/* AIX FPU-related code. Copyright (C) 2005-2017 Free Software Foundation, Inc. Contributed by Francois-Xavier Coudert This file is part of the GNU Fortran runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ /* FPU-related code for AIX. */ #ifdef HAVE_FPTRAP_H #include #endif #ifdef HAVE_FPXCP_H #include #endif #ifdef HAVE_FENV_H #include #endif /* Check we can actually store the FPU state in the allocated size. */ //_Static_assert (sizeof(fenv_t) <= (size_t) GFC_FPE_STATE_BUFFER_SIZE, // "GFC_FPE_STATE_BUFFER_SIZE is too small"); void set_fpu_trap_exceptions (int trap, int notrap) { fptrap_t mode_set = 0, mode_clr = 0; #ifdef TRP_INVALID if (trap & GFC_FPE_INVALID) mode_set |= TRP_INVALID; if (notrap & GFC_FPE_INVALID) mode_clr |= TRP_INVALID; #endif #ifdef TRP_DIV_BY_ZERO if (trap & GFC_FPE_ZERO) mode_set |= TRP_DIV_BY_ZERO; if (notrap & GFC_FPE_ZERO) mode_clr |= TRP_DIV_BY_ZERO; #endif #ifdef TRP_OVERFLOW if (trap & GFC_FPE_OVERFLOW) mode_set |= TRP_OVERFLOW; if (notrap & GFC_FPE_OVERFLOW) mode_clr |= TRP_OVERFLOW; #endif #ifdef TRP_UNDERFLOW if (trap & GFC_FPE_UNDERFLOW) mode_set |= TRP_UNDERFLOW; if (notrap & GFC_FPE_UNDERFLOW) mode_clr |= TRP_UNDERFLOW; #endif #ifdef TRP_INEXACT if (trap & GFC_FPE_INEXACT) mode_set |= TRP_INEXACT; if (notrap & GFC_FPE_INEXACT) mode_clr |= TRP_INEXACT; #endif fp_trap (FP_TRAP_SYNC); fp_enable (mode_set); fp_disable (mode_clr); } int get_fpu_trap_exceptions (void) { int res = 0; #ifdef TRP_INVALID if (fp_is_enabled (TRP_INVALID)) res |= GFC_FPE_INVALID; #endif #ifdef TRP_DIV_BY_ZERO if (fp_is_enabled (TRP_DIV_BY_ZERO)) res |= GFC_FPE_ZERO; #endif #ifdef TRP_OVERFLOW if (fp_is_enabled (TRP_OVERFLOW)) res |= GFC_FPE_OVERFLOW; #endif #ifdef TRP_UNDERFLOW if (fp_is_enabled (TRP_UNDERFLOW)) res |= GFC_FPE_UNDERFLOW; #endif #ifdef TRP_INEXACT if (fp_is_enabled (TRP_INEXACT)) res |= GFC_FPE_INEXACT; #endif return res; } int support_fpu_trap (int flag) { return support_fpu_flag (flag); } void set_fpu (void) { #ifndef TRP_INVALID if (options.fpe & GFC_FPE_INVALID) estr_write ("Fortran runtime warning: IEEE 'invalid operation' exception not supported.\n"); #endif if (options.fpe & GFC_FPE_DENORMAL) estr_write ("Fortran runtime warning: Floating point 'denormal operand' exception not supported.\n"); #ifndef TRP_DIV_BY_ZERO if (options.fpe & GFC_FPE_ZERO) estr_write ("Fortran runtime warning: IEEE 'division by zero' exception not supported.\n"); #endif #ifndef TRP_OVERFLOW if (options.fpe & GFC_FPE_OVERFLOW) estr_write ("Fortran runtime warning: IEEE 'overflow' exception not supported.\n"); #endif #ifndef TRP_UNDERFLOW if (options.fpe & GFC_FPE_UNDERFLOW) estr_write ("Fortran runtime warning: IEEE 'underflow' exception not supported.\n"); #endif #ifndef TRP_INEXACT if (options.fpe & GFC_FPE_INEXACT) estr_write ("Fortran runtime warning: IEEE 'inexact' exception not supported.\n"); #endif set_fpu_trap_exceptions (options.fpe, 0); } int get_fpu_except_flags (void) { int result, set_excepts; result = 0; #ifdef HAVE_FPXCP_H if (!fp_any_xcp ()) return 0; if (fp_invalid_op ()) result |= GFC_FPE_INVALID; if (fp_divbyzero ()) result |= GFC_FPE_ZERO; if (fp_overflow ()) result |= GFC_FPE_OVERFLOW; if (fp_underflow ()) result |= GFC_FPE_UNDERFLOW; if (fp_inexact ()) result |= GFC_FPE_INEXACT; #endif return result; } void set_fpu_except_flags (int set, int clear) { int exc_set = 0, exc_clr = 0; #ifdef FP_INVALID if (set & GFC_FPE_INVALID) exc_set |= FP_INVALID; else if (clear & GFC_FPE_INVALID) exc_clr |= FP_INVALID; #endif #ifdef FP_DIV_BY_ZERO if (set & GFC_FPE_ZERO) exc_set |= FP_DIV_BY_ZERO; else if (clear & GFC_FPE_ZERO) exc_clr |= FP_DIV_BY_ZERO; #endif #ifdef FP_OVERFLOW if (set & GFC_FPE_OVERFLOW) exc_set |= FP_OVERFLOW; else if (clear & GFC_FPE_OVERFLOW) exc_clr |= FP_OVERFLOW; #endif #ifdef FP_UNDERFLOW if (set & GFC_FPE_UNDERFLOW) exc_set |= FP_UNDERFLOW; else if (clear & GFC_FPE_UNDERFLOW) exc_clr |= FP_UNDERFLOW; #endif /* AIX does not have FP_DENORMAL. */ #ifdef FP_INEXACT if (set & GFC_FPE_INEXACT) exc_set |= FP_INEXACT; else if (clear & GFC_FPE_INEXACT) exc_clr |= FP_INEXACT; #endif fp_clr_flag (exc_clr); fp_set_flag (exc_set); } int support_fpu_flag (int flag) { if (flag & GFC_FPE_INVALID) { #ifndef FP_INVALID return 0; #endif } else if (flag & GFC_FPE_ZERO) { #ifndef FP_DIV_BY_ZERO return 0; #endif } else if (flag & GFC_FPE_OVERFLOW) { #ifndef FP_OVERFLOW return 0; #endif } else if (flag & GFC_FPE_UNDERFLOW) { #ifndef FP_UNDERFLOW return 0; #endif } else if (flag & GFC_FPE_DENORMAL) { /* AIX does not support denormal flag. */ return 0; } else if (flag & GFC_FPE_INEXACT) { #ifndef FP_INEXACT return 0; #endif } return 1; } int get_fpu_rounding_mode (void) { int rnd_mode; rnd_mode = fegetround (); switch (rnd_mode) { #ifdef FE_TONEAREST case FE_TONEAREST: return GFC_FPE_TONEAREST; #endif #ifdef FE_UPWARD case FE_UPWARD: return GFC_FPE_UPWARD; #endif #ifdef FE_DOWNWARD case FE_DOWNWARD: return GFC_FPE_DOWNWARD; #endif #ifdef FE_TOWARDZERO case FE_TOWARDZERO: return GFC_FPE_TOWARDZERO; #endif default: return 0; /* Should be unreachable. */ } } void set_fpu_rounding_mode (int mode) { int rnd_mode; switch (mode) { #ifdef FE_TONEAREST case GFC_FPE_TONEAREST: rnd_mode = FE_TONEAREST; break; #endif #ifdef FE_UPWARD case GFC_FPE_UPWARD: rnd_mode = FE_UPWARD; break; #endif #ifdef FE_DOWNWARD case GFC_FPE_DOWNWARD: rnd_mode = FE_DOWNWARD; break; #endif #ifdef FE_TOWARDZERO case GFC_FPE_TOWARDZERO: rnd_mode = FE_TOWARDZERO; break; #endif default: return; /* Should be unreachable. */ } fesetround (rnd_mode); } int support_fpu_rounding_mode (int mode) { switch (mode) { case GFC_FPE_TONEAREST: #ifdef FE_TONEAREST return 1; #else return 0; #endif case GFC_FPE_UPWARD: #ifdef FE_UPWARD return 1; #else return 0; #endif case GFC_FPE_DOWNWARD: #ifdef FE_DOWNWARD return 1; #else return 0; #endif case GFC_FPE_TOWARDZERO: #ifdef FE_TOWARDZERO return 1; #else return 0; #endif default: return 0; /* Should be unreachable. */ } } void get_fpu_state (void *state) { fegetenv (state); } void set_fpu_state (void *state) { fesetenv (state); } int support_fpu_underflow_control (int kind __attribute__((unused))) { return 0; } int get_fpu_underflow_mode (void) { return 0; } void set_fpu_underflow_mode (int gradual __attribute__((unused))) { }