/* Implementation of the MATMUL intrinsic Copyright 2002 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfor). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with libgfor; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include #include #include "libgfortran.h" /* Dimensions: retarray(x,y) a(x, count) b(count,y). Either a or b can be rank 1. In this case x or y is 1. */ void __matmul_r8 (gfc_array_r8 * retarray, gfc_array_r8 * a, gfc_array_r8 * b) { GFC_REAL_8 *abase; GFC_REAL_8 *bbase; GFC_REAL_8 *dest; GFC_REAL_8 res; index_type rxstride; index_type rystride; index_type xcount; index_type ycount; index_type xstride; index_type ystride; index_type x; index_type y; GFC_REAL_8 *pa; GFC_REAL_8 *pb; index_type astride; index_type bstride; index_type count; index_type n; assert (GFC_DESCRIPTOR_RANK (a) == 2 || GFC_DESCRIPTOR_RANK (b) == 2); abase = a->data; bbase = b->data; dest = retarray->data; if (retarray->dim[0].stride == 0) retarray->dim[0].stride = 1; if (a->dim[0].stride == 0) a->dim[0].stride = 1; if (b->dim[0].stride == 0) b->dim[0].stride = 1; if (GFC_DESCRIPTOR_RANK (retarray) == 1) { rxstride = retarray->dim[0].stride; rystride = rxstride; } else { rxstride = retarray->dim[0].stride; rystride = retarray->dim[1].stride; } /* If we have rank 1 parameters, zero the absent stride, and set the size to one. */ if (GFC_DESCRIPTOR_RANK (a) == 1) { astride = a->dim[0].stride; count = a->dim[0].ubound + 1 - a->dim[0].lbound; xstride = 0; rxstride = 0; xcount = 1; } else { astride = a->dim[1].stride; count = a->dim[1].ubound + 1 - a->dim[1].lbound; xstride = a->dim[0].stride; xcount = a->dim[0].ubound + 1 - a->dim[0].lbound; } if (GFC_DESCRIPTOR_RANK (b) == 1) { bstride = b->dim[0].stride; assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); ystride = 0; rystride = 0; ycount = 1; } else { bstride = b->dim[0].stride; assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound); ystride = b->dim[1].stride; ycount = b->dim[1].ubound + 1 - b->dim[1].lbound; } for (y = 0; y < ycount; y++) { for (x = 0; x < xcount; x++) { /* Do the summation for this element. For real and integer types this is the same as DOT_PRODUCT. For complex types we use do a*b, not conjg(a)*b. */ pa = abase; pb = bbase; res = 0; for (n = 0; n < count; n++) { res += *pa * *pb; pa += astride; pb += bstride; } *dest = res; dest += rxstride; abase += xstride; } abase -= xstride * xcount; bbase += ystride; dest += rystride - (rxstride * xcount); } }