undef B1 #undef B2 #undef B3 #undef C0 #undef C1 #undef C2 #undef C3 #endif /* __AVR_HAVE_MUL__ */ /******************************************************* Multiplication 24 x 24 with MUL *******************************************************/ #if defined (L_mulpsi3) ;; A[0..2]: In: Multiplicand; Out: Product #define A0 22 #define A1 A0+1 #define A2 A0+2 ;; B[0..2]: In: Multiplier #define B0 18 #define B1 B0+1 #define B2 B0+2 #if defined (__AVR_HAVE_MUL__) ;; C[0..2]: Expand Result #define C0 22 #define C1 C0+1 #define C2 C0+2 ;; R24:R22 *= R20:R18 ;; Clobbers: r21, r25, r26, r27, __tmp_reg__ #define AA0 26 #define AA2 21 DEFUN __mulpsi3 wmov AA0, A0 mov AA2, A2 XCALL __umulhisi3 mul AA2, B0 $ add C2, r0 mul AA0, B2 $ add C2, r0 clr __zero_reg__ ret ENDF __mulpsi3 #undef AA2 #undef AA0 #undef C2 #undef C1 #undef C0 #else /* !HAVE_MUL */ ;; C[0..2]: Expand Result #if defined (__AVR_TINY__) #define C0 16 #else #define C0 0 #endif /* defined (__AVR_TINY__) */ #define C1 C0+1 #define C2 21 ;; R24:R22 *= R20:R18 ;; Clobbers: __tmp_reg__, R18, R19, R20, R21 DEFUN __mulpsi3 #if defined (__AVR_TINY__) in r26,__SP_L__ in r27,__SP_H__ subi r26, lo8(-3) ; Add 3 to point past return address sbci r27, hi8(-3) push B0 ; save callee saved regs push B1 ld B0,X+ ; load from caller stack ld B1,X+ ld B2,X+ #endif /* defined (__AVR_TINY__) */ ;; C[] = 0 clr __tmp_reg__ clr C2 0: ;; Shift N-th Bit of B[] into Carry. N = 24 - Loop LSR B2 $ ror B1 $ ror B0 ;; If the N-th Bit of B[] was set... brcc 1f ;; ...then add A[] * 2^N to the Result C[] ADD C0,A0 $ adc C1,A1 $ adc C2,A2 1: ;; Multiply A[] by 2 LSL A0 $ rol A1 $ rol A2 ;; Loop until B[] is 0 subi B0,0 $ sbci B1,0 $ sbci B2,0 brne 0b ;; Copy C[] to the return Register A[] wmov A0, C0 mov A2, C2 clr __zero_reg__ #if defined (__AVR_TINY__) pop B1 pop B0 #endif /* (__AVR_TINY__) */ ret ENDF __mulpsi3 #undef C2 #undef C1 #undef C0 #endif /* HAVE_MUL */ #undef B2 #undef B1 #undef B0 #undef A2 #undef A1 #undef A0 #endif /* L_mulpsi3 */ #if defined (L_mulsqipsi3) && defined (__AVR_HAVE_MUL__) ;; A[0..2]: In: Multiplicand #define A0 22 #define A1 A0+1 #define A2 A0+2 ;; BB: In: Multiplier #define BB 25 ;; C[0..2]: Result #define C0 18 #define C1 C0+1 #define C2 C0+2 ;; C[] = A[] * sign_extend (BB) DEFUN __mulsqipsi3 mul A0, BB movw C0, r0 mul A2, BB mov C2, r0 mul A1, BB add C1, r0 adc C2, r1 clr __zero_reg__ sbrs BB, 7 ret ;; One-extend BB sub C1, A0 sbc C2, A1 ret ENDF __mulsqipsi3 #undef C2 #undef C1 #undef C0 #undef BB #undef A2 #undef A1 #undef A0 #endif /* L_mulsqipsi3 && HAVE_MUL */ /******************************************************* Multiplication 64 x 64 *******************************************************/ ;; A[] = A[] * B[] ;; A[0..7]: In: Multiplicand ;; Out: Product #define A0 18 #define A1 A0+1 #define A2 A0+2 #define A3 A0+3 #define A4 A0+4 #define A5 A0+5 #define A6 A0+6 #define A7 A0+7 ;; B[0..7]: In: Multiplier #define B0 10 #define B1 B0+1 #define B2 B0+2 #define B3 B0+3 #define B4 B0+4 #define B5 B0+5 #define B6 B0+6 #define B7 B0+7 #ifndef __AVR_TINY__ #if defined (__AVR_HAVE_MUL__) ;; Define C[] for convenience ;; Notice that parts of C[] overlap A[] respective B[] #define C0 16 #define C1 C0+1 #define C2 20 #define C3 C2+1 #define C4 28 #define C5 C4+1 #define C6 C4+2 #define C7 C4+3 #if defined (L_muldi3) ;; A[] *= B[] ;; R25:R18 *= R17:R10 ;; Ordinary ABI-Function DEFUN __muldi3 push r29 push r28 push r17 push r16 ;; Counting in Words, we have to perform a 4 * 4 Multiplication ;; 3 * 0 + 0 * 3 mul A7,B0 $ $ mov C7,r0 mul A0,B7 $ $ add C7,r0 mul A6,B1 $ $ add C7,r0 mul A6,B0 $ mov C6,r0 $ add C7,r1 mul B6,A1 $ $ add C7,r0 mul B6,A0 $ add C6,r0 $ adc C7,r1 ;; 1 * 2 mul A2,B4 $ add C6,r0 $ adc C7,r1 mul A3,B4 $ $ add C7,r0 mul A2,B5 $ $ add C7,r0 push A5 push A4 push B1 push B0 push A3 push A2 ;; 0 * 0 wmov 26, B0 XCALL __umulhisi3 wmov C0, 22 wmov C2, 24 ;; 0 * 2 wmov 26, B4 XCALL __umulhisi3 $ wmov C4,22 $ add C6,24 $ adc C7,25 wmov 26, B2 ;; 0 * 1 XCALL __muldi3_6 pop A0 pop A1 ;; 1 * 1 wmov 26, B2 XCALL __umulhisi3 $ add C4,22 $ adc C5,23 $ adc C6,24 $ adc C7,25 pop r26 pop r27 ;; 1 * 0 XCALL __muldi3_6 pop A0 pop A1 ;; 2 * 0 XCALL __umulhisi3 $ add C4,22 $ adc C5,23 $ adc C6,24 $ adc C7,25 ;; 2 * 1 wmov 26, B2 XCALL __umulhisi3 $ $ $ add C6,22 $ adc C7,23 ;; A[] = C[] wmov A0, C0 ;; A2 = C2 already wmov A4, C4 wmov A6, C6 pop r16 pop r17 pop r28 pop r29 ret ENDF __muldi3 #endif /* L_muldi3 */ #if defined (L_muldi3_6) ;; A helper for some 64-bit multiplications with MUL available DEFUN __muldi3_6 __muldi3_6: XCALL __umulhisi3 add C2, 22 adc C3, 23 adc C4, 24 adc C5, 25 brcc 0f adiw C6, 1 0: ret ENDF __muldi3_6 #endif /* L_muldi3_6 */ #undef C7 #undef C6 #undef C5 #undef C4 #undef C3 #undef C2 #undef C1 #undef C0 #else /* !HAVE_MUL */ #if defined (L_muldi3) #define C0 26 #define C1 C0+1 #define C2 C0+2 #define C3 C0+3 #define C4 C0+4 #define C5 C0+5 #define C6 0 #define C7 C6+1 #define Loop 9 ;; A[] *= B[] ;; R25:R18 *= R17:R10 ;; Ordinary ABI-Function DEFUN __muldi3 push r29 push r28 push Loop ldi C0, 64 mov Loop, C0 ;; C[] = 0 clr __tmp_reg__ wmov C0, 0 wmov C2, 0 wmov C4, 0 0: ;; Rotate B[] right by 1 and set Carry to the N-th Bit of B[] ;; where N = 64 - Loop. ;; Notice that B[] = B[] >>> 64 so after this Routine has finished, ;; B[] will have its initial Value again. LSR B7 $ ror B6 $ ror B5 $ ror B4 ror B3 $ ror B2 $ ror B1 $ ror B0 ;; If the N-th Bit of B[] was set then... brcc 1f ;; ...finish Rotation... ori B7, 1 << 7 ;; ...and add A[] * 2^N to the Result C[] ADD C0,A0 $ adc C1,A1 $ adc C2,A2 $ adc C3,A3 adc C4,A4 $ adc C5,A5 $ adc C6,A6 $ adc C7,A7 1: ;; Multiply A[] by 2 LSL A0 $ rol A1 $ rol A2 $ rol A3 rol A4 $ rol A5 $ rol A6 $ rol A7 dec Loop brne 0b ;; We expanded the Result in C[] ;; Copy Result to the Return Register A[] wmov A0, C0 wmov A2, C2 wmov A4, C4 wmov A6, C6 clr __zero_reg__ pop Loop pop r28 pop r29 ret ENDF __muldi3 #undef Loop #undef C7 #undef C6 #undef C5 #undef C4 #undef C3 #undef C2 #undef C1 #undef C0 #endif /* L_muldi3 */ #endif /* HAVE_MUL */ #endif /* if not __AVR_TINY__ */ #undef B7 #undef B6 #undef B5 #undef B4 #undef B3 #undef B2 #undef B1 #undef B0 #undef A7 #undef A6 #undef A5 #undef A4 #undef A3 #undef A2 #undef A1 #undef A0 /******************************************************* Widening Multiplication 64 = 32 x 32 with MUL *******************************************************/ #if defined (__AVR_HAVE_MUL__) #define A0 r22 #define A1 r23 #define A2 r24 #define A3 r25 #define B0 r18 #define B1 r19 #define B2 r20 #define B3 r21 #define C0 18 #define C1 C0+1 #define C2 20 #define C3 C2+1 #define C4 28 #define C5 C4+1 #define C6 C4+2 #define C7 C4+3 #if defined (L_umulsidi3) ;; Unsigned widening 64 = 32 * 32 Multiplication with MUL ;; R18[8] = R22[4] * R18[4] ;; ;; Ordinary ABI Function, but additionally sets ;; X = R20[2] = B2[2] ;; Z = R22[2] = A0[2] DEFUN __umulsidi3 clt ;; FALLTHRU ENDF __umulsidi3 ;; T = sign (A) DEFUN __umulsidi3_helper push 29 $ push 28 ; Y wmov 30, A2 ;; Counting in Words, we have to perform 4 Multiplications ;; 0 * 0 wmov 26, A0 XCALL __umulhisi3 push 23 $ push 22 ; C0 wmov 28, B0 wmov 18, B2 wmov C2, 24 push 27 $ push 26 ; A0 push 19 $ push 18 ; B2 ;; ;; 18 20 22 24 26 28 30 | B2, B3, A0, A1, C0, C1, Y ;; B2 C2 -- -- -- B0 A2 ;; 1 * 1 wmov 26, 30 ; A2 XCALL __umulhisi3 ;; Sign-extend A. T holds the sign of A brtc 0f ;; Subtract B from the high part of the result sub 22, 28 sbc 23, 29 sbc 24, 18 sbc 25, 19 0: wmov 18, 28 ;; B0 wmov C4, 22 wmov C6, 24 ;; ;; 18 20 22 24 26 28 30 | B2, B3, A0, A1, C0, C1, Y ;; B0 C2 -- -- A2 C4 C6 ;; ;; 1 * 0 XCALL __muldi3_6 ;; 0 * 1 pop 26 $ pop 27 ;; B2 pop 18 $ pop 19 ;; A0 XCALL __muldi3_6 ;; Move result C into place and save A0 in Z wmov 22, C4 wmov 24, C6 wmov 30, 18 ; A0 pop C0 $ pop C1 ;; Epilogue pop 28 $ pop 29 ;; Y ret ENDF __umulsidi3_helper #endif /* L_umulsidi3 */ #if defined (L_mulsidi3) ;; Signed widening 64 = 32 * 32 Multiplication ;; ;; R18[8] = R22[4] * R18[4] ;; Ordinary ABI Function DEFUN __mulsidi3 bst A3, 7 sbrs B3, 7 ; Enhanced core has no skip bug XJMP __umulsidi3_helper ;; B needs sign-extension push A3 push A2 XCALL __umulsidi3_helper ;; A0 survived in Z sub r22, r30 sbc r23, r31 pop r26 pop r27 sbc r24, r26 sbc r25, r27 ret ENDF __mulsidi3 #endif /* L_mulsidi3 */ #undef A0 #undef A1 #undef A2 #undef A3 #undef B0 #undef B1 #undef B2 #undef B3 #undef C0 #undef C1 #undef C2 #undef C3 #undef C4 #undef C5 #undef C6 #undef C7 #endif /* HAVE_MUL */ /********************************************************** Widening Multiplication 64 = 32 x 32 without MUL **********************************************************/ #ifndef __AVR_TINY__ /* if not __AVR_TINY__ */ #if defined (L_mulsidi3) && !defined (__AVR_HAVE_MUL__) #define A0 18 #define A1 A0+1 #define A2 A0+2 #define A3 A0+3 #define A4 A0+4 #define A5 A0+5 #define A6 A0+6 #define A7 A0+7 #define B0 10 #define B1 B0+1 #define B2 B0+2 #define B3 B0+3 #define B4 B0+4 #define B5 B0+5 #define B6 B0+6 #define B7 B0+7 #define AA0 22 #define AA1 AA0+1 #define AA2 AA0+2 #define AA3 AA0+3 #define BB0 18 #define BB1 BB0+1 #define BB2 BB0+2 #define BB3 BB0+3 #define Mask r30 ;; Signed / Unsigned widening 64 = 32 * 32 Multiplication without MUL ;; ;; R18[8] = R22[4] * R18[4] ;; Ordinary ABI Function DEFUN __mulsidi3 set skip ;; FALLTHRU ENDF __mulsidi3 DEFUN __umulsidi3 clt ; skipped ;; Save 10 Registers: R10..R17, R28, R29 do_prologue_saves 10 ldi Mask, 0xff bld Mask, 7 ;; Move B into place... wmov B0, BB0 wmov B2, BB2 ;; ...and extend it and BB3, Mask lsl BB3 sbc B4, B4 mov B5, B4 wmov B6, B4 ;; Move A into place... wmov A0, AA0 wmov A2, AA2 ;; ...and extend it and AA3, Mask lsl AA3 sbc A4, A4 mov A5, A4 wmov A6, A4 XCALL __muldi3 do_epilogue_restores 10 ENDF __umulsidi3 #undef A0 #undef A1 #undef A2 #undef A3 #undef A4 #undef A5 #undef A6 #undef A7 #undef B0 #undef B1 #undef B2 #undef B3 #undef B4 #undef B5 #undef B6 #undef B7 #undef AA0 #undef AA1 #undef AA2 #undef AA3 #undef BB0 #undef BB1 #undef BB2 #undef BB3 #undef Mask #endif /* L_mulsidi3 && !HAVE_MUL */ #endif /* if not __AVR_TINY__ */ ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; .section .text.libgcc.div, "ax", @progbits /******************************************************* Division 8 / 8 => (result + remainder) *******************************************************/ #define r_rem r25 /* remainder */ #define r_arg1 r24 /* dividend, quotient */ #define r_arg2 r22 /* divisor */ #define r_cnt r23 /* loop count */ #if defined (L_udivmodqi4) DEFUN __udivmodqi4 sub r_rem,r_rem ; clear remainder and carry ldi r_cnt,9 ; init loop counter rjmp __udivmodqi4_ep ; jump to entry point __udivmodqi4_loop: rol r_rem ; shift dividend into remainder cp r_rem,r_arg2 ; compare remainder & divisor brcs __udivmodqi4_ep ; remainder <= divisor sub r_rem,r_arg2 ; restore remainder __udivmodqi4_ep: rol r_arg1 ; shift dividend (with CARRY) dec r_cnt ; decrement loop counter brne __udivmodqi4_loop com r_arg1 ; complement result ; because C flag was complemented in loop ret ENDF __udivmodqi4 #endif /* defined (L_udivmodqi4) */ #if defined (L_divmodqi4) DEFUN __divmodqi4 bst r_arg1,7 ; store sign of dividend mov __tmp_reg__,r_arg1 eor __tmp_reg__,r_arg2; r0.7 is sign of result sbrc r_arg1,7 neg r_arg1 ; dividend negative : negate sbrc r_arg2,7 neg r_arg2 ; divisor negative : negate XCALL __udivmodqi4 ; do the unsigned div/mod brtc __divmodqi4_1 neg r_rem ; correct remainder sign __divmodqi4_1: sbrc __tmp_reg__,7 neg r_arg1 ; correct result sign __divmodqi4_exit: ret ENDF __divmodqi4 #endif /* defined (L_divmodqi4) */ #undef r_rem #undef r_arg1 #undef r_arg2 #undef r_cnt /******************************************************* Division 16 / 16 => (result + remainder) *******************************************************/ #define r_remL r26 /* remainder Low */ #define r_remH r27 /* remainder High */ /* return: remainder */ #define r_arg1L r24 /* dividend Low */ #define r_arg1H r25 /* dividend High */ /* return: quotient */ #define r_arg2L r22 /* divisor Low */ #define r_arg2H r23 /* divisor High */ #define r_cnt r21 /* loop count */ #if defined (L_udivmodhi4) DEFUN __udivmodhi4 sub r_remL,r_remL sub r_remH,r_remH ; clear remainder and carry ldi r_cnt,17 ; init loop counter rjmp __udivmodhi4_ep ; jump to entry point __udivmodhi4_loop: rol r_remL ; shift dividend into remainder rol r_remH cp r_remL,r_arg2L ; compare remainder & divisor cpc r_remH,r_arg2H brcs __udivmodhi4_ep ; remainder < divisor sub r_remL,r_arg2L ; restore remainder sbc r_remH,r_arg2H __udivmodhi4_ep: rol r_arg1L ; shift dividend (with CARRY) rol r_arg1H dec r_cnt ; decrement loop counter brne __udivmodhi4_loop com r_arg1L com r_arg1H ; div/mod results to return registers, as for the div() function mov_l r_arg2L, r_arg1L ; quotient mov_h r_arg2H, r_arg1H mov_l r_arg1L, r_remL ; remainder mov_h r_arg1H, r_remH ret ENDF __udivmodhi4 #endif /* defined (L_udivmodhi4) */ #if defined (L_divmodhi4) DEFUN __divmodhi4 .global _div _div: bst r_arg1H,7 ; store sign of dividend mov __tmp_reg__,r_arg2H brtc 0f com __tmp_reg__ ; r0.7 is sign of result rcall __divmodhi4_neg1 ; dividend negative: negate 0: sbrc r_arg2H,7 rcall __divmodhi4_neg2 ; divisor negative: negate XCALL __udivmodhi4 ; do the unsigned div/mod sbrc __tmp_reg__,7 rcall __divmodhi4_neg2 ; correct remainder sign brtc __divmodhi4_exit __divmodhi4_neg1: ;; correct dividend/remainder sign com r_arg1H neg r_arg1L sbci r_arg1H,0xff ret __divmodhi4_neg2: ;; correct divisor/result sign com r_arg2H neg r_arg2L sbci r_arg2H,0xff __divmodhi4_exit: ret ENDF __divmodhi4 #endif /* defined (L_divmodhi4) */ #undef r_remH #undef r_remL #undef r_arg1H #undef r_arg1L #undef r_arg2H #undef r_arg2L #undef r_cnt /******************************************************* Division 24 / 24 => (result + remainder) *******************************************************/ ;; A[0..2]: In: Dividend; Out: Quotient #define A0 22 #define A1 A0+1 #define A2 A0+2 ;; B[0..2]: In: Divisor; Out: Remainder #define B0 18 #define B1 B0+1 #define B2 B0+2 ;; C[0..2]: Expand remainder #define C0 __zero_reg__ #define C1 26 #define C2 25 ;; Loop counter #define r_cnt 21 #if defined (L_udivmodpsi4) ;; R24:R22 = R24:R24 udiv R20:R18 ;; R20:R18 = R24:R22 umod R20:R18 ;; Clobbers: R21, R25, R26 DEFUN __udivmodpsi4 ; init loop counter ldi r_cnt, 24+1 ; Clear remainder and carry. C0 is already 0 clr C1 sub C2, C2 ; jump to entry point rjmp __udivmodpsi4_start __udivmodpsi4_loop: ; shift dividend into remainder rol C0 rol C1 rol C2 ; compare remainder & divisor cp C0, B0 cpc C1, B1 cpc C2, B2 brcs __udivmodpsi4_start ; remainder <= divisor sub C0, B0 ; restore remainder sbc C1, B1 sbc C2, B2 __udivmodpsi4_start: ; shift dividend (with CARRY) rol A0 rol A1 rol A2 ; decrement loop counter dec r_cnt brne __udivmodpsi4_loop com A0 com A1 com A2 ; div/mod results to return registers ; remainder mov B0, C0 mov B1, C1 mov B2, C2 clr __zero_reg__ ; C0 ret ENDF __udivmodpsi4 #endif /* defined (L_udivmodpsi4) */ #if defined (L_divmodpsi4) ;; R24:R22 = R24:R22 div R20:R18 ;; R20:R18 = R24:R22 mod R20:R18 ;; Clobbers: T, __tmp_reg__, R21, R25, R26 DEFUN __divmodpsi4 ; R0.7 will contain the sign of the result: ; R0.7 = A.sign ^ B.sign mov __tmp_reg__, B2 ; T-flag = sign of dividend bst A2, 7 brtc 0f com __tmp_reg__ ; Adjust dividend's sign rcall __divmodpsi4_negA 0: ; Adjust divisor's sign sbrc B2, 7 rcall __divmodpsi4_negB ; Do the unsigned div/mod XCALL __udivmodpsi4 ; Adjust quotient's sign sbrc __tmp_reg__, 7 rcall __divmodpsi4_negA ; Adjust remainder's sign brtc __divmodpsi4_end __divmodpsi4_negB: ; Correct divisor/remainder sign com B2 com B1 neg B0 sbci B1, -1 sbci B2, -1 ret ; Correct dividend/quotient sign __divmodpsi4_negA: com A2 com A1 neg A0 sbci A1, -1 sbci A2, -1 __divmodpsi4_end: ret ENDF __divmodpsi4 #endif /* defined (L_divmodpsi4) */ #undef A0 #undef A1 #undef A2 #undef B0 #undef B1 #undef B2 #undef C0 #undef C1 #undef C2 #undef r_cnt /******************************************************* Division 32 / 32 => (result + remainder) *******************************************************/ #define r_remHH r31 /* remainder High */ #define r_remHL r30 #define r_remH r27 #define r_remL r26 /* remainder Low */ /* return: remainder */ #define r_arg1HH r25 /* dividend High */ #define r_arg1HL r24 #define r_arg1H r23 #define r_arg1L r22 /* dividend Low */ /* return: quotient */ #define r_arg2HH r21 /* divisor High */ #define r_arg2HL r20 #define r_arg2H r19 #define r_arg2L r18 /* divisor Low */ #define r_cnt __zero_reg__ /* loop count (0 after the loop!) */ #if defined (L_udivmodsi4) DEFUN __udivmodsi4 ldi r_remL, 33 ; init loop counter mov r_cnt, r_remL sub r_remL,r_remL sub r_remH,r_remH ; clear remainder and carry mov_l r_remHL, r_remL mov_h r_remHH, r_remH rjmp __udivmodsi4_ep ; jump to entry point __udivmodsi4_loop: rol r_remL ; shift dividend into remainder rol r_remH rol r_remHL rol r_remHH cp r_remL,r_arg2L ; compare remainder & divisor cpc r_remH,r_arg2H cpc r_remHL,r_arg2HL cpc r_remHH,r_arg2HH brcs __udivmodsi4_ep ; remainder <= divisor sub r_remL,r_arg2L ; restore remainder sbc r_remH,r_arg2H sbc r_remHL,r_arg2HL sbc r_remHH,r_arg2HH __udivmodsi4_ep: rol r_arg1L ; shift dividend (with CARRY) rol r_arg1H rol r_arg1HL rol r_arg1HH dec r_cnt ; decrement loop counter brne __udivmodsi4_loop ; __zero_reg__ now restored (r_cnt == 0) com r_arg1L com r_arg1H com r_arg1HL com r_arg1HH ; div/mod results to return registers, as for the ldiv() function mov_l r_arg2L, r_arg1L ; quotient mov_h r_arg2H, r_arg1H mov_l r_arg2HL, r_arg1HL mov_h r_arg2HH, r_arg1HH mov_l r_arg1L, r_remL ; remainder mov_h r_arg1H, r_remH mov_l r_arg1HL, r_remHL mov_h r_arg1HH, r_remHH ret ENDF __udivmodsi4 #endif /* defined (L_udivmodsi4) */ #if defined (L_divmodsi4) DEFUN __divmodsi4 mov __tmp_reg__,r_arg2HH bst r_arg1HH,7 ; store sign of dividend brtc 0f com __tmp_reg__ ; r0.7 is sign of result XCALL __negsi2 ; dividend negative: negate 0: sbrc r_arg2HH,7 rcall __divmodsi4_neg2 ; divisor negative: negate XCALL __udivmodsi4 ; do the unsigned div/mod sbrc __tmp_reg__, 7 ; correct quotient sign rcall __divmodsi4_neg2 brtc __divmodsi4_exit ; correct remainder sign XJMP __negsi2 __divmodsi4_neg2: ;; correct divisor/quotient sign com r_arg2HH com r_arg2HL com r_arg2H neg r_arg2L sbci r_arg2H,0xff sbci r_arg2HL,0xff sbci r_arg2HH,0xff __divmodsi4_exit: ret ENDF __divmodsi4 #endif /* defined (L_divmodsi4) */ #if defined (L_negsi2) ;; (set (reg:SI 22) ;; (neg:SI (reg:SI 22))) ;; Sets the V flag for signed overflow tests DEFUN __negsi2 NEG4 22 ret ENDF __negsi2 #endif /* L_negsi2 */ #undef r_remHH #undef r_remHL #undef r_remH #undef r_remL #undef r_arg1HH #undef r_arg1HL #undef r_arg1H #undef r_arg1L #undef r_arg2HH #undef r_arg2HL #undef r_arg2H #undef r_arg2L #undef r_cnt /* *di routines use registers below R19 and won't work with tiny arch right now. */ #if !defined (__AVR_TINY__) /******************************************************* Division 64 / 64 Modulo 64 % 64 *******************************************************/ ;; Use Speed-optimized Version on "big" Devices, i.e. Devices with ;; at least 16k of Program Memory. For smaller Devices, depend ;; on MOVW and SP Size. There is a Connexion between SP Size and ;; Flash Size so that SP Size can be used to test for Flash Size. #if defined (__AVR_HAVE_JMP_CALL__) # define SPEED_DIV 8 #elif defined (__AVR_HAVE_MOVW__) && defined (__AVR_HAVE_SPH__) # define SPEED_DIV 16 #else # define SPEED_DIV 0 #endif ;; A[0..7]: In: Dividend; ;; Out: Quotient (T = 0) ;; Out: Remainder (T = 1) #define A0 18 #define A1 A0+1 #define A2 A0+2 #define A3 A0+3 #define A4 A0+4 #define A5 A0+5 #define A6 A0+6 #define A7 A0+7 ;; B[0..7]: In: Divisor; Out: Clobber #define B0 10 #define B1 B0+1 #define B2 B0+2 #define B3 B0+3 #define B4 B0+4 #define B5 B0+5 #define B6 B0+6 #define B7 B0+7 ;; C[0..7]: Expand remainder; Out: Remainder (unused) #define C0 8 #define C1 C0+1 #define C2 30 #define C3 C2+1 #define C4 28 #define C5 C4+1 #define C6 26 #define C7 C6+1 ;; Holds Signs during Division Routine #define SS __tmp_reg__ ;; Bit-Counter in Division Routine #define R_cnt __zero_reg__ ;; Scratch Register for Negation #define NN r31 #if defined (L_udivdi3) ;; R25:R18 = R24:R18 umod R17:R10 ;; Ordinary ABI-Function DEFUN __umoddi3 set rjmp __udivdi3_umoddi3 ENDF __umoddi3 ;; R25:R18 = R24:R18 udiv R17:R10 ;; Ordinary ABI-Function DEFUN __udivdi3 clt ENDF __udivdi3 DEFUN __udivdi3_umoddi3 push C0 push C1 push C4 push C5 XCALL __udivmod64 pop C5 pop C4 pop C1 pop C0 ret ENDF __udivdi3_umoddi3 #endif /* L_udivdi3 */ #if defined (L_udivmod64) ;; Worker Routine for 64-Bit unsigned Quotient and Remainder Computation ;; No Registers saved/restored; the Callers will take Care. ;; Preserves B[] and T-flag ;; T = 0: Compute Quotient in A[] ;; T = 1: Compute Remainder in A[] and shift SS one Bit left DEFUN __udivmod64 ;; Clear Remainder (C6, C7 will follow) clr C0 clr C1 wmov C2, C0 wmov C4, C0 ldi C7, 64 #if SPEED_DIV == 0 || SPEED_DIV == 16 ;; Initialize Loop-Counter mov R_cnt, C7 wmov C6, C0 #endif /* SPEED_DIV */ #if SPEED_DIV == 8 push A7 clr C6 1: ;; Compare shifted Devidend against Divisor ;; If -- even after Shifting -- it is smaller... CP A7,B0 $ cpc C0,B1 $ cpc C1,B2 $ cpc C2,B3 cpc C3,B4 $ cpc C4,B5 $ cpc C5,B6 $ cpc C6,B7 brcc 2f ;; ...then we can subtract it. Thus, it is legal to shift left $ mov C6,C5 $ mov C5,C4 $ mov C4,C3 mov C3,C2 $ mov C2,C1 $ mov C1,C0 $ mov C0,A7 mov A7,A6 $ mov A6,A5 $ mov A5,A4 $ mov A4,A3 mov A3,A2 $ mov A2,A1 $ mov A1,A0 $ clr A0 ;; 8 Bits are done subi C7, 8 brne 1b ;; Shifted 64 Bits: A7 has traveled to C7 pop C7 ;; Divisor is greater than Dividend. We have: ;; A[] % B[] = A[] ;; A[] / B[] = 0 ;; Thus, we can return immediately rjmp 5f 2: ;; Initialze Bit-Counter with Number of Bits still to be performed mov R_cnt, C7 ;; Push of A7 is not needed because C7 is still 0 pop C7 clr C7 #elif SPEED_DIV == 16 ;; Compare shifted Dividend against Divisor cp A7, B3 cpc C0, B4 cpc C1, B5 cpc C2, B6 cpc C3, B7 brcc 2f ;; Divisor is greater than shifted Dividen: We can shift the Dividend ;; and it is still smaller than the Divisor --> Shift one 32-Bit Chunk wmov C2,A6 $ wmov C0,A4 wmov A6,A2 $ wmov A4,A0 wmov A2,C6 $ wmov A0,C4 ;; Set Bit Counter to 32 lsr R_cnt 2: #elif SPEED_DIV #error SPEED_DIV = ? #endif /* SPEED_DIV */ ;; The very Division + Remainder Routine 3: ;; Left-shift Dividend... lsl A0 $ rol A1 $ rol A2 $ rol A3 rol A4 $ rol A5 $ rol A6 $ rol A7 ;; ...into Remainder rol C0 $ rol C1 $ rol C2 $ rol C3 rol C4 $ rol C5 $ rol C6 $ rol C7 ;; Compare Remainder and Divisor CP C0,B0 $ cpc C1,B1 $ cpc C2,B2 $ cpc C3,B3 cpc C4,B4 $ cpc C5,B5 $ cpc C6,B6 $ cpc C7,B7 brcs 4f ;; Divisor fits into Remainder: Subtract it from Remainder... SUB C0,B0 $ sbc C1,B1 $ sbc C2,B2 $ sbc C3,B3 sbc C4,B4 $ sbc C5,B5 $ sbc C6,B6 $ sbc C7,B7 ;; ...and set according Bit in the upcoming Quotient ;; The Bit will travel to its final Position ori A0, 1 4: ;; This Bit is done dec R_cnt brne 3b ;; __zero_reg__ is 0 again ;; T = 0: We are fine with the Quotient in A[] ;; T = 1: Copy Remainder to A[] 5: brtc 6f wmov A0, C0 wmov A2, C2 wmov A4, C4 wmov A6, C6 ;; Move the Sign of the Result to SS.7 lsl SS 6: ret ENDF __udivmod64 #endif /* L_udivmod64 */ #if defined (L_divdi3) ;; R25:R18 = R24:R18 mod R17:R10 ;; Ordinary ABI-Function DEFUN __moddi3 set rjmp __divdi3_moddi3 ENDF __moddi3 ;; R25:R18 = R24:R18 div R17:R10 ;; Ordinary ABI-Function DEFUN __divdi3 clt ENDF __divdi3 DEFUN __divdi3_moddi3 #if SPEED_DIV mov r31, A7 or r31, B7 brmi 0f ;; Both Signs are 0: the following Complexitiy is not needed XJMP __udivdi3_umoddi3 #endif /* SPEED_DIV */ 0: ;; The Prologue ;; Save 12 Registers: Y, 17...8 ;; No Frame needed do_prologue_saves 12 ;; SS.7 will contain the Sign of the Quotient (A.sign * B.sign) ;; SS.6 will contain the Sign of the Remainder (A.sign) mov SS, A7 asr SS ;; Adjust Dividend's Sign as needed #if SPEED_DIV ;; Compiling for Speed we know that at least one Sign must be < 0 ;; Thus, if A[] >= 0 then we know B[] < 0 brpl 22f #else brpl 21f #endif /* SPEED_DIV */ XCALL __negdi2 ;; Adjust Divisor's Sign and SS.7 as needed 21: tst B7 brpl 3f 22: ldi NN, 1 << 7 eor SS, NN ldi NN, -1 com B4 $ com B5 $ com B6 $ com B7 $ com B1 $ com B2 $ com B3 NEG B0 $ sbc B1,NN $ sbc B2,NN $ sbc B3,NN sbc B4,NN $ sbc B5,NN $ sbc B6,NN $ sbc B7,NN 3: ;; Do the unsigned 64-Bit Division/Modulo (depending on T-flag) XCALL __udivmod64 ;; Adjust Result's Sign #ifdef __AVR_ERRATA_SKIP_JMP_CALL__ tst SS brpl 4f #else sbrc SS, 7 #endif /* __AVR_HAVE_JMP_CALL__ */ XCALL __negdi2 4: ;; Epilogue: Restore 12 Registers and return do_epilogue_restores 12 ENDF __divdi3_moddi3 #endif /* L_divdi3 */ #undef R_cnt #undef SS #undef NN .section .text.libgcc, "ax", @progbits #define TT __tmp_reg__ #if defined (L_adddi3) ;; (set (reg:DI 18) ;; (plus:DI (reg:DI 18) ;; (reg:DI 10))) ;; Sets the V flag for signed overflow tests ;; Sets the C flag for unsigned overflow tests DEFUN __adddi3 ADD A0,B0 $ adc A1,B1 $ adc A2,B2 $ adc A3,B3 adc A4,B4 $ adc A5,B5 $ adc A6,B6 $ adc A7,B7 ret ENDF __adddi3 #endif /* L_adddi3 */ #if defined (L_adddi3_s8) ;; (set (reg:DI 18) ;; (plus:DI (reg:DI 18) ;; (sign_extend:SI (reg:QI 26)))) ;; Sets the V flag for signed overflow tests ;; Sets the C flag for unsigned overflow tests provided 0 <= R26 < 128 DEFUN __adddi3_s8 clr TT sbrc r26, 7 com TT ADD A0,r26 $ adc A1,TT $ adc A2,TT $ adc A3,TT adc A4,TT $ adc A5,TT $ adc A6,TT $ adc A7,TT ret ENDF __adddi3_s8 #endif /* L_adddi3_s8 */ #if defined (L_subdi3) ;; (set (reg:DI 18) ;; (minus:DI (reg:DI 18) ;; (reg:DI 10))) ;; Sets the V flag for signed overflow tests ;; Sets the C flag for unsigned overflow tests DEFUN __subdi3 SUB A0,B0 $ sbc A1,B1 $ sbc A2,B2 $ sbc A3,B3 sbc A4,B4 $ sbc A5,B5 $ sbc A6,B6 $ sbc A7,B7 ret ENDF __subdi3 #endif /* L_subdi3 */ #if defined (L_cmpdi2) ;; (set (cc0) ;; (compare (reg:DI 18) ;; (reg:DI 10))) DEFUN __cmpdi2 CP A0,B0 $ cpc A1,B1 $ cpc A2,B2 $ cpc A3,B3 cpc A4,B4 $ cpc A5,B5 $ cpc A6,B6 $ cpc A7,B7 ret ENDF __cmpdi2 #endif /* L_cmpdi2 */ #if defined (L_cmpdi2_s8) ;; (set (cc0) ;; (compare (reg:DI 18) ;; (sign_extend:SI (reg:QI 26)))) DEFUN __cmpdi2_s8 clr TT sbrc r26, 7 com TT CP A0,r26 $ cpc A1,TT $ cpc A2,TT $ cpc A3,TT cpc A4,TT $ cpc A5,TT $ cpc A6,TT $ cpc A7,TT ret ENDF __cmpdi2_s8 #endif /* L_cmpdi2_s8 */ #if defined (L_negdi2) ;; (set (reg:DI 18) ;; (neg:DI (reg:DI 18))) ;; Sets the V flag for signed overflow tests DEFUN __negdi2 com A4 $ com A5 $ com A6 $ com A7 $ com A1 $ com A2 $ com A3 NEG A0 $ sbci A1,-1 $ sbci A2,-1 $ sbci A3,-1 sbci A4,-1 $ sbci A5,-1 $ sbci A6,-1 $ sbci A7,-1 ret ENDF __negdi2 #endif /* L_negdi2 */ #undef TT #undef C7 #undef C6 #undef C5 #undef C4 #undef C3 #undef C2 #undef C1 #undef C0 #undef B7 #undef B6 #undef B5 #undef B4 #undef B3 #undef B2 #undef B1 #undef B0 #undef A7 #undef A6 #undef A5 #undef A4 #undef A3 #undef A2 #undef A1 #undef A0 #endif /* !defined (__AVR_TINY__) */ .section .text.libgcc.prologue, "ax", @progbits /********************************** * This is a prologue subroutine **********************************/ #if !defined (__AVR_TINY__) #if defined (L_prologue) ;; This function does not clobber T-flag; 64-bit division relies on it DEFUN __prologue_saves__ push r2 push r3 push r4 push r5 push r6 push r7 push r8 push r9 push r10 push r11 push r12 push r13 push r14 push r15 push r16 push r17 push r28 push r29 #if !defined (__AVR_HAVE_SPH__) in r28,__SP_L__ sub r28,r26 out __SP_L__,r28 clr r29 #elif defined (__AVR_XMEGA__) in r28,__SP_L__ in r29,__SP_H__ sub r28,r26 sbc r29,r27 out __SP_L__,r28 out __SP_H__,r29 #else in r28,__SP_L__ in r29,__SP_H__ sub r28,r26 sbc r29,r27 in __tmp_reg__,__SREG__ cli out __SP_H__,r29 out __SREG__,__tmp_reg__ out __SP_L__,r28 #endif /* #SP = 8/16 */ XIJMP ENDF __prologue_saves__ #endif /* defined (L_prologue) */ /* * This is an epilogue subroutine */ #if defined (L_epilogue) DEFUN __epilogue_restores__ ldd r2,Y+18 ldd r3,Y+17 ldd r4,Y+16 ldd r5,Y+15 ldd r6,Y+14 ldd r7,Y+13 ldd r8,Y+12 ldd r9,Y+11 ldd r10,Y+10 ldd r11,Y+9 ldd r12,Y+8 ldd r13,Y+7 ldd r14,Y+6 ldd r15,Y+5 ldd r16,Y+4 ldd r17,Y+3 ldd r26,Y+2 #if !defined (__AVR_HAVE_SPH__) ldd r29,Y+1 add r28,r30 out __SP_L__,r28 mov r28, r26 #elif defined (__AVR_XMEGA__) ldd r27,Y+1 add r28,r30 adc r29,__zero_reg__ out __SP_L__,r28 out __SP_H__,r29 wmov 28, 26 #else ldd r27,Y+1 add r28,r30 adc r29,__zero_reg__ in __tmp_reg__,__SREG__ cli out __SP_H__,r29 out __SREG__,__tmp_reg__ out __SP_L__,r28 mov_l r28, r26 mov_h r29, r27 #endif /* #SP = 8/16 */ ret ENDF __epilogue_restores__ #endif /* defined (L_epilogue) */ #endif /* !defined (__AVR_TINY__) */ #ifdef L_exit .section .fini9,"ax",@progbits DEFUN _exit .weak exit exit: ENDF _exit /* Code from .fini8 ... .fini1 sections inserted by ld script. */ .section .fini0,"ax",@progbits cli __stop_program: rjmp __stop_program #endif /* defined (L_exit) */ #ifdef L_cleanup .weak _cleanup .func _cleanup _cleanup: ret .endfunc #endif /* defined (L_cleanup) */ .section .text.libgcc, "ax", @progbits #ifdef L_tablejump2 DEFUN __tablejump2__ lsl r30 rol r31 #if defined (__AVR_HAVE_EIJMP_EICALL__) ;; Word address of gs() jumptable entry in R24:Z rol r24 out __RAMPZ__, r24 #elif defined (__AVR_HAVE_ELPM__) ;; Word address of jumptable entry in Z clr __tmp_reg__ rol __tmp_reg__ out __RAMPZ__, __tmp_reg__ #endif ;; Read word address from jumptable and jump #if defined (__AVR_HAVE_ELPMX__) elpm __tmp_reg__, Z+ elpm r31, Z mov r30, __tmp_reg__ #ifdef __AVR_HAVE_RAMPD__ ;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM out __RAMPZ__, __zero_reg__ #endif /* RAMPD */ XIJMP #elif defined (__AVR_HAVE_ELPM__) elpm push r0 adiw r30, 1 elpm push r0 ret #elif defined (__AVR_HAVE_LPMX__) lpm __tmp_reg__, Z+ lpm r31, Z mov r30, __tmp_reg__ ijmp #elif defined (__AVR_TINY__) wsubi 30, -(__AVR_TINY_PM_BASE_ADDRESS__) ; Add PM offset to Z ld __tmp_reg__, Z+ ld r31, Z ; Use ld instead of lpm to load Z mov r30, __tmp_reg__ ijmp #else lpm push r0 adiw r30, 1 lpm push r0 ret #endif ENDF __tablejump2__ #endif /* L_tablejump2 */ #if defined(__AVR_TINY__) #ifdef L_copy_data .section .init4,"ax",@progbits .global __do_copy_data __do_copy_data: ldi r18, hi8(__data_end) ldi r26, lo8(__data_start) ldi r27, hi8(__data_start) ldi r30, lo8(__data_load_start + __AVR_TINY_PM_BASE_ADDRESS__) ldi r31, hi8(__data_load_start + __AVR_TINY_PM_BASE_ADDRESS__) rjmp .L__do_copy_data_start .L__do_copy_data_loop: ld r19, z+ st X+, r19 .L__do_copy_data_start: cpi r26, lo8(__data_end) cpc r27, r18 brne .L__do_copy_data_loop #endif #else #ifdef L_copy_data .section .init4,"ax",@progbits DEFUN __do_copy_data #if defined(__AVR_HAVE_ELPMX__) ldi r17, hi8(__data_end) ldi r26, lo8(__data_start) ldi r27, hi8(__data_start) ldi r30, lo8(__data_load_start) ldi r31, hi8(__data_load_start) ldi r16, hh8(__data_load_start) out __RAMPZ__, r16 rjmp .L__do_copy_data_start .L__do_copy_data_loop: elpm r0, Z+ st X+, r0 .L__do_copy_data_start: cpi r26, lo8(__data_end) cpc r27, r17 brne .L__do_copy_data_loop #elif !defined(__AVR_HAVE_ELPMX__) && defined(__AVR_HAVE_ELPM__) ldi r17, hi8(__data_end) ldi r26, lo8(__data_start) ldi r27, hi8(__data_start) ldi r30, lo8(__data_load_start) ldi r31, hi8(__data_load_start) ldi r16, hh8(__data_load_start - 0x10000) .L__do_copy_data_carry: inc r16 out __RAMPZ__, r16 rjmp .L__do_copy_data_start .L__do_copy_data_loop: elpm st X+, r0 adiw r30, 1 brcs .L__do_copy_data_carry .L__do_copy_data_start: cpi r26, lo8(__data_end) cpc r27, r17 brne .L__do_copy_data_loop #elif !defined(__AVR_HAVE_ELPMX__) && !defined(__AVR_HAVE_ELPM__) ldi r17, hi8(__data_end) ldi r26, lo8(__data_start) ldi r27, hi8(__data_start) ldi r30, lo8(__data_load_start) ldi r31, hi8(__data_load_start) rjmp .L__do_copy_data_start .L__do_copy_data_loop: #if defined (__AVR_HAVE_LPMX__) lpm r0, Z+ #else lpm adiw r30, 1 #endif st X+, r0 .L__do_copy_data_start: cpi r26, lo8(__data_end) cpc r27, r17 brne .L__do_copy_data_loop #endif /* !defined(__AVR_HAVE_ELPMX__) && !defined(__AVR_HAVE_ELPM__) */ #if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__) ;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM out __RAMPZ__, __zero_reg__ #endif /* ELPM && RAMPD */ ENDF __do_copy_data #endif /* L_copy_data */ #endif /* !defined (__AVR_TINY__) */ /* __do_clear_bss is only necessary if there is anything in .bss section. */ #ifdef L_clear_bss .section .init4,"ax",@progbits DEFUN __do_clear_bss ldi r18, hi8(__bss_end) ldi r26, lo8(__bss_start) ldi r27, hi8(__bss_start) rjmp .do_clear_bss_start .do_clear_bss_loop: st X+, __zero_reg__ .do_clear_bss_start: cpi r26, lo8(__bss_end) cpc r27, r18 brne .do_clear_bss_loop ENDF __do_clear_bss #endif /* L_clear_bss */ /* __do_global_ctors and __do_global_dtors are only necessary if there are any constructors/destructors. */ #if defined(__AVR_TINY__) #define cdtors_tst_reg r18 #else #define cdtors_tst_reg r17 #endif #ifdef L_ctors .section .init6,"ax",@progbits DEFUN __do_global_ctors ldi cdtors_tst_reg, pm_hi8(__ctors_start) ldi r28, pm_lo8(__ctors_end) ldi r29, pm_hi8(__ctors_end) #ifdef __AVR_HAVE_EIJMP_EICALL__ ldi r16, pm_hh8(__ctors_end) #endif /* HAVE_EIJMP */ rjmp .L__do_global_ctors_start .L__do_global_ctors_loop: wsubi 28, 1 #ifdef __AVR_HAVE_EIJMP_EICALL__ sbc r16, __zero_reg__ mov r24, r16 #endif /* HAVE_EIJMP */ mov_h r31, r29 mov_l r30, r28 XCALL __tablejump2__ .L__do_global_ctors_start: cpi r28, pm_lo8(__ctors_start) cpc r29, cdtors_tst_reg #ifdef __AVR_HAVE_EIJMP_EICALL__ ldi r24, pm_hh8(__ctors_start) cpc r16, r24 #endif /* HAVE_EIJMP */ brne .L__do_global_ctors_loop ENDF __do_global_ctors #endif /* L_ctors */ #ifdef L_dtors .section .fini6,"ax",@progbits DEFUN __do_global_dtors ldi cdtors_tst_reg, pm_hi8(__dtors_end) ldi r28, pm_lo8(__dtors_start) ldi r29, pm_hi8(__dtors_start) #ifdef __AVR_HAVE_EIJMP_EICALL__ ldi r16, pm_hh8(__dtors_start) #endif /* HAVE_EIJMP */ rjmp .L__do_global_dtors_start .L__do_global_dtors_loop: #ifdef __AVR_HAVE_EIJMP_EICALL__ mov r24, r16 #endif /* HAVE_EIJMP */ mov_h r31, r29 mov_l r30, r28 XCALL __tablejump2__ waddi 28, 1 #ifdef __AVR_HAVE_EIJMP_EICALL__ adc r16, __zero_reg__ #endif /* HAVE_EIJMP */ .L__do_global_dtors_start: cpi r28, pm_lo8(__dtors_end) cpc r29, cdtors_tst_reg #ifdef __AVR_HAVE_EIJMP_EICALL__ ldi r24, pm_hh8(__dtors_end) cpc r16, r24 #endif /* HAVE_EIJMP */ brne .L__do_global_dtors_loop ENDF __do_global_dtors #endif /* L_dtors */ #undef cdtors_tst_reg .section .text.libgcc, "ax", @progbits #if !defined (__AVR_TINY__) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Loading n bytes from Flash; n = 3,4 ;; R22... = Flash[Z] ;; Clobbers: __tmp_reg__ #if (defined (L_load_3) \ || defined (L_load_4)) \ && !defined (__AVR_HAVE_LPMX__) ;; Destination #define D0 22 #define D1 D0+1 #define D2 D0+2 #define D3 D0+3 .macro .load dest, n lpm mov \dest, r0 .if \dest != D0+\n-1 adiw r30, 1 .else sbiw r30, \n-1 .endif .endm #if defined (L_load_3) DEFUN __load_3 push D3 XCALL __load_4 pop D3 ret ENDF __load_3 #endif /* L_load_3 */ #if defined (L_load_4) DEFUN __load_4 .load D0, 4 .load D1, 4 .load D2, 4 .load D3, 4 ret ENDF __load_4 #endif /* L_load_4 */ #endif /* L_load_3 || L_load_3 */ #endif /* !defined (__AVR_TINY__) */ #if !defined (__AVR_TINY__) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Loading n bytes from Flash or RAM; n = 1,2,3,4 ;; R22... = Flash[R21:Z] or RAM[Z] depending on R21.7 ;; Clobbers: __tmp_reg__, R21, R30, R31 #if (defined (L_xload_1) \ || defined (L_xload_2) \ || defined (L_xload_3) \ || defined (L_xload_4)) ;; Destination #define D0 22 #define D1 D0+1 #define D2 D0+2 #define D3 D0+3 ;; Register containing bits 16+ of the address #define HHI8 21 .macro .xload dest, n #if defined (__AVR_HAVE_ELPMX__) elpm \dest, Z+ #elif defined (__AVR_HAVE_ELPM__) elpm mov \dest, r0 .if \dest != D0+\n-1 adiw r30, 1 adc HHI8, __zero_reg__ out __RAMPZ__, HHI8 .endif #elif defined (__AVR_HAVE_LPMX__) lpm \dest, Z+ #else lpm mov \dest, r0 .if \dest != D0+\n-1 adiw r30, 1 .endif #endif #if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__) .if \dest == D0+\n-1 ;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM out __RAMPZ__, __zero_reg__ .endif #endif .endm ; .xload #if defined (L_xload_1) DEFUN __xload_1 #if defined (__AVR_HAVE_LPMX__) && !defined (__AVR_HAVE_ELPM__) sbrc HHI8, 7 ld D0, Z sbrs HHI8, 7 lpm D0, Z ret #else sbrc HHI8, 7 rjmp 1f #if defined (__AVR_HAVE_ELPM__) out __RAMPZ__, HHI8 #endif /* __AVR_HAVE_ELPM__ */ .xload D0, 1 ret 1: ld D0, Z ret #endif /* LPMx && ! ELPM */ ENDF __xload_1 #endif /* L_xload_1 */ #if defined (L_xload_2) DEFUN __xload_2 sbrc HHI8, 7 rjmp 1f #if defined (__AVR_HAVE_ELPM__) out __RAMPZ__, HHI8 #endif /* __AVR_HAVE_ELPM__ */ .xload D0, 2 .xload D1, 2 ret 1: ld D0, Z+ ld D1, Z+ ret ENDF __xload_2 #endif /* L_xload_2 */ #if defined (L_xload_3) DEFUN __xload_3 sbrc HHI8, 7 rjmp 1f #if defined (__AVR_HAVE_ELPM__) out __RAMPZ__, HHI8 #endif /* __AVR_HAVE_ELPM__ */ .xload D0, 3 .xload D1, 3 .xload D2, 3 ret 1: ld D0, Z+ ld D1, Z+ ld D2, Z+ ret ENDF __xload_3 #endif /* L_xload_3 */ #if defined (L_xload_4) DEFUN __xload_4 sbrc HHI8, 7 rjmp 1f #if defined (__AVR_HAVE_ELPM__) out __RAMPZ__, HHI8 #endif /* __AVR_HAVE_ELPM__ */ .xload D0, 4 .xload D1, 4 .xload D2, 4 .xload D3, 4 ret 1: ld D0, Z+ ld D1, Z+ ld D2, Z+ ld D3, Z+ ret ENDF __xload_4 #endif /* L_xload_4 */ #endif /* L_xload_{1|2|3|4} */ #endif /* if !defined (__AVR_TINY__) */ #if !defined (__AVR_TINY__) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; memcopy from Address Space __pgmx to RAM ;; R23:Z = Source Address ;; X = Destination Address ;; Clobbers: __tmp_reg__, R23, R24, R25, X, Z #if defined (L_movmemx) #define HHI8 23 #define LOOP 24 DEFUN __movmemx_qi ;; #Bytes to copy fity in 8 Bits (1..255) ;; Zero-extend Loop Counter clr LOOP+1 ;; FALLTHRU ENDF __movmemx_qi DEFUN __movmemx_hi ;; Read from where? sbrc HHI8, 7 rjmp 1f ;; Read from Flash #if defined (__AVR_HAVE_ELPM__) out __RAMPZ__, HHI8 #endif 0: ;; Load 1 Byte from Flash... #if defined (__AVR_HAVE_ELPMX__) elpm r0, Z+ #elif defined (__AVR_HAVE_ELPM__) elpm adiw r30, 1 adc HHI8, __zero_reg__ out __RAMPZ__, HHI8 #elif defined (__AVR_HAVE_LPMX__) lpm r0, Z+ #else lpm adiw r30, 1 #endif ;; ...and store that Byte to RAM Destination st X+, r0 sbiw LOOP, 1 brne 0b #if defined (__AVR_HAVE_ELPM__) && defined (__AVR_HAVE_RAMPD__) ;; Reset RAMPZ to 0 so that EBI devices don't read garbage from RAM out __RAMPZ__, __zero_reg__ #endif /* ELPM && RAMPD */ ret ;; Read from RAM 1: ;; Read 1 Byte from RAM... ld r0, Z+ ;; and store that Byte to RAM Destination st X+, r0 sbiw LOOP, 1 brne 1b ret ENDF __movmemx_hi #undef HHI8 #undef LOOP #endif /* L_movmemx */ #endif /* !defined (__AVR_TINY__) */ .section .text.libgcc.builtins, "ax", @progbits /********************************** * Find first set Bit (ffs) **********************************/ #if defined (L_ffssi2) ;; find first set bit ;; r25:r24 = ffs32 (r25:r22) ;; clobbers: r22, r26 DEFUN __ffssi2 clr r26 tst r22 brne 1f subi r26, -8 or r22, r23 brne 1f subi r26, -8 or r22, r24 brne 1f subi r26, -8 or r22, r25 brne 1f ret 1: mov r24, r22 XJMP __loop_ffsqi2 ENDF __ffssi2 #endif /* defined (L_ffssi2) */ #if defined (L_ffshi2) ;; find first set bit ;; r25:r24 = ffs16 (r25:r24) ;; clobbers: r26 DEFUN __ffshi2 clr r26 #ifdef __AVR_ERRATA_SKIP_JMP_CALL__ ;; Some cores have problem skipping 2-word instruction tst r24 breq 2f #else cpse r24, __zero_reg__ #endif /* __AVR_HAVE_JMP_CALL__ */ 1: XJMP __loop_ffsqi2 2: ldi r26, 8 or r24, r25 brne 1b ret ENDF __ffshi2 #endif /* defined (L_ffshi2) */ #if defined (L_loop_ffsqi2) ;; Helper for ffshi2, ffssi2 ;; r25:r24 = r26 + zero_extend16 (ffs8(r24)) ;; r24 must be != 0 ;; clobbers: r26 DEFUN __loop_ffsqi2 inc r26 lsr r24 brcc __loop_ffsqi2 mov r24, r26 clr r25 ret ENDF __loop_ffsqi2 #endif /* defined (L_loop_ffsqi2) */ /********************************** * Count trailing Zeros (ctz) **********************************/ #if defined (L_ctzsi2) ;; count trailing zeros ;; r25:r24 = ctz32 (r25:r22) ;; clobbers: r26, r22 ;; ctz(0) = 255 ;; Note that ctz(0) in undefined for GCC DEFUN __ctzsi2 XCALL __ffssi2 dec r24 ret ENDF __ctzsi2 #endif /* defined (L_ctzsi2) */ #if defined (L_ctzhi2) ;; count trailing zeros ;; r25:r24 = ctz16 (r25:r24) ;; clobbers: r26 ;; ctz(0) = 255 ;; Note that ctz(0) in undefined for GCC DEFUN __ctzhi2 XCALL __ffshi2 dec r24 ret ENDF __ctzhi2 #endif /* defined (L_ctzhi2) */ /********************************** * Count leading Zeros (clz) **********************************/ #if defined (L_clzdi2) ;; count leading zeros ;; r25:r24 = clz64 (r25:r18) ;; clobbers: r22, r23, r26 DEFUN __clzdi2 XCALL __clzsi2 sbrs r24, 5 ret mov_l r22, r18 mov_h r23, r19 mov_l r24, r20 mov_h r25, r21 XCALL __clzsi2 subi r24, -32 ret ENDF __clzdi2 #endif /* defined (L_clzdi2) */ #if defined (L_clzsi2) ;; count leading zeros ;; r25:r24 = clz32 (r25:r22) ;; clobbers: r26 DEFUN __clzsi2 XCALL __clzhi2 sbrs r24, 4 ret mov_l r24, r22 mov_h r25, r23 XCALL __clzhi2 subi r24, -16 ret ENDF __clzsi2 #endif /* defined (L_clzsi2) */ #if defined (L_clzhi2) ;; count leading zeros ;; r25:r24 = clz16 (r25:r24) ;; clobbers: r26 DEFUN __clzhi2 clr r26 tst r25 brne 1f subi r26, -8 or r25, r24 brne 1f ldi r24, 16 ret 1: cpi r25, 16 brsh 3f subi r26, -3 swap r25 2: inc r26 3: lsl r25 brcc 2b mov r24, r26 clr r25 ret ENDF __clzhi2 #endif /* defined (L_clzhi2) */ /********************************** * Parity **********************************/ #if defined (L_paritydi2) ;; r25:r24 = parity64 (r25:r18) ;; clobbers: __tmp_reg__ DEFUN __paritydi2 eor r24, r18 eor r24, r19 eor r24, r20 eor r24, r21 XJMP __paritysi2 ENDF __paritydi2 #endif /* defined (L_paritydi2) */ #if defined (L_paritysi2) ;; r25:r24 = parity32 (r25:r22) ;; clobbers: __tmp_reg__ DEFUN __paritysi2 eor r24, r22 eor r24, r23 XJMP __parityhi2 ENDF __paritysi2 #endif /* defined (L_paritysi2) */ #if defined (L_parityhi2) ;; r25:r24 = parity16 (r25:r24) ;; clobbers: __tmp_reg__ DEFUN __parityhi2 eor r24, r25 ;; FALLTHRU ENDF __parityhi2 ;; r25:r24 = parity8 (r24) ;; clobbers: __tmp_reg__ DEFUN __parityqi2 ;; parity is in r24[0..7] mov __tmp_reg__, r24 swap __tmp_reg__ eor r24, __tmp_reg__ ;; parity is in r24[0..3] subi r24, -4 andi r24, -5 subi r24, -6 ;; parity is in r24[0,3] sbrc r24, 3 inc r24 ;; parity is in r24[0] andi r24, 1 clr r25 ret ENDF __parityqi2 #endif /* defined (L_parityhi2) */ /********************************** * Population Count **********************************/ #if defined (L_popcounthi2) ;; population count ;; r25:r24 = popcount16 (r25:r24) ;; clobbers: __tmp_reg__ DEFUN __popcounthi2 XCALL __popcountqi2 push r24 mov r24, r25 XCALL __popcountqi2 clr r25 ;; FALLTHRU ENDF __popcounthi2 DEFUN __popcounthi2_tail pop __tmp_reg__ add r24, __tmp_reg__ ret ENDF __popcounthi2_tail #endif /* defined (L_popcounthi2) */ #if defined (L_popcountsi2) ;; population count ;; r25:r24 = popcount32 (r25:r22) ;; clobbers: __tmp_reg__ DEFUN __popcountsi2 XCALL __popcounthi2 push r24 mov_l r24, r22 mov_h r25, r23 XCALL __popcounthi2 XJMP __popcounthi2_tail ENDF __popcountsi2 #endif /* defined (L_popcountsi2) */ #if defined (L_popcountdi2) ;; population count ;; r25:r24 = popcount64 (r25:r18) ;; clobbers: r22, r23, __tmp_reg__ DEFUN __popcountdi2 XCALL __popcountsi2 push r24 mov_l r22, r18 mov_h r23, r19 mov_l r24, r20 mov_h r25, r21 XCALL __popcountsi2 XJMP __popcounthi2_tail ENDF __popcountdi2 #endif /* defined (L_popcountdi2) */ #if defined (L_popcountqi2) ;; population count ;; r24 = popcount8 (r24) ;; clobbers: __tmp_reg__ DEFUN __popcountqi2 mov __tmp_reg__, r24 andi r24, 1 lsr __tmp_reg__ lsr __tmp_reg__ adc r24, __zero_reg__ lsr __tmp_reg__ adc r24, __zero_reg__ lsr __tmp_reg__ adc r24, __zero_reg__ lsr __tmp_reg__ adc r24, __zero_reg__ lsr __tmp_reg__ adc r24, __zero_reg__ lsr __tmp_reg__ adc r24, __tmp_reg__ ret ENDF __popcountqi2 #endif /* defined (L_popcountqi2) */ /********************************** * Swap bytes **********************************/ ;; swap two registers with different register number .macro bswap a, b eor \a, \b eor \b, \a eor \a, \b .endm #if defined (L_bswapsi2) ;; swap bytes ;; r25:r22 = bswap32 (r25:r22) DEFUN __bswapsi2 bswap r22, r25 bswap r23, r24 ret ENDF __bswapsi2 #endif /* defined (L_bswapsi2) */ #if defined (L_bswapdi2) ;; swap bytes ;; r25:r18 = bswap64 (r25:r18) DEFUN __bswapdi2 bswap r18, r25 bswap r19, r24 bswap r20, r23 bswap r21, r22 ret ENDF __bswapdi2 #endif /* defined (L_bswapdi2) */ /********************************** * 64-bit shifts **********************************/ #if defined (L_ashrdi3) ;; Arithmetic shift right ;; r25:r18 = ashr64 (r25:r18, r17:r16) DEFUN __ashrdi3 bst r25, 7 bld __zero_reg__, 0 ;; FALLTHRU ENDF __ashrdi3 ;; Logic shift right ;; r25:r18 = lshr64 (r25:r18, r17:r16) DEFUN __lshrdi3 lsr __zero_reg__ sbc __tmp_reg__, __tmp_reg__ push r16 0: cpi r16, 8 brlo 2f subi r16, 8 mov r18, r19 mov r19, r20 mov r20, r21 mov r21, r22 mov r22, r23 mov r23, r24 mov r24, r25 mov r25, __tmp_reg__ rjmp 0b 1: asr __tmp_reg__ ror r25 ror r24 ror r23 ror r22 ror r21 ror r20 ror r19 ror r18 2: dec r16 brpl 1b pop r16 ret ENDF __lshrdi3 #endif /* defined (L_ashrdi3) */ #if defined (L_ashldi3) ;; Shift left ;; r25:r18 = ashl64 (r25:r18, r17:r16) DEFUN __ashldi3 push r16 0: cpi r16, 8 brlo 2f mov r25, r24 mov r24, r23 mov r23, r22 mov r22, r21 mov r21, r20 mov r20, r19 mov r19, r18 clr r18 subi r16, 8 rjmp 0b 1: lsl r18 rol r19 rol r20 rol r21 rol r22 rol r23 rol r24 rol r25 2: dec r16 brpl 1b pop r16 ret ENDF __ashldi3 #endif /* defined (L_ashldi3) */ #if defined (L_rotldi3) ;; Shift left ;; r25:r18 = rotl64 (r25:r18, r17:r16) DEFUN __rotldi3 push r16 0: cpi r16, 8 brlo 2f subi r16, 8 mov __tmp_reg__, r25 mov r25, r24 mov r24, r23 mov r23, r22 mov r22, r21 mov r21, r20 mov r20, r19 mov r19, r18 mov r18, __tmp_reg__ rjmp 0b 1: lsl r18 rol r19 rol r20 rol r21 rol r22 rol r23 rol r24 rol r25 adc r18, __zero_reg__ 2: dec r16 brpl 1b pop r16 ret ENDF __rotldi3 #endif /* defined (L_rotldi3) */ .section .text.libgcc.fmul, "ax", @progbits /***********************************************************/ ;;; Softmul versions of FMUL, FMULS and FMULSU to implement ;;; __builtin_avr_fmul* if !AVR_HAVE_MUL /***********************************************************/ #define A1 24 #define B1 25 #define C0 22 #define C1 23 #define A0 __tmp_reg__ #ifdef L_fmuls ;;; r23:r22 = fmuls (r24, r25) like in FMULS instruction ;;; Clobbers: r24, r25, __tmp_reg__ DEFUN __fmuls ;; A0.7 = negate result? mov A0, A1 eor A0, B1 ;; B1 = |B1| sbrc B1, 7 neg B1 XJMP __fmulsu_exit ENDF __fmuls #endif /* L_fmuls */ #ifdef L_fmulsu ;;; r23:r22 = fmulsu (r24, r25) like in FMULSU instruction ;;; Clobbers: r24, r25, __tmp_reg__ DEFUN __fmulsu ;; A0.7 = negate result? mov A0, A1 ;; FALLTHRU ENDF __fmulsu ;; Helper for __fmuls and __fmulsu DEFUN __fmulsu_exit ;; A1 = |A1| sbrc A1, 7 neg A1 #ifdef __AVR_ERRATA_SKIP_JMP_CALL__ ;; Some cores have problem skipping 2-word instruction tst A0 brmi 1f #else sbrs A0, 7 #endif /* __AVR_HAVE_JMP_CALL__ */ XJMP __fmul 1: XCALL __fmul ;; C = -C iff A0.7 = 1 NEG2 C0 ret ENDF __fmulsu_exit #endif /* L_fmulsu */ #ifdef L_fmul ;;; r22:r23 = fmul (r24, r25) like in FMUL instruction ;;; Clobbers: r24, r25, __tmp_reg__ DEFUN __fmul ; clear result clr C0 clr C1 clr A0 1: tst B1 ;; 1.0 = 0x80, so test for bit 7 of B to see if A must to be added to C. 2: brpl 3f ;; C += A add C0, A0 adc C1, A1 3: ;; A >>= 1 lsr A1 ror A0 ;; B <<= 1 lsl B1 brne 2b ret ENDF __fmul #endif /* L_fmul */ #undef A0 #undef A1 #undef B1 #undef C0 #undef C1 #include "lib1funcs-fixed.S"