// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package regexp implements regular expression search. // // The syntax of the regular expressions accepted is the same // general syntax used by Perl, Python, and other languages. // More precisely, it is the syntax accepted by RE2 and described at // http://code.google.com/p/re2/wiki/Syntax, except for \C. // // All characters are UTF-8-encoded code points. // // There are 16 methods of Regexp that match a regular expression and identify // the matched text. Their names are matched by this regular expression: // // Find(All)?(String)?(Submatch)?(Index)? // // If 'All' is present, the routine matches successive non-overlapping // matches of the entire expression. Empty matches abutting a preceding // match are ignored. The return value is a slice containing the successive // return values of the corresponding non-'All' routine. These routines take // an extra integer argument, n; if n >= 0, the function returns at most n // matches/submatches. // // If 'String' is present, the argument is a string; otherwise it is a slice // of bytes; return values are adjusted as appropriate. // // If 'Submatch' is present, the return value is a slice identifying the // successive submatches of the expression. Submatches are matches of // parenthesized subexpressions within the regular expression, numbered from // left to right in order of opening parenthesis. Submatch 0 is the match of // the entire expression, submatch 1 the match of the first parenthesized // subexpression, and so on. // // If 'Index' is present, matches and submatches are identified by byte index // pairs within the input string: result[2*n:2*n+1] identifies the indexes of // the nth submatch. The pair for n==0 identifies the match of the entire // expression. If 'Index' is not present, the match is identified by the // text of the match/submatch. If an index is negative, it means that // subexpression did not match any string in the input. // // There is also a subset of the methods that can be applied to text read // from a RuneReader: // // MatchReader, FindReaderIndex, FindReaderSubmatchIndex // // This set may grow. Note that regular expression matches may need to // examine text beyond the text returned by a match, so the methods that // match text from a RuneReader may read arbitrarily far into the input // before returning. // // (There are a few other methods that do not match this pattern.) // package regexp import ( "bytes" "io" "regexp/syntax" "strconv" "strings" "sync" "unicode/utf8" ) var debug = false // Error is the local type for a parsing error. type Error string func (e Error) Error() string { return string(e) } // Regexp is the representation of a compiled regular expression. // The public interface is entirely through methods. // A Regexp is safe for concurrent use by multiple goroutines. type Regexp struct { // read-only after Compile expr string // as passed to Compile prog *syntax.Prog // compiled program prefix string // required prefix in unanchored matches prefixBytes []byte // prefix, as a []byte prefixComplete bool // prefix is the entire regexp prefixRune rune // first rune in prefix cond syntax.EmptyOp // empty-width conditions required at start of match numSubexp int subexpNames []string longest bool // cache of machines for running regexp mu sync.Mutex machine []*machine } // String returns the source text used to compile the regular expression. func (re *Regexp) String() string { return re.expr } // Compile parses a regular expression and returns, if successful, // a Regexp object that can be used to match against text. // // When matching against text, the regexp returns a match that // begins as early as possible in the input (leftmost), and among those // it chooses the one that a backtracking search would have found first. // This so-called leftmost-first matching is the same semantics // that Perl, Python, and other implementations use, although this // package implements it without the expense of backtracking. // For POSIX leftmost-longest matching, see CompilePOSIX. func Compile(expr string) (*Regexp, error) { return compile(expr, syntax.Perl, false) } // CompilePOSIX is like Compile but restricts the regular expression // to POSIX ERE (egrep) syntax and changes the match semantics to // leftmost-longest. // // That is, when matching against text, the regexp returns a match that // begins as early as possible in the input (leftmost), and among those // it chooses a match that is as long as possible. // This so-called leftmost-longest matching is the same semantics // that early regular expression implementations used and that POSIX // specifies. // // However, there can be multiple leftmost-longest matches, with different // submatch choices, and here this package diverges from POSIX. // Among the possible leftmost-longest matches, this package chooses // the one that a backtracking search would have found first, while POSIX // specifies that the match be chosen to maximize the length of the first // subexpression, then the second, and so on from left to right. // The POSIX rule is computationally prohibitive and not even well-defined. // See http://swtch.com/~rsc/regexp/regexp2.html#posix for details. func CompilePOSIX(expr string) (*Regexp, error) { return compile(expr, syntax.POSIX, true) } func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) { re, err := syntax.Parse(expr, mode) if err != nil { return nil, err } maxCap := re.MaxCap() capNames := re.CapNames() re = re.Simplify() prog, err := syntax.Compile(re) if err != nil { return nil, err } regexp := &Regexp{ expr: expr, prog: prog, numSubexp: maxCap, subexpNames: capNames, cond: prog.StartCond(), longest: longest, } regexp.prefix, regexp.prefixComplete = prog.Prefix() if regexp.prefix != "" { // TODO(rsc): Remove this allocation by adding // IndexString to package bytes. regexp.prefixBytes = []byte(regexp.prefix) regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix) } return regexp, nil } // get returns a machine to use for matching re. // It uses the re's machine cache if possible, to avoid // unnecessary allocation. func (re *Regexp) get() *machine { re.mu.Lock() if n := len(re.machine); n > 0 { z := re.machine[n-1] re.machine = re.machine[:n-1] re.mu.Unlock() return z } re.mu.Unlock() z := progMachine(re.prog) z.re = re return z } // put returns a machine to the re's machine cache. // There is no attempt to limit the size of the cache, so it will // grow to the maximum number of simultaneous matches // run using re. (The cache empties when re gets garbage collected.) func (re *Regexp) put(z *machine) { re.mu.Lock() re.machine = append(re.machine, z) re.mu.Unlock() } // MustCompile is like Compile but panics if the expression cannot be parsed. // It simplifies safe initialization of global variables holding compiled regular // expressions. func MustCompile(str string) *Regexp { regexp, error := Compile(str) if error != nil { panic(`regexp: Compile(` + quote(str) + `): ` + error.Error()) } return regexp } // MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed. // It simplifies safe initialization of global variables holding compiled regular // expressions. func MustCompilePOSIX(str string) *Regexp { regexp, error := CompilePOSIX(str) if error != nil { panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + error.Error()) } return regexp } func quote(s string) string { if strconv.CanBackquote(s) { return "`" + s + "`" } return strconv.Quote(s) } // NumSubexp returns the number of parenthesized subexpressions in this Regexp. func (re *Regexp) NumSubexp() int { return re.numSubexp } // SubexpNames returns the names of the parenthesized subexpressions // in this Regexp. The name for the first sub-expression is names[1], // so that if m is a match slice, the name for m[i] is SubexpNames()[i]. // Since the Regexp as a whole cannot be named, names[0] is always // the empty string. The slice should not be modified. func (re *Regexp) SubexpNames() []string { return re.subexpNames } const endOfText rune = -1 // input abstracts different representations of the input text. It provides // one-character lookahead. type input interface { step(pos int) (r rune, width int) // advance one rune canCheckPrefix() bool // can we look ahead without losing info? hasPrefix(re *Regexp) bool index(re *Regexp, pos int) int context(pos int) syntax.EmptyOp } // inputString scans a string. type inputString struct { str string } func (i *inputString) step(pos int) (rune, int) { if pos < len(i.str) { c := i.str[pos] if c < utf8.RuneSelf { return rune(c), 1 } return utf8.DecodeRuneInString(i.str[pos:]) } return endOfText, 0 } func (i *inputString) canCheckPrefix() bool { return true } func (i *inputString) hasPrefix(re *Regexp) bool { return strings.HasPrefix(i.str, re.prefix) } func (i *inputString) index(re *Regexp, pos int) int { return strings.Index(i.str[pos:], re.prefix) } func (i *inputString) context(pos int) syntax.EmptyOp { r1, r2 := endOfText, endOfText if pos > 0 && pos <= len(i.str) { r1, _ = utf8.DecodeLastRuneInString(i.str[:pos]) } if pos < len(i.str) { r2, _ = utf8.DecodeRuneInString(i.str[pos:]) } return syntax.EmptyOpContext(r1, r2) } // inputBytes scans a byte slice. type inputBytes struct { str []byte } func (i *inputBytes) step(pos int) (rune, int) { if pos < len(i.str) { c := i.str[pos] if c < utf8.RuneSelf { return rune(c), 1 } return utf8.DecodeRune(i.str[pos:]) } return endOfText, 0 } func (i *inputBytes) canCheckPrefix() bool { return true } func (i *inputBytes) hasPrefix(re *Regexp) bool { return bytes.HasPrefix(i.str, re.prefixBytes) } func (i *inputBytes) index(re *Regexp, pos int) int { return bytes.Index(i.str[pos:], re.prefixBytes) } func (i *inputBytes) context(pos int) syntax.EmptyOp { r1, r2 := endOfText, endOfText if pos > 0 && pos <= len(i.str) { r1, _ = utf8.DecodeLastRune(i.str[:pos]) } if pos < len(i.str) { r2, _ = utf8.DecodeRune(i.str[pos:]) } return syntax.EmptyOpContext(r1, r2) } // inputReader scans a RuneReader. type inputReader struct { r io.RuneReader atEOT bool pos int } func (i *inputReader) step(pos int) (rune, int) { if !i.atEOT && pos != i.pos { return endOfText, 0 } r, w, err := i.r.ReadRune() if err != nil { i.atEOT = true return endOfText, 0 } i.pos += w return r, w } func (i *inputReader) canCheckPrefix() bool { return false } func (i *inputReader) hasPrefix(re *Regexp) bool { return false } func (i *inputReader) index(re *Regexp, pos int) int { return -1 } func (i *inputReader) context(pos int) syntax.EmptyOp { return 0 } // LiteralPrefix returns a literal string that must begin any match // of the regular expression re. It returns the boolean true if the // literal string comprises the entire regular expression. func (re *Regexp) LiteralPrefix() (prefix string, complete bool) { return re.prefix, re.prefixComplete } // MatchReader returns whether the Regexp matches the text read by the // RuneReader. The return value is a boolean: true for match, false for no // match. func (re *Regexp) MatchReader(r io.RuneReader) bool { return re.doExecute(r, nil, "", 0, 0) != nil } // MatchString returns whether the Regexp matches the string s. // The return value is a boolean: true for match, false for no match. func (re *Regexp) MatchString(s string) bool { return re.doExecute(nil, nil, s, 0, 0) != nil } // Match returns whether the Regexp matches the byte slice b. // The return value is a boolean: true for match, false for no match. func (re *Regexp) Match(b []byte) bool { return re.doExecute(nil, b, "", 0, 0) != nil } // MatchReader checks whether a textual regular expression matches the text // read by the RuneReader. More complicated queries need to use Compile and // the full Regexp interface. func MatchReader(pattern string, r io.RuneReader) (matched bool, error error) { re, err := Compile(pattern) if err != nil { return false, err } return re.MatchReader(r), nil } // MatchString checks whether a textual regular expression // matches a string. More complicated queries need // to use Compile and the full Regexp interface. func MatchString(pattern string, s string) (matched bool, error error) { re, err := Compile(pattern) if err != nil { return false, err } return re.MatchString(s), nil } // Match checks whether a textual regular expression // matches a byte slice. More complicated queries need // to use Compile and the full Regexp interface. func Match(pattern string, b []byte) (matched bool, error error) { re, err := Compile(pattern) if err != nil { return false, err } return re.Match(b), nil } // ReplaceAllString returns a copy of src in which all matches for the Regexp // have been replaced by repl. No support is provided for expressions // (e.g. \1 or $1) in the replacement string. func (re *Regexp) ReplaceAllString(src, repl string) string { return re.ReplaceAllStringFunc(src, func(string) string { return repl }) } // ReplaceAllStringFunc returns a copy of src in which all matches for the // Regexp have been replaced by the return value of of function repl (whose // first argument is the matched string). No support is provided for // expressions (e.g. \1 or $1) in the replacement string. func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string { lastMatchEnd := 0 // end position of the most recent match searchPos := 0 // position where we next look for a match buf := new(bytes.Buffer) for searchPos <= len(src) { a := re.doExecute(nil, nil, src, searchPos, 2) if len(a) == 0 { break // no more matches } // Copy the unmatched characters before this match. io.WriteString(buf, src[lastMatchEnd:a[0]]) // Now insert a copy of the replacement string, but not for a // match of the empty string immediately after another match. // (Otherwise, we get double replacement for patterns that // match both empty and nonempty strings.) if a[1] > lastMatchEnd || a[0] == 0 { io.WriteString(buf, repl(src[a[0]:a[1]])) } lastMatchEnd = a[1] // Advance past this match; always advance at least one character. _, width := utf8.DecodeRuneInString(src[searchPos:]) if searchPos+width > a[1] { searchPos += width } else if searchPos+1 > a[1] { // This clause is only needed at the end of the input // string. In that case, DecodeRuneInString returns width=0. searchPos++ } else { searchPos = a[1] } } // Copy the unmatched characters after the last match. io.WriteString(buf, src[lastMatchEnd:]) return buf.String() } // ReplaceAll returns a copy of src in which all matches for the Regexp // have been replaced by repl. No support is provided for expressions // (e.g. \1 or $1) in the replacement text. func (re *Regexp) ReplaceAll(src, repl []byte) []byte { return re.ReplaceAllFunc(src, func([]byte) []byte { return repl }) } // ReplaceAllFunc returns a copy of src in which all matches for the // Regexp have been replaced by the return value of of function repl (whose // first argument is the matched []byte). No support is provided for // expressions (e.g. \1 or $1) in the replacement string. func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte { lastMatchEnd := 0 // end position of the most recent match searchPos := 0 // position where we next look for a match buf := new(bytes.Buffer) for searchPos <= len(src) { a := re.doExecute(nil, src, "", searchPos, 2) if len(a) == 0 { break // no more matches } // Copy the unmatched characters before this match. buf.Write(src[lastMatchEnd:a[0]]) // Now insert a copy of the replacement string, but not for a // match of the empty string immediately after another match. // (Otherwise, we get double replacement for patterns that // match both empty and nonempty strings.) if a[1] > lastMatchEnd || a[0] == 0 { buf.Write(repl(src[a[0]:a[1]])) } lastMatchEnd = a[1] // Advance past this match; always advance at least one character. _, width := utf8.DecodeRune(src[searchPos:]) if searchPos+width > a[1] { searchPos += width } else if searchPos+1 > a[1] { // This clause is only needed at the end of the input // string. In that case, DecodeRuneInString returns width=0. searchPos++ } else { searchPos = a[1] } } // Copy the unmatched characters after the last match. buf.Write(src[lastMatchEnd:]) return buf.Bytes() } var specialBytes = []byte(`\.+*?()|[]{}^$`) func special(b byte) bool { return bytes.IndexByte(specialBytes, b) >= 0 } // QuoteMeta returns a string that quotes all regular expression metacharacters // inside the argument text; the returned string is a regular expression matching // the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`. func QuoteMeta(s string) string { b := make([]byte, 2*len(s)) // A byte loop is correct because all metacharacters are ASCII. j := 0 for i := 0; i < len(s); i++ { if special(s[i]) { b[j] = '\\' j++ } b[j] = s[i] j++ } return string(b[0:j]) } // The number of capture values in the program may correspond // to fewer capturing expressions than are in the regexp. // For example, "(a){0}" turns into an empty program, so the // maximum capture in the program is 0 but we need to return // an expression for \1. Pad appends -1s to the slice a as needed. func (re *Regexp) pad(a []int) []int { if a == nil { // No match. return nil } n := (1 + re.numSubexp) * 2 for len(a) < n { a = append(a, -1) } return a } // Find matches in slice b if b is non-nil, otherwise find matches in string s. func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) { var end int if b == nil { end = len(s) } else { end = len(b) } for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; { matches := re.doExecute(nil, b, s, pos, re.prog.NumCap) if len(matches) == 0 { break } accept := true if matches[1] == pos { // We've found an empty match. if matches[0] == prevMatchEnd { // We don't allow an empty match right // after a previous match, so ignore it. accept = false } var width int // TODO: use step() if b == nil { _, width = utf8.DecodeRuneInString(s[pos:end]) } else { _, width = utf8.DecodeRune(b[pos:end]) } if width > 0 { pos += width } else { pos = end + 1 } } else { pos = matches[1] } prevMatchEnd = matches[1] if accept { deliver(re.pad(matches)) i++ } } } // Find returns a slice holding the text of the leftmost match in b of the regular expression. // A return value of nil indicates no match. func (re *Regexp) Find(b []byte) []byte { a := re.doExecute(nil, b, "", 0, 2) if a == nil { return nil } return b[a[0]:a[1]] } // FindIndex returns a two-element slice of integers defining the location of // the leftmost match in b of the regular expression. The match itself is at // b[loc[0]:loc[1]]. // A return value of nil indicates no match. func (re *Regexp) FindIndex(b []byte) (loc []int) { a := re.doExecute(nil, b, "", 0, 2) if a == nil { return nil } return a[0:2] } // FindString returns a string holding the text of the leftmost match in s of the regular // expression. If there is no match, the return value is an empty string, // but it will also be empty if the regular expression successfully matches // an empty string. Use FindStringIndex or FindStringSubmatch if it is // necessary to distinguish these cases. func (re *Regexp) FindString(s string) string { a := re.doExecute(nil, nil, s, 0, 2) if a == nil { return "" } return s[a[0]:a[1]] } // FindStringIndex returns a two-element slice of integers defining the // location of the leftmost match in s of the regular expression. The match // itself is at s[loc[0]:loc[1]]. // A return value of nil indicates no match. func (re *Regexp) FindStringIndex(s string) []int { a := re.doExecute(nil, nil, s, 0, 2) if a == nil { return nil } return a[0:2] } // FindReaderIndex returns a two-element slice of integers defining the // location of the leftmost match of the regular expression in text read from // the RuneReader. The match itself is at s[loc[0]:loc[1]]. A return // value of nil indicates no match. func (re *Regexp) FindReaderIndex(r io.RuneReader) []int { a := re.doExecute(r, nil, "", 0, 2) if a == nil { return nil } return a[0:2] } // FindSubmatch returns a slice of slices holding the text of the leftmost // match of the regular expression in b and the matches, if any, of its // subexpressions, as defined by the 'Submatch' descriptions in the package // comment. // A return value of nil indicates no match. func (re *Regexp) FindSubmatch(b []byte) [][]byte { a := re.doExecute(nil, b, "", 0, re.prog.NumCap) if a == nil { return nil } ret := make([][]byte, 1+re.numSubexp) for i := range ret { if 2*i < len(a) && a[2*i] >= 0 { ret[i] = b[a[2*i]:a[2*i+1]] } } return ret } // FindSubmatchIndex returns a slice holding the index pairs identifying the // leftmost match of the regular expression in b and the matches, if any, of // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions // in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindSubmatchIndex(b []byte) []int { return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap)) } // FindStringSubmatch returns a slice of strings holding the text of the // leftmost match of the regular expression in s and the matches, if any, of // its subexpressions, as defined by the 'Submatch' description in the // package comment. // A return value of nil indicates no match. func (re *Regexp) FindStringSubmatch(s string) []string { a := re.doExecute(nil, nil, s, 0, re.prog.NumCap) if a == nil { return nil } ret := make([]string, 1+re.numSubexp) for i := range ret { if 2*i < len(a) && a[2*i] >= 0 { ret[i] = s[a[2*i]:a[2*i+1]] } } return ret } // FindStringSubmatchIndex returns a slice holding the index pairs // identifying the leftmost match of the regular expression in s and the // matches, if any, of its subexpressions, as defined by the 'Submatch' and // 'Index' descriptions in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindStringSubmatchIndex(s string) []int { return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap)) } // FindReaderSubmatchIndex returns a slice holding the index pairs // identifying the leftmost match of the regular expression of text read by // the RuneReader, and the matches, if any, of its subexpressions, as defined // by the 'Submatch' and 'Index' descriptions in the package comment. A // return value of nil indicates no match. func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int { return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap)) } const startSize = 10 // The size at which to start a slice in the 'All' routines. // FindAll is the 'All' version of Find; it returns a slice of all successive // matches of the expression, as defined by the 'All' description in the // package comment. // A return value of nil indicates no match. func (re *Regexp) FindAll(b []byte, n int) [][]byte { if n < 0 { n = len(b) + 1 } result := make([][]byte, 0, startSize) re.allMatches("", b, n, func(match []int) { result = append(result, b[match[0]:match[1]]) }) if len(result) == 0 { return nil } return result } // FindAllIndex is the 'All' version of FindIndex; it returns a slice of all // successive matches of the expression, as defined by the 'All' description // in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllIndex(b []byte, n int) [][]int { if n < 0 { n = len(b) + 1 } result := make([][]int, 0, startSize) re.allMatches("", b, n, func(match []int) { result = append(result, match[0:2]) }) if len(result) == 0 { return nil } return result } // FindAllString is the 'All' version of FindString; it returns a slice of all // successive matches of the expression, as defined by the 'All' description // in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllString(s string, n int) []string { if n < 0 { n = len(s) + 1 } result := make([]string, 0, startSize) re.allMatches(s, nil, n, func(match []int) { result = append(result, s[match[0]:match[1]]) }) if len(result) == 0 { return nil } return result } // FindAllStringIndex is the 'All' version of FindStringIndex; it returns a // slice of all successive matches of the expression, as defined by the 'All' // description in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllStringIndex(s string, n int) [][]int { if n < 0 { n = len(s) + 1 } result := make([][]int, 0, startSize) re.allMatches(s, nil, n, func(match []int) { result = append(result, match[0:2]) }) if len(result) == 0 { return nil } return result } // FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice // of all successive matches of the expression, as defined by the 'All' // description in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte { if n < 0 { n = len(b) + 1 } result := make([][][]byte, 0, startSize) re.allMatches("", b, n, func(match []int) { slice := make([][]byte, len(match)/2) for j := range slice { if match[2*j] >= 0 { slice[j] = b[match[2*j]:match[2*j+1]] } } result = append(result, slice) }) if len(result) == 0 { return nil } return result } // FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns // a slice of all successive matches of the expression, as defined by the // 'All' description in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int { if n < 0 { n = len(b) + 1 } result := make([][]int, 0, startSize) re.allMatches("", b, n, func(match []int) { result = append(result, match) }) if len(result) == 0 { return nil } return result } // FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it // returns a slice of all successive matches of the expression, as defined by // the 'All' description in the package comment. // A return value of nil indicates no match. func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string { if n < 0 { n = len(s) + 1 } result := make([][]string, 0, startSize) re.allMatches(s, nil, n, func(match []int) { slice := make([]string, len(match)/2) for j := range slice { if match[2*j] >= 0 { slice[j] = s[match[2*j]:match[2*j+1]] } } result = append(result, slice) }) if len(result) == 0 { return nil } return result } // FindAllStringSubmatchIndex is the 'All' version of // FindStringSubmatchIndex; it returns a slice of all successive matches of // the expression, as defined by the 'All' description in the package // comment. // A return value of nil indicates no match. func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int { if n < 0 { n = len(s) + 1 } result := make([][]int, 0, startSize) re.allMatches(s, nil, n, func(match []int) { result = append(result, match) }) if len(result) == 0 { return nil } return result }