// Allocators -*- C++ -*- // Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * Copyright (c) 1996-1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_alloc.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef __GLIBCPP_INTERNAL_ALLOC_H #define __GLIBCPP_INTERNAL_ALLOC_H /** * @defgroup Allocators Memory Allocators * @if maint * stl_alloc.h implements some node allocators. These are NOT the same as * allocators in the C++ standard, nor in the original H-P STL. They do not * encapsulate different pointer types; we assume that there is only one * pointer type. The C++ standard allocators are intended to allocate * individual objects, not pools or arenas. * * In this file allocators are of two different styles: "standard" and * "SGI" (quotes included). "Standard" allocators conform to 20.4. "SGI" * allocators differ in AT LEAST the following ways (add to this list as you * discover them): * * - "Standard" allocate() takes two parameters (n_count,hint=0) but "SGI" * allocate() takes one paramter (n_size). * - Likewise, "standard" deallocate()'s argument is a count, but in "SGI" * is a byte size. * - max_size(), construct(), and destroy() are missing in "SGI" allocators. * - reallocate(p,oldsz,newsz) is added in "SGI", and behaves as * if p=realloc(p,newsz). * * "SGI" allocators may be wrapped in __allocator to convert the interface * into a "standard" one. * @endif * * The canonical description of these classes is in docs/html/ext/howto.html * or online at http://gcc.gnu.org/onlinedocs/libstdc++/ext/howto.html#3 */ #include #include #include #include // For __throw_bad_alloc #include #include namespace std { /** * @if maint * A new-based allocator, as required by the standard. Allocation and * deallocation forward to global new and delete. "SGI" style, minus * reallocate(). * @endif * (See @link Allocators allocators info @endlink for more.) */ class __new_alloc { public: static void* allocate(size_t __n) { return ::operator new(__n); } static void deallocate(void* __p, size_t) { ::operator delete(__p); } }; /** * @if maint * A malloc-based allocator. Typically slower than the * __pool_alloc (below). Typically thread-safe and more * storage efficient. The template argument is unused and is only present * to permit multiple instantiations (but see __pool_alloc * for caveats). "SGI" style, plus __set_malloc_handler for OOM conditions. * @endif * (See @link Allocators allocators info @endlink for more.) */ template class __malloc_alloc { private: static void* _S_oom_malloc(size_t); static void (* __malloc_alloc_oom_handler)(); public: static void* allocate(size_t __n) { void* __result = malloc(__n); if (__builtin_expect(__result == 0, 0)) __result = _S_oom_malloc(__n); return __result; } static void deallocate(void* __p, size_t /* __n */) { free(__p); } static void (* __set_malloc_handler(void (*__f)()))() { void (* __old)() = __malloc_alloc_oom_handler; __malloc_alloc_oom_handler = __f; return __old; } }; // malloc_alloc out-of-memory handling template void (* __malloc_alloc<__inst>::__malloc_alloc_oom_handler)() = 0; template void* __malloc_alloc<__inst>:: _S_oom_malloc(size_t __n) { void (* __my_malloc_handler)(); void* __result; for (;;) { __my_malloc_handler = __malloc_alloc_oom_handler; if (__builtin_expect(__my_malloc_handler == 0, 0)) __throw_bad_alloc(); (*__my_malloc_handler)(); __result = malloc(__n); if (__result) return __result; } } /** * @if maint * This is used primarily (only?) in _Alloc_traits and other places to * help provide the _Alloc_type typedef. All it does is forward the * requests after some minimal checking. * * This is neither "standard"-conforming nor "SGI". The _Alloc parameter * must be "SGI" style. * @endif * (See @link Allocators allocators info @endlink for more.) */ template class __simple_alloc { public: static _Tp* allocate(size_t __n) { _Tp* __ret = 0; if (__n) __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))); return __ret; } static _Tp* allocate() { return (_Tp*) _Alloc::allocate(sizeof (_Tp)); } static void deallocate(_Tp* __p, size_t __n) { if (0 != __n) _Alloc::deallocate(__p, __n * sizeof (_Tp)); } static void deallocate(_Tp* __p) { _Alloc::deallocate(__p, sizeof (_Tp)); } }; /** * @if maint * An adaptor for an underlying allocator (_Alloc) to check the size * arguments for debugging. * * "There is some evidence that this can confuse Purify." - SGI comment * * This adaptor is "SGI" style. The _Alloc parameter must also be "SGI". * @endif * (See @link Allocators allocators info @endlink for more.) */ template class __debug_alloc { private: // Size of space used to store size. Note that this must be // large enough to preserve alignment. enum {_S_extra = 8}; public: static void* allocate(size_t __n) { char* __result = (char*)_Alloc::allocate(__n + (int) _S_extra); *(size_t*)__result = __n; return __result + (int) _S_extra; } static void deallocate(void* __p, size_t __n) { char* __real_p = (char*)__p - (int) _S_extra; if (*(size_t*)__real_p != __n) abort(); _Alloc::deallocate(__real_p, __n + (int) _S_extra); } }; /** * @if maint * Default node allocator. "SGI" style. Uses various allocators to * fulfill underlying requests (and makes as few requests as possible * when in default high-speed pool mode). * * Important implementation properties: * 0. If globally mandated, then allocate objects from __new_alloc * 1. If the clients request an object of size > _S_max_bytes, the resulting * object will be obtained directly from __new_alloc * 2. In all other cases, we allocate an object of size exactly * _S_round_up(requested_size). Thus the client has enough size * information that we can return the object to the proper free list * without permanently losing part of the object. * * The first template parameter specifies whether more than one thread may * use this allocator. It is safe to allocate an object from one instance * of a default_alloc and deallocate it with another one. This effectively * transfers its ownership to the second one. This may have undesirable * effects on reference locality. * * The second parameter is unused and serves only to allow the creation of * multiple default_alloc instances. Note that containers built on different * allocator instances have different types, limiting the utility of this * approach. If you do not wish to share the free lists with the main * default_alloc instance, instantiate this with a non-zero __inst. * * @endif * (See @link Allocators allocators info @endlink for more.) */ template class __pool_alloc { private: enum {_S_align = 8}; enum {_S_max_bytes = 128}; enum {_S_freelists = _S_max_bytes / _S_align}; union _Obj { union _Obj* _M_free_list_link; char _M_client_data[1]; // The client sees this. }; static _Obj* volatile _S_free_list[_S_freelists]; // Chunk allocation state. static char* _S_start_free; static char* _S_end_free; static size_t _S_heap_size; static _STL_mutex_lock _S_lock; static _Atomic_word _S_force_new; static size_t _S_round_up(size_t __bytes) { return (((__bytes) + (size_t) _S_align-1) & ~((size_t) _S_align - 1)); } static size_t _S_freelist_index(size_t __bytes) { return (((__bytes) + (size_t)_S_align - 1)/(size_t)_S_align - 1); } // Returns an object of size __n, and optionally adds to size __n // free list. static void* _S_refill(size_t __n); // Allocates a chunk for nobjs of size size. nobjs may be reduced // if it is inconvenient to allocate the requested number. static char* _S_chunk_alloc(size_t __size, int& __nobjs); // It would be nice to use _STL_auto_lock here. But we need a // test whether threads are in use. struct _Lock { _Lock() { if (__threads) _S_lock._M_acquire_lock(); } ~_Lock() { if (__threads) _S_lock._M_release_lock(); } } __attribute__ ((__unused__)); friend struct _Lock; public: // __n must be > 0 static void* allocate(size_t __n) { void* __ret = 0; // If there is a race through here, assume answer from getenv // will resolve in same direction. Inspired by techniques // to efficiently support threading found in basic_string.h. if (_S_force_new == 0) { if (getenv("GLIBCPP_FORCE_NEW")) __atomic_add(&_S_force_new, 1); else __atomic_add(&_S_force_new, -1); } if ((__n > (size_t) _S_max_bytes) || (_S_force_new > 0)) __ret = __new_alloc::allocate(__n); else { _Obj* volatile* __my_free_list = _S_free_list + _S_freelist_index(__n); // Acquire the lock here with a constructor call. This // ensures that it is released in exit or during stack // unwinding. _Lock __lock_instance; _Obj* __restrict__ __result = *__my_free_list; if (__builtin_expect(__result == 0, 0)) __ret = _S_refill(_S_round_up(__n)); else { *__my_free_list = __result -> _M_free_list_link; __ret = __result; } if (__builtin_expect(__ret == 0, 0)) __throw_bad_alloc(); } return __ret; } // __p may not be 0 static void deallocate(void* __p, size_t __n) { if ((__n > (size_t) _S_max_bytes) || (_S_force_new > 0)) __new_alloc::deallocate(__p, __n); else { _Obj* volatile* __my_free_list = _S_free_list + _S_freelist_index(__n); _Obj* __q = (_Obj*)__p; // Acquire the lock here with a constructor call. This // ensures that it is released in exit or during stack // unwinding. _Lock __lock_instance; __q -> _M_free_list_link = *__my_free_list; *__my_free_list = __q; } } }; template _Atomic_word __pool_alloc<__threads, __inst>::_S_force_new = 0; template inline bool operator==(const __pool_alloc<__threads,__inst>&, const __pool_alloc<__threads,__inst>&) { return true; } template inline bool operator!=(const __pool_alloc<__threads,__inst>&, const __pool_alloc<__threads,__inst>&) { return false; } // We allocate memory in large chunks in order to avoid fragmenting the // heap too much. We assume that __size is properly aligned. We hold // the allocation lock. template char* __pool_alloc<__threads, __inst>:: _S_chunk_alloc(size_t __size, int& __nobjs) { char* __result; size_t __total_bytes = __size * __nobjs; size_t __bytes_left = _S_end_free - _S_start_free; if (__bytes_left >= __total_bytes) { __result = _S_start_free; _S_start_free += __total_bytes; return __result ; } else if (__bytes_left >= __size) { __nobjs = (int)(__bytes_left/__size); __total_bytes = __size * __nobjs; __result = _S_start_free; _S_start_free += __total_bytes; return __result; } else { size_t __bytes_to_get = 2 * __total_bytes + _S_round_up(_S_heap_size >> 4); // Try to make use of the left-over piece. if (__bytes_left > 0) { _Obj* volatile* __my_free_list = _S_free_list + _S_freelist_index(__bytes_left); ((_Obj*)(void*)_S_start_free) -> _M_free_list_link = *__my_free_list; *__my_free_list = (_Obj*)(void*)_S_start_free; } _S_start_free = (char*) __new_alloc::allocate(__bytes_to_get); if (_S_start_free == 0) { size_t __i; _Obj* volatile* __my_free_list; _Obj* __p; // Try to make do with what we have. That can't hurt. We // do not try smaller requests, since that tends to result // in disaster on multi-process machines. __i = __size; for (; __i <= (size_t) _S_max_bytes; __i += (size_t) _S_align) { __my_free_list = _S_free_list + _S_freelist_index(__i); __p = *__my_free_list; if (__p != 0) { *__my_free_list = __p -> _M_free_list_link; _S_start_free = (char*)__p; _S_end_free = _S_start_free + __i; return _S_chunk_alloc(__size, __nobjs); // Any leftover piece will eventually make it to the // right free list. } } _S_end_free = 0; // In case of exception. _S_start_free = (char*)__new_alloc::allocate(__bytes_to_get); // This should either throw an exception or remedy the situation. // Thus we assume it succeeded. } _S_heap_size += __bytes_to_get; _S_end_free = _S_start_free + __bytes_to_get; return _S_chunk_alloc(__size, __nobjs); } } // Returns an object of size __n, and optionally adds to "size // __n"'s free list. We assume that __n is properly aligned. We // hold the allocation lock. template void* __pool_alloc<__threads, __inst>::_S_refill(size_t __n) { int __nobjs = 20; char* __chunk = _S_chunk_alloc(__n, __nobjs); _Obj* volatile* __my_free_list; _Obj* __result; _Obj* __current_obj; _Obj* __next_obj; int __i; if (1 == __nobjs) return __chunk; __my_free_list = _S_free_list + _S_freelist_index(__n); // Build free list in chunk. __result = (_Obj*)(void*)__chunk; *__my_free_list = __next_obj = (_Obj*)(void*)(__chunk + __n); for (__i = 1; ; __i++) { __current_obj = __next_obj; __next_obj = (_Obj*)(void*)((char*)__next_obj + __n); if (__nobjs - 1 == __i) { __current_obj -> _M_free_list_link = 0; break; } else __current_obj -> _M_free_list_link = __next_obj; } return __result; } template _STL_mutex_lock __pool_alloc<__threads,__inst>::_S_lock __STL_MUTEX_INITIALIZER; template char* __pool_alloc<__threads,__inst>::_S_start_free = 0; template char* __pool_alloc<__threads,__inst>::_S_end_free = 0; template size_t __pool_alloc<__threads,__inst>::_S_heap_size = 0; template typename __pool_alloc<__threads,__inst>::_Obj* volatile __pool_alloc<__threads,__inst>::_S_free_list[_S_freelists]; typedef __pool_alloc __alloc; typedef __pool_alloc __single_client_alloc; /** * @brief The "standard" allocator, as per [20.4]. * * The private _Alloc is "SGI" style. (See comments at the top * of stl_alloc.h.) * * The underlying allocator behaves as follows. * - __pool_alloc is used via two typedefs * - "__single_client_alloc" typedef does no locking for threads * - "__alloc" typedef is threadsafe via the locks * - __new_alloc is used for memory requests * * (See @link Allocators allocators info @endlink for more.) */ template class allocator { typedef __alloc _Alloc; // The underlying allocator. public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef const _Tp* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Tp value_type; template struct rebind { typedef allocator<_Tp1> other; }; allocator() throw() {} allocator(const allocator&) throw() {} template allocator(const allocator<_Tp1>&) throw() {} ~allocator() throw() {} pointer address(reference __x) const { return &__x; } const_pointer address(const_reference __x) const { return &__x; } // NB: __n is permitted to be 0. The C++ standard says nothing // about what the return value is when __n == 0. _Tp* allocate(size_type __n, const void* = 0) { _Tp* __ret = 0; if (__n) { if (__n <= this->max_size()) __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))); else __throw_bad_alloc(); } return __ret; } // __p is not permitted to be a null pointer. void deallocate(pointer __p, size_type __n) { _Alloc::deallocate(__p, __n * sizeof(_Tp)); } size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); } void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); } void destroy(pointer __p) { __p->~_Tp(); } }; template<> class allocator { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef void* pointer; typedef const void* const_pointer; typedef void value_type; template struct rebind { typedef allocator<_Tp1> other; }; }; template inline bool operator==(const allocator<_T1>&, const allocator<_T2>&) { return true; } template inline bool operator!=(const allocator<_T1>&, const allocator<_T2>&) { return false; } /** * @if maint * Allocator adaptor to turn an "SGI" style allocator (e.g., * __alloc, __malloc_alloc) into a "standard" conforming * allocator. Note that this adaptor does *not* assume that all * objects of the underlying alloc class are identical, nor does it * assume that all of the underlying alloc's member functions are * static member functions. Note, also, that __allocator<_Tp, * __alloc> is essentially the same thing as allocator<_Tp>. * @endif * (See @link Allocators allocators info @endlink for more.) */ template struct __allocator { _Alloc __underlying_alloc; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef const _Tp* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Tp value_type; template struct rebind { typedef __allocator<_Tp1, _Alloc> other; }; __allocator() throw() {} __allocator(const __allocator& __a) throw() : __underlying_alloc(__a.__underlying_alloc) {} template __allocator(const __allocator<_Tp1, _Alloc>& __a) throw() : __underlying_alloc(__a.__underlying_alloc) {} ~__allocator() throw() {} pointer address(reference __x) const { return &__x; } const_pointer address(const_reference __x) const { return &__x; } // NB: __n is permitted to be 0. The C++ standard says nothing // about what the return value is when __n == 0. _Tp* allocate(size_type __n, const void* = 0) { _Tp* __ret = 0; if (__n) __ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))); return __ret; } // __p is not permitted to be a null pointer. void deallocate(pointer __p, size_type __n) { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); } size_type max_size() const throw() { return size_t(-1) / sizeof(_Tp); } void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); } void destroy(pointer __p) { __p->~_Tp(); } }; template struct __allocator { typedef size_t size_type; typedef ptrdiff_t difference_type; typedef void* pointer; typedef const void* const_pointer; typedef void value_type; template struct rebind { typedef __allocator<_Tp1, _Alloc> other; }; }; template inline bool operator==(const __allocator<_Tp,_Alloc>& __a1, const __allocator<_Tp,_Alloc>& __a2) { return __a1.__underlying_alloc == __a2.__underlying_alloc; } template inline bool operator!=(const __allocator<_Tp, _Alloc>& __a1, const __allocator<_Tp, _Alloc>& __a2) { return __a1.__underlying_alloc != __a2.__underlying_alloc; } //@{ /** Comparison operators for all of the predifined SGI-style allocators. * This ensures that __allocator (for example) will work * correctly. As required, all allocators compare equal. */ template inline bool operator==(const __malloc_alloc&, const __malloc_alloc&) { return true; } template inline bool operator!=(const __malloc_alloc<__inst>&, const __malloc_alloc<__inst>&) { return false; } template inline bool operator==(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&) { return true; } template inline bool operator!=(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&) { return false; } //@} /** * @if maint * Another allocator adaptor: _Alloc_traits. This serves two purposes. * First, make it possible to write containers that can use either "SGI" * style allocators or "standard" allocators. Second, provide a mechanism * so that containers can query whether or not the allocator has distinct * instances. If not, the container can avoid wasting a word of memory to * store an empty object. For examples of use, see stl_vector.h, etc, or * any of the other classes derived from this one. * * This adaptor uses partial specialization. The general case of * _Alloc_traits<_Tp, _Alloc> assumes that _Alloc is a * standard-conforming allocator, possibly with non-equal instances and * non-static members. (It still behaves correctly even if _Alloc has * static member and if all instances are equal. Refinements affect * performance, not correctness.) * * There are always two members: allocator_type, which is a standard- * conforming allocator type for allocating objects of type _Tp, and * _S_instanceless, a static const member of type bool. If * _S_instanceless is true, this means that there is no difference * between any two instances of type allocator_type. Furthermore, if * _S_instanceless is true, then _Alloc_traits has one additional * member: _Alloc_type. This type encapsulates allocation and * deallocation of objects of type _Tp through a static interface; it * has two member functions, whose signatures are * * - static _Tp* allocate(size_t) * - static void deallocate(_Tp*, size_t) * * The size_t parameters are "standard" style (see top of stl_alloc.h) in * that they take counts, not sizes. * * @endif * (See @link Allocators allocators info @endlink for more.) */ //@{ // The fully general version. template struct _Alloc_traits { static const bool _S_instanceless = false; typedef typename _Allocator::template rebind<_Tp>::other allocator_type; }; template const bool _Alloc_traits<_Tp, _Allocator>::_S_instanceless; /// The version for the default allocator. template struct _Alloc_traits<_Tp, allocator<_Tp1> > { static const bool _S_instanceless = true; typedef __simple_alloc<_Tp, __alloc> _Alloc_type; typedef allocator<_Tp> allocator_type; }; //@} //@{ /// Versions for the predefined "SGI" style allocators. template struct _Alloc_traits<_Tp, __malloc_alloc<__inst> > { static const bool _S_instanceless = true; typedef __simple_alloc<_Tp, __malloc_alloc<__inst> > _Alloc_type; typedef __allocator<_Tp, __malloc_alloc<__inst> > allocator_type; }; template struct _Alloc_traits<_Tp, __pool_alloc<__threads, __inst> > { static const bool _S_instanceless = true; typedef __simple_alloc<_Tp, __pool_alloc<__threads, __inst> > _Alloc_type; typedef __allocator<_Tp, __pool_alloc<__threads, __inst> > allocator_type; }; template struct _Alloc_traits<_Tp, __debug_alloc<_Alloc> > { static const bool _S_instanceless = true; typedef __simple_alloc<_Tp, __debug_alloc<_Alloc> > _Alloc_type; typedef __allocator<_Tp, __debug_alloc<_Alloc> > allocator_type; }; //@} //@{ /// Versions for the __allocator adaptor used with the predefined /// "SGI" style allocators. template struct _Alloc_traits<_Tp, __allocator<_Tp1, __malloc_alloc<__inst> > > { static const bool _S_instanceless = true; typedef __simple_alloc<_Tp, __malloc_alloc<__inst> > _Alloc_type; typedef __allocator<_Tp, __malloc_alloc<__inst> > allocator_type; }; template struct _Alloc_traits<_Tp, __allocator<_Tp1, __pool_alloc<__thr, __inst> > > { static const bool _S_instanceless = true; typedef __simple_alloc<_Tp, __pool_alloc<__thr,__inst> > _Alloc_type; typedef __allocator<_Tp, __pool_alloc<__thr,__inst> > allocator_type; }; template struct _Alloc_traits<_Tp, __allocator<_Tp1, __debug_alloc<_Alloc> > > { static const bool _S_instanceless = true; typedef __simple_alloc<_Tp, __debug_alloc<_Alloc> > _Alloc_type; typedef __allocator<_Tp, __debug_alloc<_Alloc> > allocator_type; }; //@} // Inhibit implicit instantiations for required instantiations, // which are defined via explicit instantiations elsewhere. // NB: This syntax is a GNU extension. #if _GLIBCPP_EXTERN_TEMPLATE extern template class allocator; extern template class allocator; extern template class __pool_alloc; #endif } // namespace std #endif