// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package jpeg implements a JPEG image decoder and encoder. // // JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf. package jpeg import ( "bufio" "image" "image/color" "io" ) // TODO(nigeltao): fix up the doc comment style so that sentences start with // the name of the type or function that they annotate. // A FormatError reports that the input is not a valid JPEG. type FormatError string func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) } // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. type UnsupportedError string func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) } // Component specification, specified in section B.2.2. type component struct { h int // Horizontal sampling factor. v int // Vertical sampling factor. c uint8 // Component identifier. tq uint8 // Quantization table destination selector. } const ( dcTable = 0 acTable = 1 maxTc = 1 maxTh = 3 maxTq = 3 // A grayscale JPEG image has only a Y component. nGrayComponent = 1 // A color JPEG image has Y, Cb and Cr components. nColorComponent = 3 // We only support 4:4:4, 4:4:0, 4:2:2 and 4:2:0 downsampling, and therefore the // number of luma samples per chroma sample is at most 2 in the horizontal // and 2 in the vertical direction. maxH = 2 maxV = 2 ) const ( soiMarker = 0xd8 // Start Of Image. eoiMarker = 0xd9 // End Of Image. sof0Marker = 0xc0 // Start Of Frame (Baseline). sof2Marker = 0xc2 // Start Of Frame (Progressive). dhtMarker = 0xc4 // Define Huffman Table. dqtMarker = 0xdb // Define Quantization Table. sosMarker = 0xda // Start Of Scan. driMarker = 0xdd // Define Restart Interval. rst0Marker = 0xd0 // ReSTart (0). rst7Marker = 0xd7 // ReSTart (7). app0Marker = 0xe0 // APPlication specific (0). app15Marker = 0xef // APPlication specific (15). comMarker = 0xfe // COMment. ) // unzig maps from the zig-zag ordering to the natural ordering. For example, // unzig[3] is the column and row of the fourth element in zig-zag order. The // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2). var unzig = [blockSize]int{ 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, } // If the passed in io.Reader does not also have ReadByte, then Decode will introduce its own buffering. type Reader interface { io.Reader ReadByte() (c byte, err error) } type decoder struct { r Reader b bits width, height int img1 *image.Gray img3 *image.YCbCr ri int // Restart Interval. nComp int progressive bool eobRun uint16 // End-of-Band run, specified in section G.1.2.2. comp [nColorComponent]component progCoeffs [nColorComponent][]block // Saved state between progressive-mode scans. huff [maxTc + 1][maxTh + 1]huffman quant [maxTq + 1]block // Quantization tables, in zig-zag order. tmp [1024]byte } // Reads and ignores the next n bytes. func (d *decoder) ignore(n int) error { for n > 0 { m := len(d.tmp) if m > n { m = n } _, err := io.ReadFull(d.r, d.tmp[0:m]) if err != nil { return err } n -= m } return nil } // Specified in section B.2.2. func (d *decoder) processSOF(n int) error { switch n { case 6 + 3*nGrayComponent: d.nComp = nGrayComponent case 6 + 3*nColorComponent: d.nComp = nColorComponent default: return UnsupportedError("SOF has wrong length") } _, err := io.ReadFull(d.r, d.tmp[:n]) if err != nil { return err } // We only support 8-bit precision. if d.tmp[0] != 8 { return UnsupportedError("precision") } d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) if int(d.tmp[5]) != d.nComp { return UnsupportedError("SOF has wrong number of image components") } for i := 0; i < d.nComp; i++ { d.comp[i].c = d.tmp[6+3*i] d.comp[i].tq = d.tmp[8+3*i] if d.nComp == nGrayComponent { // If a JPEG image has only one component, section A.2 says "this data // is non-interleaved by definition" and section A.2.2 says "[in this // case...] the order of data units within a scan shall be left-to-right // and top-to-bottom... regardless of the values of H_1 and V_1". Section // 4.8.2 also says "[for non-interleaved data], the MCU is defined to be // one data unit". Similarly, section A.1.1 explains that it is the ratio // of H_i to max_j(H_j) that matters, and similarly for V. For grayscale // images, H_1 is the maximum H_j for all components j, so that ratio is // always 1. The component's (h, v) is effectively always (1, 1): even if // the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8 // MCUs, not two 16x8 MCUs. d.comp[i].h = 1 d.comp[i].v = 1 continue } hv := d.tmp[7+3*i] d.comp[i].h = int(hv >> 4) d.comp[i].v = int(hv & 0x0f) // For color images, we only support 4:4:4, 4:4:0, 4:2:2 or 4:2:0 chroma // downsampling ratios. This implies that the (h, v) values for the Y // component are either (1, 1), (1, 2), (2, 1) or (2, 2), and the (h, v) // values for the Cr and Cb components must be (1, 1). if i == 0 { if hv != 0x11 && hv != 0x21 && hv != 0x22 && hv != 0x12 { return UnsupportedError("luma downsample ratio") } } else if hv != 0x11 { return UnsupportedError("chroma downsample ratio") } } return nil } // Specified in section B.2.4.1. func (d *decoder) processDQT(n int) error { const qtLength = 1 + blockSize for ; n >= qtLength; n -= qtLength { _, err := io.ReadFull(d.r, d.tmp[0:qtLength]) if err != nil { return err } pq := d.tmp[0] >> 4 if pq != 0 { return UnsupportedError("bad Pq value") } tq := d.tmp[0] & 0x0f if tq > maxTq { return FormatError("bad Tq value") } for i := range d.quant[tq] { d.quant[tq][i] = int32(d.tmp[i+1]) } } if n != 0 { return FormatError("DQT has wrong length") } return nil } // Specified in section B.2.4.4. func (d *decoder) processDRI(n int) error { if n != 2 { return FormatError("DRI has wrong length") } _, err := io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return err } d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) return nil } // decode reads a JPEG image from r and returns it as an image.Image. func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) { if rr, ok := r.(Reader); ok { d.r = rr } else { d.r = bufio.NewReader(r) } // Check for the Start Of Image marker. _, err := io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return nil, err } if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { return nil, FormatError("missing SOI marker") } // Process the remaining segments until the End Of Image marker. for { _, err := io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return nil, err } for d.tmp[0] != 0xff { // Strictly speaking, this is a format error. However, libjpeg is // liberal in what it accepts. As of version 9, next_marker in // jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and // continues to decode the stream. Even before next_marker sees // extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many // bytes as it can, possibly past the end of a scan's data. It // effectively puts back any markers that it overscanned (e.g. an // "\xff\xd9" EOI marker), but it does not put back non-marker data, // and thus it can silently ignore a small number of extraneous // non-marker bytes before next_marker has a chance to see them (and // print a warning). // // We are therefore also liberal in what we accept. Extraneous data // is silently ignored. // // This is similar to, but not exactly the same as, the restart // mechanism within a scan (the RST[0-7] markers). // // Note that extraneous 0xff bytes in e.g. SOS data are escaped as // "\xff\x00", and so are detected a little further down below. d.tmp[0] = d.tmp[1] d.tmp[1], err = d.r.ReadByte() if err != nil { return nil, err } } marker := d.tmp[1] if marker == 0 { // Treat "\xff\x00" as extraneous data. continue } for marker == 0xff { // Section B.1.1.2 says, "Any marker may optionally be preceded by any // number of fill bytes, which are bytes assigned code X'FF'". marker, err = d.r.ReadByte() if err != nil { return nil, err } } if marker == eoiMarker { // End Of Image. break } if rst0Marker <= marker && marker <= rst7Marker { // Figures B.2 and B.16 of the specification suggest that restart markers should // only occur between Entropy Coded Segments and not after the final ECS. // However, some encoders may generate incorrect JPEGs with a final restart // marker. That restart marker will be seen here instead of inside the processSOS // method, and is ignored as a harmless error. Restart markers have no extra data, // so we check for this before we read the 16-bit length of the segment. continue } // Read the 16-bit length of the segment. The value includes the 2 bytes for the // length itself, so we subtract 2 to get the number of remaining bytes. _, err = io.ReadFull(d.r, d.tmp[0:2]) if err != nil { return nil, err } n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 if n < 0 { return nil, FormatError("short segment length") } switch { case marker == sof0Marker || marker == sof2Marker: // Start Of Frame. d.progressive = marker == sof2Marker err = d.processSOF(n) if configOnly { return nil, err } case marker == dhtMarker: // Define Huffman Table. err = d.processDHT(n) case marker == dqtMarker: // Define Quantization Table. err = d.processDQT(n) case marker == sosMarker: // Start Of Scan. err = d.processSOS(n) case marker == driMarker: // Define Restart Interval. err = d.processDRI(n) case app0Marker <= marker && marker <= app15Marker || marker == comMarker: // APPlication specific, or COMment. err = d.ignore(n) default: err = UnsupportedError("unknown marker") } if err != nil { return nil, err } } if d.img1 != nil { return d.img1, nil } if d.img3 != nil { return d.img3, nil } return nil, FormatError("missing SOS marker") } // Decode reads a JPEG image from r and returns it as an image.Image. func Decode(r io.Reader) (image.Image, error) { var d decoder return d.decode(r, false) } // DecodeConfig returns the color model and dimensions of a JPEG image without // decoding the entire image. func DecodeConfig(r io.Reader) (image.Config, error) { var d decoder if _, err := d.decode(r, true); err != nil { return image.Config{}, err } switch d.nComp { case nGrayComponent: return image.Config{ ColorModel: color.GrayModel, Width: d.width, Height: d.height, }, nil case nColorComponent: return image.Config{ ColorModel: color.YCbCrModel, Width: d.width, Height: d.height, }, nil } return image.Config{}, FormatError("missing SOF marker") } func init() { image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig) }